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SELF-DUALITY OF METRICS OF TYPE (2, 2)
ON FOUR-DIMENSIONAL MANIFOLDS
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Abstract. We study self-duality of pseudo-Riemannian metrics of type (2, 2). We
show correspondences between self-duality of Riemannian metrics and that of pseudo-
Riemannian metrics of type (2, 2) under appropriate conditions. Moreover we give global
constructions for four-dimensional manifolds with self-dual metrics of type (2, 2).

1. Introduction. The twist or theory, constructed by Penrose for four-dimensional

complex space-times, is the double fibering correspondence between these space-times
and the complex three-dimensional manifolds called twistor spaces. Penrose and his
colleagues investigated conformally invariant equations on these space-times (e.g.,
massless field equations, self-dual Yang-Mills equations) by transforming them into
more tractable objects in algebraic and complex analytic geometry of the twistor spaces
(e.g., cohomology, holomorphic vector bundles). When one generalizes the twistor
theory constructed for the flat space-times to that for curved space-times, it is then
essential to deform complex structures on the corresponding twistor spaces under
appropriate conditions. This leads to the fact that the curved space-times under
consideration enjoy self-duality (or half conformal flatness) of the Weyl conformal
curvature tensor, and vice versa. See Penrose-Ward [P-W], Ward-Wells [W-W].

Subsequently, from another point of view, Atiyah, Hitchin and Singer [A-H-S]
constructed the twistor theory for real four-dimensional Riemannian manifolds with
positive definite metrics ((4, ϋ)-metrics). Their construction can also be carried out under
self-duality of the conformal tensor.

Motivated by these results, we will study in this paper self-duality for (2, 2)-metrics,
as a first step to constructing the twistor theory for real four-dimensional pseudo-
Riemannian manifolds with neutral metrics ((2, ΐ)-metrics). For the twistor theory for
(2, 2)-metrics, see also [M-S]. More precisely, as our standpoint, we will investigate the
relation between self-duality for (4, 0)-metrics and self-duality for (2, 2)-metrics in
detail. In particular, we will show, for self-dual, Einstein and Kahlerian cases, the exact
correspondence between Bianchi type IX (4, 0)-metrics and Bianchi type VIII (2, 2)-
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metrics. Furthermore, we will also give global constructions for four typical examples.
In mathematical physics, (2, 2)-metrics have appeared in various context. For

instance, it has been known that, from the compatibility of quantization, the target
spaces of N = 2 superstrings must be four-dimensional as a critical dimension and have
Kahler, Ricci-flat (2, 2)-metrics. See Ooguri and Vafa [O-V]. In the effective theory,
an N = 2 superstring is regarded as only one massless scalar field, which is identified
with the Kahler potential. It is also well-known that two-dimensional nonlinear principal
sigma models (harmonic maps) are obtained from the reduction of self-dual Yang-Mills
fields (gauge fields) on four-dimensional spaces with (2, 2)-metrics (cf. Hitchin [H],
Ward [Wa]).

However, compared with those for Riemannian metrics ((4, 0)-metrics) and for
Lorentzian metrics ((3, l)-metrics), the study for (2, 2)-metrics are not well explored. It
is therefore worth while studying (2, 2)-metrics which are not well understood.

This paper is organized as follows: In §2, for later convenience, we review several
conditions for four-dimensional manifolds to admit (2, 2)-metrics and examine some
examples.

In §3, we recall the decomposition of the curvature tensor of pseudo-Riemannian
manifolds with (2, 2)-metrics and define the notion of (conformal) self-duality of
(2, 2)-metrics. Also, we study self-duality of (2, 2)-metrics on (2, 2)-Kahler surfaces.

In §4, we show that a (2, 2)-metric of Bianchi type VIII is self-dual (resp. anti-self-
dual, Einstein, Kahler) if and only if the (4,0)-metric of Bianchi type IX with the same
coefficients is anti-self-dual (resp. self-dual, Einstein, Kahler). To show these corre-
spondences, we first recall polar coordinates of the pseudo-Euclidean space R* of
signature (2, 2), and then introduce Bianchi type VIII (2, 2)-metrics and Bianchi type
IX (4, 0)-metrics. We also obtain, for self-duality and Kahlerian property, the exact
correspondence between Gibbons-Hawking type (2, 2)- and (4, 0)-metrics.

§ 5 is devoted to the study of removable singularities of Bianchi type VIII (2, 2)-
metrics, which are called nut and bolt singularities. We define four typical Bianchi type
VIII (2, 2)-metrics (which are the counterparts of those Bianchi type IX (4, 0)-metrics):

(1) Fubini-Study type (anti-self-dual, Einstein and Kahler)
(2) Eguchi-Hanson type (self-dual, Ricci-flat and Kahler)
(3) Taub-NUT type (anti-self-dual, Ricci-flat and non-Kahler)
(4) LeBrun type (self-dual, scalar-flat and Kahler).

Furthermore, since these metrics have only nut or bolt singularities, we can construct
topologically manifolds with globally defined (anti-)self-dual (2, 2)-metrics by removing
the singularities and extending the metrics. We also show that these examples with
suitable orientations can be constructed, at least locally, as a one-parameter family of
anti-self-dual (2, 2)-metrics. Finally, we reconstruct these manifolds by modifying the
indefinite complex hyperbolic space Hl(C).

