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Abstract. Lagrangian //-umbilical submanifolds are the "simplest" Lagrangian
submanifolds next to totally geodesic ones in complex-space-forms. The class of
Lagrangian //-umbilical submanifolds in complex Euclidean spaces includes Whitney's
spheres and Lagrangian pseudo-spheres. For each submanifold M of Euclidean «-space
and each unit speed curve F in the complex plane, we introduce the notion of the complex
extensor of M in the complex Euclidean «-space via F. The main purpose of this paper
is to classify Lagrangian //-umbilical submanifolds of the complex Euclidean «-space
by utilizing complex extensors. We prove that, except the flat ones, Lagrangian
//-umbilical submanifolds of complex Euclidean «-space with n greater than 2 are
Lagrangian pseudo-spheres and complex extensors of the unit hypersphere of the
Euclidean w-space. For completeness we also include in the last section the classification
of flat Lagrangian //-umbilical submanifolds of complex Euclidean spaces.

1. Introduction. Let f\M-+ Mm be an immersion from a Riemannian ^-manifold
M into a complex ra-dimensional Kaehler manifold Mm. M is called a totally real
submanifold if the almost complex structure J of Mm carries each tangent space of M
into its corresponding normal space. The totally real submanifold M of Mm is called
Lagrangian if n = m.

An ^-dimensional submanifold M of a Riemannian manifold TV is said to be totally
umbilical (respectively, totally geodesic) if its second fundamental form h in TV satisfies
h(X, Y) = (X, 7>// (respectively, h = 0 identically), where H=(l/n)trace h is the mean
curvature vector of M in TV and < , > denotes the inner product associated with the
Riemannian metrics on M as well as on TV. For a totally umbilical submanifold the
shape operator AH at H has exactly one eigenvalue; moreover, Aξ = Q for each normal
vector ξ perpendicular to H.

Totally umbilical submanifolds, if they exist, are the simplest submanifolds next to
totally geodesic submanifolds in a Riemannian manifold. However, it was proved in
[7] that a complex-space-form of complex dimension > 2 admits no totally umbilical
Lagrangian submanifolds except the totally geodesic ones.

In views of above facts it is natural to look for the "simplest" Lagrangian sub-
manifolds next to the totally geodesic ones in complex-space-forms. In order to do so
the author introduced in [4] the notion of Lagrangian H-umbίlical submanifolds. In [4]
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he classified Lagrangian //-umbilical submanifolds of complex projective spaces and
also of complex hyperbolic spaces. In particular, he proved that, except some exceptional
classes, Lagrangian //-umbilical submanifolds of complex projective spaces or of
complex hyperbolic spaces are obtained from Legendre curves via Hopf 's fibration in

some natural ways (see [4] for details).
According to [4], a Lagrangian //-umbilical submanifolds of a Kaehler manifold

Mn is a non-toally geodesic Lagrangian submanifold whose second fundamental form

takes the following simple form:

H(el9 el) = λJeί , H(e2, e2)= - = h(en, en) = μJel ,
(1.1)

h(e1,ej) = μJej, h(ej9ek) = 09 jφk , j,k = 2,...9n

for some suitable functions λ and μ with respect to some suitable orthonormal local

frame field. It is obvious that condition (1.1) is equivalent to

(i.iy

for any vectors X, Y tangent to M, where

(..2) ..± .̂ ί-
γ γ n

where //^O. Clearly, a non-minimal Lagrangian //-umbilical submanifold satisfies the
following two conditions:

(a) JH is an eigenvector of the shape operator AH and
(b) the restriction of AH to (JH}L is proportional to the identity map.

On the other hand, because the second fundamental form of a Lagrangian sub-
manifold satisfies (cf. [8])

(i.3) </<*, n Jzy = (h(Y, z\ jxy = </*(z, x\ j v y
for vectors X, F, Z tangent to M, Lagrangian //-umbilical submanifolds are indeed the

simplest Lagrangian submanifolds satisfying both Conditions (a) and (b). In this way

we can regard Lagrangian //-umbilical submanifolds as the simplest Lagrangian sub-
manifolds in a complex-space-form next to the totally geodesic ones.

Given an immersion G : M -> Em of a manifold into Euclidean m-space Em and a

unit speed curve F: /-> C in the complex plane, we may extend immersion G : M-^Em

to an immersion of / x M into complex Euclidean m-space Cm by utilizing the tensor

product of F and G. We call this extension the complex extensor of G via F. Whitney's
spheres and Lagrangian pseudo-spheres are nice examples of complex extensors of the
ordinary unit hypersphere (see Section 2 for details).

In Section 2 we provide some basic properties of complex extensors of an immersion.
In particular, we prove that every complex extensor of the unit hypersphere of En is a
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Lagrangian //-umbilical submanifold of Cn. Furthermore, we provide examples of
Lagrangian //-umbilical submanifolds of Cn satisfying (1.1) with λ = 3μ, λ = 2μ, λ = μ
and λ = 0, respectively. Section 3 gives a simple geometric characterization of Lagrangian
pseudo-spheres; namely, a Lagrangian submanifold of Cn is a Lagrangian pseudo-sphere
if and only if it satisfies (1.1) with λ = 2μ. In Section 4, we obtain classification theorems
for Lagrangian //-umbilical submanifolds of Cn. In particular, we prove that, except
the flat ones, Lagrangian //-umbilical submanifolds of C" with n > 3 are Lagrangian
pseudo-spheres and complex extensors of the unit hypersphere of En. For complete-
ness we include in the last section the classification of flat Lagrangian //-umbilical sub-
manifolds of complex Euclidean spaces.

2. Geometry of complex extensors. In this section we introduce the notion of
complex extensors of an immersion and provide some of their basic properties.

Let G: M"'1 -+Em be an isometric immersion of a Riemannian (n— l)-manifold
into Euclidean w-space Em and F: /-> C a unit speed curve in the complex plane. We
extend the immersion G: Mn~l^Em to an immersion of /xM"" 1 into complex
Euclidean m-space Cm given by

(2.1) φ = F®G: IxM"-'L

where F®G is the tensor product immersion of F and G defined by

(2.2) (F® G)(s, p) = F(s) ® G(p) , sel, p ε M" ~ 1 .

We call such an extension F®G of the immersion G a complex extensor of G (or of

submanifold M""1) via F.
An immersion /: N^Em is called spherical (respectively, unit spherical) if N is

immersed into a hypersphere (respectively, unit hypersphere) of Em centered at the
origin. The complex extensor φ = F®G: IxMn~l-*Cm is called F-isometric if, for
each peMn~l, the immersion F ® G(p) \ I -+ Cm : s \-^> F(s) ® G(p) is isometric. Simi-
larly, the complex extensor is called G-isometric if, for each sel, the immersion
F(s) ® G : Mn ~ 1 -> Cm : p ι-> F(s) ® G(p) is isometric.

LEMMA 2.1. Let G:Mn~1->Em be an isometric immersion of a Riemannian
(n—\}-manίfold into Euclidean m-space Em andF: I^Ca unit speed curve in the complex
plane. Then

(1) the complex extensor φ = F®G is F-isomeίric if and only if G is unit spherical,
(2) the complex extensor φ = F®G is G-isometric if and only if F is unit spherical,

and

(3) the complex extensor φ = F® G is totally real if and only if either G is spherical
or F(s) = cf(s) for some ceC and real-valued function f.

PROOF. Statements (1) and (2) are easy to verify. For Statement (3), recall that
an immersion / : 7V-> Cm is totally real if the complex structure / on Cm carries each
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tangent space of N into its corresponding normal space. By a direct computation it is
easy to see that the complex extensor φ = F®G is totally real if and only if, for any
sεl, peM"'1 and Ye TpM

n~\ we have

(2.3)

where F' denotes the complex conjugate of F and Re(/FF') the real part of iFF'.
Hence, we have either Re(iF[s)P(s)) = 0 for all sel or <G(/?), F> = 0 for all
YeTpM"'1. If the first case occurs, F=cf(s) for some ceC and if the second case
occurs, G is spherical. Π

A submanifold M""1 of Em is said to be of essential codίmensίon one if locally
M""1 is contained in an affine w-subspace of Em.