In this paper, we will use the following convention and notation (cf. Wolf [Wo]).
Let /?" denote the vector space of real ^-tuples x = (x0, . . . , xn_ x) with the inner product
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(0o);(*>3>)= - Σ χ*y*+ Σ *ij>. -
α = 0 i = s

Then /?" can be regarded as a pseudo-Riemannian manifold of signature (n — s, s), which
is often called the pseudo-Euclidean space of signature (n — s, s). Moreover we define

S; = {xeR;+l\(g<X+l(x9x)=l}9 H; = {xeR;:} \(g^l(x9 x)= - 1} .

It is well-known that S" and H" are complete pseudo-Riemannian manifolds of signature
(n —s, s) and of constant curvature + 1 and — 1, respectively. S" is called the pseudo-
Riemannian sphere and H" the pseudo-Riemannian hyperbolic space.

The authors would like to thank Professor Seiki Nishikawa for his helpful
suggestions.

2. Existence of (2, 2)-metrics. We begin by recalling several conditions for four-
dimensional manifolds to admit (2, 2)-metrics and examine some examples.

It is well-known that a four-dimensional manifold admits a (2, 2)-metric if and
only if there exists a two-plane field, that is, a two-dimensional tangential distribution,

on it (see Steenrod [S]). Concerning the existence of two-plane fields, the following
conditions have been known. Given a compact oriented four-dimensional manifold M,
Hirzebruch and Hopf [H-H] obtained a necessary and sufficient condition for M to
admit an orientable two-plane field in terms of the Euler characteristic χ(M) and the
Hirzebruch signature τ(M). Comparing their condition with that of Wu [Wu] concerning
the existence of almost complex structures, we can see that M admits an orientable

two-plane field if and only if it has two almost complex structures, one being compatible
with the fixed orientation and the other being compatible with the reversed orientation
(see Matsushita [M]). If M has two such almost complex structures, then it admits a
(2, 2)-metric. Furthermore, if M is simply connected, the converse is also true. As an
application, we see that the four-dimensional sphere S4 admits no (2, 2)-metrics, since
there are no almost complex structures on S4.

For a compact complex surface M, Matsushita [M] proved that the existence of
an orientable two-plane field on M is equivalent to %(M) = 0(mod2). Thus we see that
P2(C), the complex projective space of complex dimension two with canonical
orientation, admits no (2, 2)-metrics, since χ(P2(C)) is three. In general, it is known
that the w-times connected sum of P2(C)'s, nP2(C) = P2(C)% - - #P2(C), admits no
(2, 2)-metrics (see [M]).

On the other hand, there exist many four-dimensional manifolds which admit (2, 2)-
metrics. For example, the following manifolds admit (2, 2)-metrics: the total space of
a fibre bundle on a surface with two-dimensional fibres; P2(C)$P2(C), where P2(C) is
the P2(C) with the orientation reversed; K3 surfaces.

3. Self-duality of (2, 2)-metrics. We recall briefly some basic facts about four-
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dimensional pseudo-Riemannian geometry of (2, 2)-metrics (cf. Besse [B]).
Let (M, g) be an oriented four-dimensional pseudo-Riemannian manifold with a

(2, 2)-metric g. As in the Riemannian case, the Hodge star operator * of (M, g) satisfies
*2 = Id on y\2 Γ*M, the bundle of 2-forms. Thus /\2 Γ*M decomposes as y\2 Γ*M=
/\ + Θ A-' where /\+ = {αey\2 Γ*M| *α = ±α}. This corresponds to the Lie algebra
decomposition o(2, 2) = $1(2, fl)φ sl(2, /?). Denote respectively by /?, Z, j and W, the
curvature tensor, the traceless Ricci tensor, the scalar curvature and the Weyl conformal
tensor of (M, g). Considering them as endomorphisms on y\2 Γ*M, we see that * W= W*
and *Z= — Z*. Thus we have the following decomposition:

(3.1) R = (W+ 0 ^_)@ZΘ(s/12)Id ,

where W± = W Λ± are endomorphisms on /\+, respectively. These being understood
we recall the following:

DEFINITION. A (2, 2)-metric g is said to be self-dual (resp. anti-self-dual) if W_ ^0
(resp. W+ =0). A (2, 2)-metric g is said to be Einstein if ZΞΞ().

We note that the notion of (anti-)self-duality of (2, 2)-metrics is conformally in-
variant.

REMARK. Recalling the Gauss-Bonnet formula for a compact oriented four-
dimensional pseudo-Riemannian manifold (M, g) with (2, 2)-metric g (see Avez [A],
Chern [C]), we can write the Euler characteristic χ(M) in terms of the components of
the curvature tensor as

(3.2)
M

|| ||2 being the squared norm. We can also write the Hirzebruch signature τ(M) as

(3.3)
l

Since the squared norm || ||2 is indefinite, ||Γ||2 = 0 no longer implies Γ=0 in
general. So we are led to the following question: Does there exist a manifold which
admits a (2, 2)-metric but does not admit any (an ti-)self dual (2, 2)-metric? In particular,
we are interested in whether or not the following manifolds admit (anti-)self-dual
(2, 2)-metrics: (1) P2(C)#P2(C), (2) S1 xS\ (3) K3 surfaces, etc.