PROPOSITION 2.2. Let G: Mn~i -+Em be an isometric immersion of a Riemannian
(n — \)-manifold into Euclidean m-space Em and F: /— >C a unit speed curve. Then the
complex extensor φ = F®G\ I x Mn ~ 1 -> Cm is totally geodesic (with respect to the induced
metric) if and only if one of the following two cases occurs:

(1) G: M""1 -+Em is of essential codίmensίon one and F(s) = (s + d)c for some real
number a and some unit complex number c.

(2) n = 2 and G is a line in Em.

PROOF. Under the hypothesis we have

(2.4) φs = F(s)®G, Yφ = F®Y, 2

ds ds2

(2.6) YZφ = F® VYZ + F® AG(F, Z),

where V denotes the Levi-Civita connection of M""1, F, Z vector fields tangent to
the second component of /xM"" 1 , and hG the second fundamental form of
G: M""1 -+ Em. In this article, we shall regard each tangent vector of M""1 also as a
tangent vector of the product manifold /x M""1 in a natural way.

Since F: /-> C is a unit speed curve, F'(s) and F"(s) are orthogonal. Thus, for any
unit normal vector ξ of Mn~l in Em, the vector F"(s)®ξ is normal to /x AT1'1 in Cm

(via φ).
Suppose φ = F®G is totally geodesic. Then, by definition, φss, Yφs and YZφ are

tangent to /x M"'1 in C". Thus (2.6) yields

for any vector fields F, Z tangent to the Mn~1 and for any se/. This implies that either
G is totally geodesic or <F', F> = 0 identically, where < , > denotes the canonical inner

product of the complex plane.
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Case (i): G is non-totally geodesic. In this case, F"(s) is perpendicular to both F(s)
and F'(s) for any sel. Since Fis a unit speed plane curve, this implies F"(s) = Q. Hence,
P(s) = sc + e for some c, e e C with | c \ = I . Therefore, we obtain

(2.8)

(2.9)

(2.10)

for 7, Z tangent to the second component Mn~l.
Since the complex extensor φ is totally geodesic, (2.8) and (2.9) imply that, for

each vector Y tangent to M""1, there is a vector Z tangent to Mn~l satisfying

(2.11) c®(Y- φ)G) = β(s) ® (sc + e)Z

for some real-valued functions α and β, which is impossible unless e = αc for some αεR.
Thus F(s) = (s + α)c, where α is a real number and c a unit complex number.

Because φ is assumed to be totally geodesic, (2.8), (2.10) and e = αc imply that, for
vectors Y, Z tangent to AT1"1, there exist a tangent vectot W tangent to M""1 and
functions γ(s) and (5(s) such that

(2.12) (s + α)hG( 7, Z) - y(s)G + (j + dffls) W .

(2.12) implies that hG(Y, Z) is in the direction of GL, where G1 denotes the normal
component of G in £m. Thus for each point peMn~1 the first normal space of G at p
is at most one-dimensional. Furthermore, by taking the co variant derivative of (2.12)
and applying (2.12) again, we also know that the first normal spaces are parallel in the
normal bundle with respect to the normal connection. Consequently, Mn~ 1 is of essential
codimension one in Em.

Case (ii): G is totally geodesic. In this case, since φ is totally geodesic, (2.4) and
(2.5) imply that, for any Y tangent to M""1, we have

(2. 1 3) (F"(s) - <*(s)F'(s)) ®G = β(s)F[s) ® Y ,

where α, β are real-valued functions. Thus, either F"(s) = α,(s)F'(s) for all sel or G is
parallel to every tangent vector of Mn~l in Em which is impossible unless n = 2.

If the first case occurs, we have F"(s) = Q, since F"(s) is also perpendicular to F'(s).
Thus, F(s) is linear in s. Hence, by applying the same argument given in Case (i), we
conclude that F(s) = (s + α)c for some real number α and unit complex number c. If n = 2,
G is a line in Em. In this case, the complex extensor φ of G is an open portion of a
complex plane which is clearly totally geodesic in Cm.

The converse can be verified easily. Π

THEOREM 2.3. Let ι:Sn~1^En be the inclusion of the unit hypersphere of
Em (centered at the origin). Then every complex extensor of i via a unit speed curve F in
C is a Lagrangian H-umbίlίcal submanifold ofCn unless F(s) = (s + a)cfor some real number
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a and some unit complex number c.

PROOF. Statement (3) of Lemma 2. 1 implies that every complex extensor of the
unit hypersphere centered at the origin in En is a Lagrangian submanifold in Cn.

Now we prove that every complex extensor of the unit hypersphere of En is a
Lagrangian //-umbilical submanifold of C"1.

Since F: /-> C is a unit speed curve, we may put

(2.14)

for some real-valued function / on /. Therefore, F takes the following form:

(2.15) F(s)= eimdt

for some real number a.

Let {jc2,..., xn} be a local coordinate chart on Sn~1. Then {s, x2» > xn} is a

coordinate chart on 7x5" ~1. Since i is the unit hypersphere, (2.2), (2.15) and a direct
computation imply

(2.16) φs = eif(s)®ι, Yφ = F®Y,

φss = if(s)eίf(s} ® i , Yφs = eif(s} ® Y,
(2.17)

YZφ = F®VγZ-(Y,Zy(F®ι),

where Y, Z are vector fields tangent to the second component of 7x S"1"1.

Since z is the unit hypersphere in En, (2.16) implies that eί = d/ds is a unit vector
field tangent to the first component of 7x S"1"1; moreover, for each Y tangent to the
second component of 7x Sn~1, φs and Yφ are orthogonal. Therefore, by applying (2.16)

and (2.17) we conclude that the second fundamental form of the complex extensor

satisfies

h(el9 e1) = λJel9 h(e2, e2)= - = h(ew en) =
(2.18)

where {eί9 e2, . . . , en} is an orthonormal local frame field, and

(2-19) λ=f(s)9 μ= ^plp^ -

Therefore, the complex extensor φ = F®ι is a Lagrangian //-umbilical submanifold
unless φ is totally geodesic, which occurs only when F(s) = (s + d)c for some a e R and
some unit complex number CE C (cf. Proposition 2.2). Π

In the following we provide examples of complex extensors of the unit hypersphere
of En satisfying (1.1) with λ = 3μ, λ = 2μ, λ = μ and Λ, = 0, respectively.
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EXAMPLE 2.1 (Whitney's sphere). Let w: Sn^Cn be the map defined by

(2.20)

Then w is a Lagrangian immersion of the ^-sphere into Cn which is called the Whitney
^-sphere. The Whitney ^-sphere is a complex extensor φ = F®ι of the unit hyper-
sphere: i : Sn~ 1 -> En via /% where /^/{s) is an arclength reparametrization of the curve

/: /->C given by

(2.21) sinφ + ίsinφcosφ
1 +cos2φ

Whitney's ^-sphere is a Lagrangian //-umbilical submanifold satisfies (1.1) with
λ = 3μ. In fact, up to homothetic transformations, Whitney's ^-sphere is the only
Lagrangian //-umbilical submanifold in Cn with λ = 3μ (cf. [1], [2], [10] for geometric
characterizations of Whitney's spheres).

EXAMPLE 2.2 (Lagrangian pseudo-spheres). For a real number b >0, let F: R-*C
be the unit speed curve give by

e2bsi+\
(2.22) F(s) =

2bi

With respect to the induced metric, the complex extensor φ = F®ι of the unit
hypersphere of En via F is a Lagrangian isometric immersion of an open portion of
an w-sphere Sn(b2) of sectional curvature b2 into Cn which is simply called a Lagrangian
pseudo-sphere.