We next consider an almost complex structure / on (M, g). If J is compatible with
(2, 2)-metric g, then (M, g, J) is called an almost (2, 2)-Hermitian manifold. If / is also
parallel with respect to the Levi-Civita connection of (M, g), then (M, g, J) is called a
(2, Ί)-Kάhler surface. Note that J is integrable if (M, g, J) is (2, 2)-Kahler. In the
following, we assume that / is compatible with the orientation of (M, g).

As in the Riemannian case (cf. Derdziήski [D], Itoh [I]), we obtain the following:
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PROPOSITION 3.1. Let (M, g, J) be a (2, 2)-Kάhler surface. Then (M, g) is self-dual
if and only if (M, g) is scalar-flat.

PROPOSITION 3.2. Suppose that (M, g, J) is a compact (2, 2)-Kάhler surface. If g is
an ant i- self -dual (2, 2)-metric, then τ(M) is nonpositive. Furthermore, τ(M) = 0 if and only
if (M, g) is scalar-flat and conformally flat .

PROPOSITION 3.3. Suppose that (M, g, J) is a compact (2, Ί)-Kάhler surface. Ifg is
an anti-self-dual, Einstein (2, 2)-meίric, then χ(M) is nonpositive. Furthermore, χ(M) = 0
// and only if (M, g) is flat.

4. Bianchi type VIII (2, 2)-metrics. A four-dimensional pseudo-Riemannian
manifold (M, g) is said to be spatially homogeneous if a three-dimensional Lie group
acts isometrically on (M, g) and simply transitively on each orbit. According to
the classification of three-dimensional Lie groups, spatially homogeneous pseudo-
Riemannian manifolds are classified into nine types called Bianchi types. In this section,
we introduce Bianchi type IX (4, 0)-metrics and Bianchi type VIII (2, 2)-metrics.

4. 1 . Polar coordinates of R$. We recall the standard (2, 2)-metric of R4 = (R4, #0)
:

(4.1.1) g0= -dxZ-d

where (x0, jc l 9 x2, x$) denote the standard coordinates of R4. For simplicity, we set

Jf is often called the nullcone of R4. Then R4 decomposes as R4 = R4- LJ^1J^2 +
(disjoint union).

Note that R4

+ is identified with R+ x SL(2, R) by the isomorphism x = (x0, . . . ,
;c3) h-> (r, <9), where

Γ=(χ2+χ2_χ2_χ2yi2

We call (r, <9) polar coordinates of R2 + . We define an orthonormal basis {e0, e l 5 e2, e3}
for Λ0sl(2, /?) as follows:

(4.1.2) β0 = ( ! ° ) , ^=1° ~ ! ) , e2 = ( ~l °V e3 = (° !

V o ι y V i o y ' V o ι y ' V i o
which forms an orthonormal frame field for R2+ ^R+ x SL(2, /?) such that

(4.1.3) ^θ(eθJ eθ) = ̂ θ(elJ el)= ~1 > 9θ(e2?e2) = 9θ(e3>e3)=l ι

(4.1.4) [β2,e^\ = 2el9 \_e^e^~]=—.

Note that {^1? β2, ̂ 3} in (4.1.2) defines an orthonormal frame field for SL(2, R) satisfying
(4.1.3) and (4.1.4). We denote by {τ l 5 τ 2 , τ3} the dual coframe field consisting of
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left-invariant 1 -forms on SL(2, R), which satisfies the following structure equations:

(4.1.5) dτ1 = — 2τ2 Λ τ 3 , dτ2 = 2τ3 Λτ1 , rfτ3 = 2 τ 1 Λ τ 2 .

Then the standard metric g0 on R*+ can be expressed as

(4.1.6) go=-dr2 + r2(-τϊ + τϊ + τl),

where r is the radial function in polar coordinates of R* + . We note that SL(2, R) with

the (2, l)-metric — τ? + τf + τf is isometric to Hf^R%.
We also comment on the standard metric of /?2 -

 and its representation in polar
coordinates. For (x0, . . . , x3) of /?f_, we put p = ( — XQ — x2 + *2 + ̂ |)1/2 (>0). Let σ
be a 2 x 2 matrix such that det(σ) = — 1 . Then σ gives an identification R* - with
R+ x SL(2, R), and hence the standard metric g0 is expressed as

4.2. Bianchi type VIII and IX metrics. Let r be the coordinate function of /?+,
and /, α, ft, c smooth (non-zero) functions of r.

A (2, 2)-metric 0, defined on an open subset of R%+ = R+x SL(2, R), is of Bianchi
type VIII if g is expressed in polar coordinates as

(4.2.1) g= -f(r)2dr2-a(r}2τ2 + b(r)2τ2 + c(r)2τ2 ,

where {τ l 5τ 2, τ3} is the orthonormal coframe field of left-invariant 1-forms on
SL(2, R) = H2 satisfying the structure equations (4.1.5).