A Lagrangian pseudo-sphere is a Lagrangian //-umbilical submanifold satisfying

(1.1) with λ = 2μ. Conversely, we prove in Section 3 that Lagrangian pseudo-spheres
are the only Lagrangian //-umbilical submanifolds of Cn which satisfy (1.1) with λ = 2μ

(cf. Theorem 3.1).

EXAMPLE 2.3 (Lagrangian-umbilical submanifold). For a nonzero real number a,

let

(2.23) F(s) = e~ιalntdί,
J

where \sf(t)dt denotes an anti-derivative of f(s). Then the complex extensor of the unit
hypersphere of En via Fis a Lagrangian //-umbilical submanifold of Cn satisfying (1.1)
with λ = μ. A Lagrangian //-umbilical submanifold with λ — μ is simply called a
Lagrangian-umbilical submanifold.

EXAMPLE 2.4. Let aeC and θ be a real number such that ae~ίθφR. Then the
complex extensor of the unit hypersphere via F(s) = a + eies is a Lagrangian //-umbilical
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submanifold satisfying (1.1) with λ = Q.

Using Theorem 2.3 and Example 2.4 we may obtain the following existence result.

COROLLARY 2.4. Given a function λ = λ(s) and an integer n>2, there exists a
Lagrangian H-umbίlίcal submanifold of Cn which satisfies (1.1) with λ = λ.

PROOF. If λ = Q, this result follows from Example 2.4. If λ is a nonzero function,
we choose an anti-derivative / of λ and an antiderivative F of elf. Then F is a unit
speed curve in C. From the proof of Theorem 2.3, we know that the complex extensor
of the unit hypersphere of En via F is a Lagrangian //-umbilical submanifold of Cn

satisfying (1.1) with λ = λ. Π

3. Geometric characterization of Lagrangian pseudo-spheres. In this section we
prove the following geometric characterization of Lagrangian pseudo-spheres.

THEOREM 3.1. Let L: M-^Cn be a Lagrangian isometric immersion. Then, up to
rigid motions of C", L is a Lagrangian pseudo-sphere if and only if L is a Lagrangian
H-umbίlίcal immersion satisfying

h(eί9 ei) = 2bJel , h(e2, e2)= = h(en, en) =
(3.1)

for some nontrivial function b with respect to some suitable orthonormal local frame field.
Moreover, in this case, b is a nonzero constant.

PROOF. Let L : M -> Cn be a Lagrangian //-umbilical isometric immersion
satisfying (3.1). Then the covariant derivative of the second fundamental form of L
satisfies

(Veιh)(ej, e,) = Deih(ej, e,)-h(Veίej, e,)-h(ej, Veιel) = (

(Veh)(e,, e1) = 2(ejb)Je1 , j=2,...,n.

(3.2) and Codazzi's equation imply that b is a nonzero constant. Therefore, by the
equation of Gauss, M is a real-space-form of constant sectional curvature b2. Hence
M is locally isometric to an open portion of the warped product / x CQS(bS)/bS

n ~ 1 with
/=( — π/2fe, π/2b) whose metric is given by

(3.3) g = ds2+— cos2(fo)00,

where g0 is the standard metric on the unit (n— l)-sphere S"1"1. With respect to a
spherical coordinate chart {u2, . . . , un} on Sn~l, we have

(3.4) g0 = du2,+cos2u2duj;+ +cos2 u2- -cos2^^^2 .
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From (3.3) and (3.4) we obtain

π d „ π d

 L ,L Λ B „ d sm(2bs) d
Va* — = 0, Vβ/aβ— = * ;

5 d
(3.5) Va/aui — — =-tanw £ — - ,

- COS!!!
2 \ 2 I = k+l / OUk

By (3.1), (3.5) and Gauss' formula, we have

(3.6) Lss s y ssds ds2

(3.7) YLS = (ib - b tan(fo)) Y ,

(3.8)

where 7, Z are vector fields tangent to the second component Sn~l of the warped
product and V is the Levi-Civita connection of S"1"1.