A (4, 0)-metric h, defined on an open subset of R4 \{0} =R+ x SU(2), is of Bianchi
type IX if h is expressed in polar coordinates as

(4.2.1) h =f(rYdr2 + a(r)2σ2 + 6(r)2σ| + c(r)2σ3

2 ,

where {σ l5 σ2, σ3} is the orthonormal coframe field of left-invariant 1-forms on
SU(2) = S3 satisfying the structure equations: ί/σ1 = 2σ 2 Λσ 3 , ί/σ2 = 2 σ 3 Λ σ l 5 dσ3 =
2σ1Aσ2.

Comparing the components of the curvature operators of g and ft, we have the
following:

THEOREM 4.1. Let g and h be a (2, 2)-metric and a (4, ϋ)-metric defined respectively
by (4.2.1) and(4.2.1). Define almost complex structures Jand Jrespectively by J(fdr) = aτl9

J(bτ2) = cτ3 and J(fdr) = aσl9 /(fcσ2) = cσ3. Then the following hold:
(1) g is self-dual (resp. anti-self-dual) if and only if h is anti-self-dual (resp. self-

dual).
(2) g is Einstein if and only if so is h.
(3) (g, J) is Kάhler if and only if so is (ft, /).

PROOF. For convenience, we set A = ά/f, B = b/f, C=c/f (' means djdr),
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N=-
bc ca ab

e°=fdr, eί=aτ1, e2 = bτ2, e3 = cτ3;

e°=fdr, el=aσiy e2 = bσ2, £3 = cσ3;

±e2Λe3 , λ2

±=e° Λe2±e1 Λ e 3 , λ*± = e° Λe3±

±el Λe2

The connection forms ω = (ωI

J) and ώ = (ώI

J) with respect to {e1} and {e1} are then
determined respectively by

ώ°2=-(B/b)e2 , ώ\=(M/b)e2,

ώ°3--(C/φ3, ώ\
ω°2 = (Bjb)e2, 0)^= (Mjb)e2, and

ω°3- (C/φ3, ω\=-(N/c)e*9

Note that ω is an o(2, 2)-valued 1-form and that ώ is an o(4)-valued 1-form.
Now recall that (g, J) is Kahler if and only if ω°2 —ω1

3 = ω°3H-ω2

1 =0. Similarly,
(h, J) is Kahler if and only if ώ°2+ώ3

1=ώ03 + ώ1

2 = 0. These are equivalent to B = M,
C=N. Hence we see (3).

The components W9 Z of 7? are expressed as

Then WI±9 Z7 and the scalar curvature s are explicitly given by

W1 + =—l—{bc(A±2Ly +fa(BC-2L + MN)}-s/U ,
" Ίfabc

Zl= — [—{Abc-fa(BC-2L + MN)} ,
2fabc

2 {Abc + Bca + Cab +fa(BC- MN) +fb(CA - NL) +fc(AB - LM)} ,

and we obtain the other components WI±9 Zl (1=2, 3) by changing (α, b, c\ A, B, C;
L, M, AT) with (ft, c, α; β, C, A ; M, ΛΓ, L) and (c, α, 6; C, A, £; N, L, M).

For a quantity Y defined for (2, 2)-metric g, let Γ denote the corresponding quantity
defined for (4, 0)-metric h. Then the components W, Z of R are expressed as

= ZjIL (7-1,2,3).

It then follows that

WI± = -W^9 Zj=-Zj (7-1,2,3) and s=-s.

Hence (1) and (2) are verified. Π
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REMARK. Let g be a (2, 2)-metric defined by (4.2.1) such that b2 = c2. In the
following four cases, g is generically expressed as follows (cf. Dancer-Strachan [D-S],
Tod [T]):

(1) g is Ricci-flat and self-dual:

(4 2 2) 3=-

(4.2.3) g=- db -b\\+λlb*)τl + b2(τl + τl) if 0 i s Kahler.
1 -f- A/D

(2) g is Einstein and Kahler:

9= -

where s is the scalar curvature (constant). Note that the right hand side of (4.2.4)
coincides with that of (4.2.3) if g is Ricci-flat.

(3) g is anti-self-dual and Kahler:

(4.2.5) 9= *

(4) g is self-dual and Kahler:

(4.2.6) g= 2

Here λ, μ, μl9 μ2, v l 9 v2 are constants.
We note the following relation between anti-self-dual Kahler (2, 2)-metrics (Case

(3)) and self-dual Kahler (2, 2)-metrics (Case (4)). Suppose that g is a self-dual Kahler
(2, 2)-metric expressed by (4.2.6). By changing b with 1/Z>, we have

and hence see that &4# is nothing but an anti-self-dual Kahler metric in (4.2.5).

4.3. Gibbons-Hawking type metrics. We recall that a Gibbons-Hawking type
(4, 0)-metric h on an open subset of R x J?3 (resp. R x //3) is a Ricci-flat Kahler metric
(resp. conformally equivalent to a scalar-flat Kahler metric) defined by using a
ί/(l)-monopole on /?3 (resp. #3) (see Gibbons-Hawking [G-H], LeBrun [L2]). Thus
h is anti-self-dual.