Let {w2> - -> un} be a spherical coordinate chart on S"1" ̂  By solving (3.6) we obtain

(3.9) L(s9 1/2, . . . , ιO = Λ(ι/2, . . , w>2

for some Cn- valued functions ^4, .̂ (3.7), (3.9) and a direct computation imply

(3.10) AUJ = BUJ, j=2,...9n,

where AUj denotes the partial derivative of A with respect to Uj. Condition (3.10) implies
B = A + b0 where b0 is a constant vector in Cn. By applying a translation if necessary,
we may assume b0 = Q. Therefore, B = A. Thus

(3.11) L(s9 u29 . . . , wπ) = ̂ (w2, . . . , un}(e2bsi+ 1) ,

which implies

(3.12) Ls = 2ibAe2bsi , LU1U2 = AU2U2(e2bsί + 1) .

On the other hand, by using (3.3), (3.4), (3.5), (3.8), (3.11) and (3.12), we find

(3-13) LU2U2=-A(e2bsi+l).

(3.12) and (3.13) give

(3.14) AU2U2=-A.

Therefore

(3.15) A = bι sin u2 + b2 cos u2
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for some C"-valued functions bί9 b2 of w3, . . . , un.
Ifn = 29 then bl9 b2 are constant vectors in C2. Thus, (3.11) and (3.15) yield

(3.16) L(s, u2} = (e2bsί+\ }(b i sin u2 + b2 cos u2) .

Because M is Lagrangian in C2, (3.3) and (3.4) imply that we may choose the following

initial conditions:

Ls(0,0) = (l,0), LU2

(3.16) together with the initial conditions yield

e2bsi_^l

(3.17) L = - (cosw2, sinw2) .
2bi

Thus L is a 2-dimensional Lagrangian pseudo-sphere (cf. Example 2.2).
If «>2, then, by putting Y=d/du2, Z=d/8u3 into (3.8) and also putting Y=

Z=d/du3 into (3.8) and applying (3.11) and (3.15), we obtain as before that

(3.18) bl = b^ut, . . . , Mπ) , b2 = b3(u4, ...,un) sin w3 + b4(u4, . . . , un) cos w3 .

Continuing such procedure (n— l)-times, we may obtain

(3.19)
C π- l π

L = (e2bsί H- 1 K Ci sin w2 + c2 sin w3 cos w2 + + cn_ 1 sin un Y[ cos w, + cπ Π cos w;
I j = 2 7=2

for some constant vectors cl9 . . . , cne Cn.
Because M is a Lagrangian submanifold in C", (3.3) and (3.4) imply that we may

choose the following initial conditions:

L s(0,...,0) = (l,0,...,0),
(3.20)

By using (3.17) and (3.18) we obtain

^2bs i_ |_ j / n

(3.21) L = - I Π coswj, sinw2, sinw 3cosw 2, . . ., sinwπ

7=2

which implies that, up to rigid motions of C", L is a Lagrangian pseudo-sphere.
Conversely, if L is a Lagrangian pseudo-sphere given in Example 2.2, then Theorem

2.3 together with its proof imply that L is a Lagrangian //-umbilical submanifold in
Cn satisfying (2.18) and (2.19) with
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e2bsi+l
(3.22) F[s)= ^ , f(s) = 2bs,

2bι

which implies (3.1). Π

4. Classification of Lagrangian //-umbilical submanifolds in Cn. The main result
of this section is to classify Lagrangian //-umbilical submanifolds of complex Euclidean
spaces.

THEOREM 4.1. Let «>3 and L\ M-*Cn be a Lagrangian H-umbilίcal isometric
immersion.

(i) If M is of constant sectional curvature, then either M is flat or, up to rigid
motions of Cn, L is a Lagrangian pseudo- sphere.

(ii) If M contains no open subset of constant sectional curvature, then, up to rigid
motions of Cn, L is a complex extensor of the unit hyper sphere of En.

PROOF. Let n>3 and L: M-+Cn be a Lagrangian //-umbilical isometric immer-

sion whose second fundamental form satisfies

h(eί9 e1) = λJeί , h(e2, e2)= - =h(en

(4.1)

for some functions λ and μ with respect to some suitable orthonormal local frame field.
If M is of constant sectional curvature, then (4.1) limplies μ(λ — 2μ) = 0. If μ = 0

identically, then M is flat. If μ^O, then Λ, = 2μ/0 on a nonempty open subset V of M.
Thus, according to Theorem 3.1, λ and μ are nonzero constants on V. Hence, by
continuity, V=M. Put b = μ. Then by applying Theorem 3.1 again, we know that, up
to rigid motions of Cn, M is a Lagrangian pseudo-sphere. This proves Statement (i).

For Statement (ii) we assume M contains no open subset of constant sectional
curvature. In this case

(4.2) U: = {peM:μ(λ-2μ)=£Qaip}

is an open dense subset of M.
Let el9 . . . , en be an orthonormal local frame field on M satisfying Condition (4.1)

and ω1, . . . , ω" be the dual 1-forms of el9 . . . , en. Let (ω^), A, B= 1, . . . , n, !*,...,«*,
be the connection forms on M defined by

(4.3) Vei= Σ ω{ej+
j = l

where e^ = Je{, ω{= — ω], ω£= — ωj*, i,j= 1, . . . , n.:re e^ = Je{, ω{= — ω], ω/* = — ωj*, i,j= 1, . . . , n.

For a Lagrangian submanifold M in C", we have (cf. [8])
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n

(4.4) ωj* = ω/*, ω{ = ωg, ω j * = Σ / z j Λ ω k .
k=l

From (4.1) and (4.4) we find

(4.5) ωΓ = λωl , ω^ = μωl, ωf = μω1 , ωj* = 0 ,

By (4.1), (4.5) and Codazzi's equation, we obtain

(4.6) e,μ = (λ-2μ)ωl(e2)= - - =(λ-2μ)ωn

ί(en)

(4.7)

(4.8) (λ

(4.9)

(4.10)

We remark that (4.8) and (4.10) occur only for the case n>3.
Since /ι>3, (4.6), (4.9) and (4.10) imply

(4.11) ω{

(4.12) co{(ek) = (

From (4.11) and Cartan's structure equations, we obtain dω1 = Q and Veie^=Q

which imply that the integral curves of e1 are geodesies.

For7, k>\9 (4.12) yields ([ej9ek]9eίy = ωk(ej) — ω}(ek) = Q. Thus the distribution
2L spanned by {e2, . . ., en} is integrable. Let 2 denote the distribution spanned by e^.
Then 2 is also integrable, since 2 is one-dimensional.

Since 2 and 2L are both integrable, there exists a local coordinate system
{x1? ...,*„} such that (a) 2 is spanned by {d/dx^} and 2L is spanned by
{d/dx2,..., d/dxn} and (b) e1 = d/dxί, ω1=dxl.

From (4.7), (4.9) and (4.10) we know that λ and μ depend only on 5 ( = *ι).
Furthermore, by (4.11) and the structure equations, we have

(4.13) k' + k2=μ2-λμ, k= μ

λ-2μ '

where ' denotes the differentiation with respect to s.
From (4.1), Codazzi's equation and a direct computation, we obtain

(4.14) <Vτr,eι>

Therefore ®1 is a spherical distribution, i.e., 2L is an integrable distribution whose
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leaves are totally umbilical submanifolds with parallel mean curvature vector in M.
Moreover, by (4.1), (4.14) and Gauss' equation, we know that each leaf of $)L is of
constant sectional curvature μ2 + k2. Hence, by applying a result of Hiepko [9], U is
a warped product /x^S""1, where S"1"1 is the unit (n— l)-sphere and f(s) is the
warping function. Moreover, each vector tangent to / is in the distribution @ and each
vector tangent to S"'1 is in the complementary distribution ̂ 1.