To show an analogous result for (2, 2)-metrics, we first introduce Gibbons-Hawking
type (2, 2)-metrics. Let M3 be Rf or S3, g0 the standard (2, l)-metric of Mf and (F, ̂ )
a (/(l)-monopole on an open subset of M3 (i.e., a pair of a non-zero function F and
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a 1-form A such that dV=*0dA, where *0 is the Hodge star operator of Mf). We

assume, for simplicity, that Fis a positive function. We now define a Gibbons-Hawking
type (2, 2)-metric gGH by

(4.3.1) gGH = - V-\dt + A)2+Vg0 ,

where t is the coordinate function of R. Let [e^ e2^ e$} be an orthonormal coframe

field of MI such that #0(^0 > ^d)= — 1> 9o(eo » eo) = 9o(eo> eo)= 1- We define an almost
complex structure / by J(dt + A) = Ve^, Je% = el. We can show the following:

THEOREM 4.2. Leί #GH fee fl Gibbons-Hawking (2, Ί)-metric defined by (4.3.1),
/ //ze almost complex structure defined as above. Then the following hold'.

(1) If Ml = Rl, then gGH is a Ricci-flat and self-dual (2, 2) Kάhler metric.
(2) If Ml = Si, then gGH is locally conformally equivalent to a scalar-flat (2, 2)-

Kάhler metric and hence is self-dual.

PROOF. By an argument similar to that in the second case Ml = Si, the assertion
in the first case Ml = Rl can also be verified. Thus we only prove the case Ml = Sl.

Recall that ^l = {X=(Xl9X29X^X^eR^\-Xl + Xl + Xl + Xi = \}. For Xe
Si \{AΊ +1̂  = 0}, we define a local coordinate system x = (x1, x2, x3) by

jc1 = 1/^+^4), x2 = ̂ 2/^

It is then immediate that (x1)2g0=-(dxί)2

We will show that (xl)2gGH is a scalar-flat (2, 2)-Kahler metric. We define

(1= 1, 2, 3) ,e~=χ-y ' \ai-\-Λ), e = v ' ax (i=ι,z, j ) ,

forming an orthonormal coframe field with respect to (^1)2^GH Then the connection
form ω = (ωI

J), which is an o(2, 2)-valued 1-form, is given by

0 -1 (Y dV 2V\ 0 dV 2 dV 3)ω ι= Hhrr-— * +1ΓT* iΓT* f '2VJV (\vx x / vχ vx }

ω>=—L^^eo+^2_^A

0 -i (dv 0 dv , dv 3\
ω 2= ^^ Te Te Γe ( '2V JV (dx dx3 dx1 J

to1 - -1 [ g F c° dV c1 SV A3~" / } * 2 2 3 a l l 'O T Λ / T Λ ί / l V ^ / Ί V 0 /"ίV 1 \

s -1 f δ K o dV l SV 2.J — J z?υ -I o A J o \
3— 7=^ ) a 3 ̂  ^ a 2 ^ Γ I '

2F x /Fl^ ^ dx1
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i (dv 0 dv l dv 2/?u _| P -\ P
-» C i^ ~ *~ l^ 1 ̂

We see that

Hence ((x1)2^GH, J)isa(2, 2)-Kahler metric. Furthermore, we obtain W _ + (,s/12)Id =
since it holds that

where {λ±9 λ±9 A + } is defined as in §4.2. Hence we have W _ = 0 and s = Q. Π

It should be remarked that, for any Gibbons-Hawking type (4, 0)-metric h,
LeBrun-Nayatani-Nitta [L-N-N] showed that RicΛ= — 2A0. Analogously, for any
Gibbons-Hawking type (2, 2)-metric g, we can show that Ricg = 2g0.

5. Global constructions of self-dual (2, 2)-metrics. In this section, we construct
examples of manifolds with global (anti-)self-dual (2, 2)-metrics of Bianchi type VIII.
We first define removable singularities for Bianchi type VIII (2, 2)-metrics, which are
called nut and bolt singularities.

5.1. Nut and bolt singularities. For a (2, 2)-metric Bianchi type VIII, we
introduce two conditions on removable singularities, which we will call "nuts" and
"bolts". (For nuts and bolts for Riemannian metrics of Bianchi type IX, see, e.g.,
Eguchi-Gilkey-Hanson [E-G-H], Eguchi-Hanson [E-H].) We first recall the relation
between the standard (Cartesian) coordinates and polar coordinates of R%+. The
standard coordinates x = (x0, xl9 x2, x3) can be expressed as

x0 = r cosh(0/2) cos(ι^ + φ)/2 , xί=r cosh(0/2) sin(ι/^ + φ)/2 ,

x2 = r sinh(0/2) cos(^ - φ)/2 , x3 = r sinh(^/2) sin(^ - φ)/2 ,

where r>0, θ>0, 0<φ<2π and 0<ι^<4π. Moreover (τ l 5 τ2, τ3} is given by

(τ1? τ2, τ3) = —(dψ + coshθdφ, cosψdθ + sinhθsmψdφ, sir

Thus we have

— smhθcosψdφ) .

-X

.Xq J\^9

x* —

J\Jn -^1 dx?
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For a metric g = -f(r)2dr2-a(r)2τ2 + 6(r)2τf + φ)2τf, we get the following ex-

pression for g by a variable change.

where τ is given by fdr = dτ. For simplicity, we assume that a, b, c are finite and

nonsingular for finite τ, and have singularities at τ = 0.
A metric has a removable nut singularity if

a\b2,c2^τ2 (as τ->0) .

In this case, at τ = 0 we have simply a coordinate singularity in the flat polar coordinate
system on R\, whose nullcone is expressed as τ 2 = 0. By using Cartesian coordinates

on R\ , we can remove the singularity, and can extend g onto a neighbourhood of the
nullcone. Near τ 2 = 0, the manifold is topologically R*.

A metric has a removable bolt singularity if

(as τ -» 0) ,

where m is an integer. Here b2 = c2 implies the canonical metric (dθ 2 4- sinh2 θdφ 2)/4

on H2 for the (62τf + c2τ2) part of the metric, while at constant (0, φ), the (ί/τ2 + α 2τ 2)
part of the metric looks like dτ2 + (m2τ2l4)dψ2. If the range of ψ is adjusted to
0 < wι/^/2 < 2π, we can remove the apparent singularity at τ 2 = 0 by using Cartesian
coordinates on R2. The topology of the manifold is locally R2 x H2 and the R2 shrinks
to a point on H2 as τ-»0. More precisely, we can regard g as a metric on an /?2-bundle
over H2, by considering (τ, mψ/2) as polar coordinates of each fiber R2. The /?2-bundle
is given as follows. Let Kί/2 = Hf xsι/?2-»//2 be the /?2-bundle induced by the hyper-
bolic Hopf fibration H\-+H2 which is an S1 -bundle over H2 analogous to the standard
Hopf fibration 53->52. By the adjustment of ψ, we can regard g as a metric
on Km/2 = (K1/2)®m = H*xslR

2/Zm, where Zm = Z/mZand £ = m-leZ> 0.

EXAMPLE 1. Pseudo-Euclidean (2, 2)-space R$ = (R4, g0) (cf. § 4.1):

Clearly, the space /?£ is complete and its curvature tensor vanishes. This metric g0 can
be rewritten in polar coordinates as

dp2 + p 2 τ f — p 2 (τf+ τ2) (on/?*-).

The nullcone r2 = p2 = 0 i s a n apparent singularity, which is removable.

EXAMPLE 2. Pseudo-Riemannian hyperbolic (2, 2)-space H^=(H, gH4):

The space H% is also complete and has constant curvature —1. Note that (//, —gH4)
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coincides with the pseudo-Riemannian sphere S4. By means of the stereographic
projection from the south pole (— 1, 0, 0, 0, 0) we regard gH4 as a metric on an open
subset of R4. Then gH4 can be expressed as

" +τ3^ (on R$+),
(1+r2)2

The nullcone r2 = p2 = 0 i s a removable apparent singularity. Furthermore, the apparent

singularities r = + oo and ρ= + oo express the same subset {(— 1, x0, xl9 x2, *3) | X Q +
jc2 = .xf+ jcf} in H4cΞR^. Under the stereographic projection from the north pole, the

set above is mapped to the nullcone of R4.
5.2. Global constructions of four types. We first recall the following four types

of (4, 0)-metrics (see, e.g., [E-G-H], [E-H], LeBrun [LI]):
(T) the Fubini-Study metric on P2(C) (self-dual, Einstein, Kahler),
(2) Eguchi-Hanson metrics on the cotangent bundle Γ*52 of S2 (anti-self-dial,

Ricci-flat, Kahler),
(3) Taub-NUT metrics on R4 (self-dual, Ricci-flat, non-Kahler),
(4) LeBrun metrics on complex line bundles κ(k+1)/2 over Pl(C) (anti-self-dual,

scalar-flat, Kahler), where Kis the canonical bundle over Pl(C) (fceZ>0).
Each of these metrics is of Bianchi type IX on an open dense subset of the ambient

manifold.
By virtue of Theorem 4.1, we can immediately construct Bianchi type VIII (2, 2)-

metrics corresponding to the (4, 0)-metrics above. We then give explicit expressions
for these (2, 2)-metrics, and construct manifolds on which these metrics are globally
defined (cf. §5.1).

(1) Fubini-Study type.

άfr2 + r 2τ 2 ^ r2(τ| + τ2)
**- (l + r 2)2 +

 1+,2

The metric is anti-self-dual, Einstein and Kahler. Note that we can obtain g¥S from
(4.2.5) by putting μί= — 19 μ2 = 0, 62 = r2/(r2 + 1). The singularities of g¥S are describ-

ed as follows: r2 = 0 is a nut singularity, and hence g¥S can be extended to p2 =
— (XQ + x2—x2 — x%)< 1, a neighbourhood of the nullcone ̂  = {r2 = Q}. r2= +00 is a
bolt singularity, and hence gFS is regarded as a metric on the /?2-bundle K1/2. Thus g¥S

is extended to MFS= C/u C 7 n K ι / 2 = R 4 + K
1/2, where U=R4\{p2> I}.

(2) Eguchi-Hanson type.

^2 2/1 \4\ 2 2 / 2 2\
Qτ;τι== ~ 1" ( 1 (d/Γ) ΪT i +r (To + Tα )
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The metric is self-dual, Ricci-flat and Kahler (cf. [O-V]). Note that we can obtain gEH

from (4.2.3) by putting λ= —a4 and b2 = r2. The singularity of gEH is given by r2 = a2,

which is a bolt singularity, and hence gEH can be extended to the /?2-bundle Kl = T*H2

over H2(r2 = a2 corresponds to //2).

We note that gEH is also regarded as a metric globally defined on the cotangent
bundle T*Σg of a compact Riemann surface Σg of genus g>2, since gEH is SL(2, /?)-
invariant.

(3) Taub-NUT type.

The metric is self-dual with suitable orientation, Ricci-flat and non-Kahler. Note that
we can obtain gΎN from (4.2.2) by putting λ= — 1 and a2 = r2/(\ H-r2). The singularity

of gΎN given by r2 = 0 is a nut singularity, and hence #TN can be extended to
p2=-(x* + xl-xl-xl)<\. Thus it is globally defined on /?4\{p2>l}.

(4) LeBrun type.

n f I Λ ι< / Λ 2 Λ(\-(alr)2)(\+k(alr)2)

, fceZ>0). The metric is self-dual, scalar-flat and Kahler. Note that we can obtain

g£ from (4.2.6) by putting v1=(k— l)α2, v2 = — ka4 and b2 = r2. The singularity of g*
is given by r2 = a2, which is a bolt singularity, and g£ is globally defined on κ(k+1)/2.

In the following, we verify directly that MFS is nothing but the indefinite complex

hyperbolic space //2(C), and that gFS is globally defined on H2(C). We define M by

M={(z0:z1:z2)eP2(C)|-|z0 |
2-|z1 |

2 + |z 2 | 2<0},

where (z0 : z1 : z2) denotes the homogeneous coordinate of P2(C). Note that M can be

regarded as the homogeneous space H2(C)=U(2y !)/(£/(!) x t/(l, 1)). We also define a
quadratic form on C3 \{0} by

-\dzQ\2-\dzl\ ~ ~ ~

This is C*-invariant and hence defines a (2, 2)-metric gf on M=H2(C). It follows from
the condition — |z0 |

2 — \z1 |
2 + |z2 |

2<0 that either z0τ^0 or z^O. Since g is symmetric

with respect to z0 and z1? we may assume z0^0. Setting ζ1 =z1/z0, C2^^2/zo» we have
an expression for g in (£l5 ζ2) as

-T-

ι + K ι l 2 - I C 2 l
Setting r2 = K 1 | 2 - |C 2 | 2 if Id |2-|C2 |

2>0 and p2 = K2 |2-KJ2 if -l<K 1 | 2-|ζ 2 |
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<0 , we obtain the following expression for g in polar coordinates of C2 = R\\

Thus g is nothing but the Fubini-Study type (2, 2)-metric 0FS. In the expression for g
above, the apparent singularity at r2 = p2 = Q is clearly removable and g&g0 near

r2 = p2 = Q (where g0 is the standard metric of /?*)• The apparent singularity r2 = + oo
is also removable. To see this, recall the expression for g in terms of (z0 : z1 : z2). Since

r2= + 00 means z0 = 0, we use the coordinates (ξ0 = z0/zΐ, ^2 = z2/zι) near zo = 0 In

these coordinates, # can be written as

=

In particular, we have g = -\dξ0\
2/(\ -\ξ2 \ 2 } + \dξ2 |2/(1 -| ξ2 |

2)2 on {(0:z ι :z2)}

(fo = 0). Since | £0 |
2-K212> -1, we see that \ξ2\

2<l on ξ0 = 0. The first term

— I ^o I2/0 ~~ I £2 I2) is tne standard (0, 2)-metric of R2 except for the conformal factor
1/0 -1 £2 I2) The second term | dξ2 |2/(1 -1 ξ2 |

2)2 is exactly the standard metric of H2

up to the factor 1/4 (the Poincare metric on D2( — 4)). Therefore r2= + 00(0z0 = 0) is
removable and locally M is topologically R2 x H2 near r 2 = +00. Thus we see that
g = gFS is globally defined on H2(C). Note that (M, — #) coincides with the indefinite
complex projective space P2(C).

Summarizing these, we have the following:

THEOREM 5.1. The following hold:
(1) #FS is anti-self-dual, Einstein and Kάhler, and is globally defined on H2(C).
(2) #EH is Ricci-flat and Kάhler (thereby self-dual), and is globally defined on T*H2.
(3) #TN ^ self-dual, Ricci-flat and non-Kάhler, and is globally defined on R4 \

{P2>1}.
(4) gi is scalar-fiat and Kάhler (thereby self-dual), and is globally defined on K(k + ί)/2.

5.3. Unified aspects of the four types. Let us comment on some local relations
among the four types of (2 ,2)-metrics, which we discussed in §5.2. We also remark that
the manifolds on which the four types of (2, 2)-metrics are globally defined can be
constructed by modification of the manifold M=H2(C).

We define a one-parameter family of (2, 2)-metrics by

(5 3 1) g"=- *r

Putting
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!/2 1 / 1 j _ f f . 2 \ l / 2 J

r2

and regarding {f(r)dr, a(r)τly b(r)τ2, c(r)τ3} as an oriented coframe field, we see that
the one-parameter family g(t) has the following properties:

w =Q. =0. _2r4(2-0
+ = ; S= ; '"(l+r 2) 2 ' 2~ 3 =

Namely, for any ί, each g(t) is an anti-self-dual and scalar-flat (2, 2)-metric, and g(t} is
Einstein if and only if t = 2.

If / = 0, then g(t) is locally conformal to the Taub-NUT type (2, 2)-metric gΎN, since

If ί= 1, then 0(t) is locally conformal to the Fubini-Study type (2, 2)-metric 0FS, since

_(l+r 2 ) 2 1 dr2 + r2τl r2(τ| + τ3

2){
3(1) ~Γ O+' 2)2 + 1+r2 J

If / = ̂ 4-1, then we can regard ^(ί) as a LeBrun type (2, 2)-metric g*, up to constant
factor, by replacing r with a(r2 — a2)'1'2. In particular, gf ( 2 ) locally corresponds
conformally to an Eguchi-Hanson type (2, 2)-metric gEH. Therefore we obtain the
following:

PROPOSITION 5.2. Consider the four types in §5.2 as (2, 2}-metrίcs defined on R*+
with suitable orientations (if necessary, by replacing the variable r with a(r2 — a2)~1/2).
Then the conformal classes of the four types can be connected by a one-parameter family
(5.3.1) consisting of anti-self-dual (2, 2)-metries.

In §5.2, we investigated the topology of the manifolds on which the four types of
(2, 2)-metrics are globally defined. In what follows, we can also obtain these manifolds
respectively by taking off subsets from the manifold M=H2(C).

Recall that the Fubini-Study type (2, 2)-metric #FS is globally defined on the manifold
M={(z0:z 1:z2)|-|z0 |2-|z 1 |2 + |z2 |

2<0}. Here we define A f _ , M0, M+ and M^ by

A f _ = {(z 0:z 1:z 2)6M||z 0 | 2>0,|z 1 | 2-|z 2 | 2<0},

M0 = {(z 0:z 1:z 2)eM||z 0 | 2>0,|z 1 | 2-|z 2 | 2 = 0},

M+ = {(z 0:z 1:z 2)eM||z 0 | 2>0,|z 1 | 2-|z 2 | 2>0},

M 0 0^{(0:z 1:z 2)eM||z 1 | 2-|z 2 | 2>0}.

Then we have M= M_ ]J M0 ]J M+ ]J Af„. We also define Af f by
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2-|C 2 | 2 = l/>2} = #ι3 for t>0.

Note that M0, M+ and M^ can respectively be identified with the nullcone Jf

(corresponding to the nut singularity of 0FS), R* + and H2 (corresponding to the bolt

singularity of gFS). Furthermore, we will use, for simplicity, the notation

Λ/ ( _ l i 0 ] : = Λ f _ L [ Λ f o , M[0,00): = M 0 LJM + , M(0i00]: = Af + LJM^ -

The Taub-NUT (2, 2)-metric 0TN is defined on R4 \{p2>l}^M\M00, which we

obtain by taking off the bolt singularity of gFS from the manifold M.

The (2, 2)-metric g(ί} corresponding to that of LeBrun type with k = Q is globally

defined on M(0>00], which we obtain by taking off the nut singularity of #FS and M_

from M. Recall that

Hence the manifold M(0>00] is nothing but CxH2.

We next consider other LeBrun type (2, 2)-metrics (fc>0). Note that, since we can

identify Mr and M^ with Hi and //2, respectively, we can regard M(0 ^j-^M^

((z0 : zt : z2)h-> (0 : zx : z2)) as the complex line bundle Kl/2 associated to the hyperbolic

Hopf fibration H\^H2. We now define an action of Zk+ 1 on M by

τk+ 1 : zk+ 1 x MS (ω, (z0 : Z! : z2)) h-> (ωz0 : zx : z2) e M .

Note that the action Tk+ί fixes M^, and Z fc+1 acts freely on each Mt. Thus we can

consider the quotient space Λf(0>00]/Zk+ ! = (//^ xsι C)/Zk+ί. From the argument on bolt

singularities in §5.1, we obtain K(k + 1}/2 = (Hf xsι C)/Zfc + 1 as the entire manifolds for

LeBrun type (2, 2)-metrics. Summarizing these, we have the following:

PROPOSITION 5.3. The following hold:

(1) 0FS is a (2, 2)-metric on M.

(2) 0EH is α (2, 2)-metric on M(0>00]/Z2.

(3) ^TN is a (2, 2)-metric on M\MX).

(4) ^ w Λ (2, 2)-metric on M(0ί0θ]/Zk+ί.
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