With respect to a spherical coordinate chart {u2, . . . , un} on Sn~l, the metric on
IXj S"'1 is given by

(4.15) g = ds2 + f2(s){du%+cos2u2du%+ - +cos2w2 -cos2 w^dw,2} .

From (4.15) we obtain

(4. 1 6) V6/dUi

d
ds ~°'

d

V

— tan u.

d
duk

d

f

f

d
duk

Ί < i <r i

7

 S _ f
d/du2 ^ J

CU2

•f d

ds

2 v * JΓΊcos2

Wί--+ Σ ——*- Π
2 ds k = 2\ 2 ι = k+

(4.1), (4.16) and Codazzi's equation imply

(4.17)
f λ-2μ

Thus, there is a real number c^Q such that

(4.18) f=cexpl \k(x)dx\.

By applying (4.15) and (4.16), we know that the sectional curvature of the plane
section spanned by d/du2, d/du3 is given by

(4.19)
du2 dι

On the other hand, (4.1) and Gauss' equation yield

d d
(4.20)

2

n~lTherefore U is an open portion of the warped product /x/(s) S
n 1, where

(4.21) f(s) = cexp( \k(x)dx] = l , k = —-—.F\ i / π , λ_^
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By (4.1), (4.15), (4.16), (4.17) and Gauss' formula, we get

(4.22) Lss = λiLs, YLs = (iμ + k)Y,

(4.23) YZL = X Y, Z>/LS + Lφ(VyZ) ,

where F, Z are vector fields tangent to the second component Sn~1 of the warped

product.
Solving the first equation of (4.22) yields

(4.24) L = A(u29 . . . , un) e'Wds + B(u2,..., un)
J

for some Cn- valued functions A and B, where \s λ(t)dt denotes an antiderivative of λ(s).
By applying the second equation of (4.22) with Y=d/dujy we find

(4.25) (/μ + £)£u. = (VA(ί)dM^^
\ J /

fory = 2, . . .,«. Since A and B are independent of the variable s, (4.25) implies B = %A + C
for some αeCand CeC". Combining this with (4.24) we conclude that after applying
a suitable translation of C", we have

(4.26)

Now by applying the same argument as given in the proof of Theorem 3.1, we
may conclude that L is of the following form:

(4.27)

/ Γs \ /

, = ( α + e^Sλ(t)dtds 11 c1 sinw 2 + c2sinw3cosu2 +
\ J / \

j=2

for some constant vectors c l 5 . . . , cπ e C".
Because M is a Lagrangian submanifold in Cw, by applying (4.15) we may choose

the same initial conditions (3.20). Then, by (4.27), we obtain

( Γs \ί n n~1 \
α + e^Sλ(t)dtds } ( Y\ cos up sin w2, sin u3 cos M2 ? -> sm un ΓΊ cos M j )

J / \ J = 2 j = 2 /

Since U is dense in M, (4.28) and continuity imply that, up to rigid motions of C", M
is the complex extensor of the unit hypersphere in En. Π

Theorem 4.1 implies the following:

COROLLARY 4.2. Let M be a Lagrangian submanifold of Cn with n>3. Then, up
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to rigid motions ofCn, M is a Lagrangian pseudo-sphere if and only if M is a Lagrangian
H-umbilίcal submanifold with nonzero constant sectional curvature.

PROOF. Follows trivially from Theorem 4.1. Π

For Lagrangian //-umbilical surfaces of C2 we have the following:

THEOREM 4.3. (i) If M is a minimal Lagrangian surface of C2 without totally
geodesic points, then M is a Lagrangian H-umbίlical surface of C2.

(ii) Let L : M -> C2 be a Lagrangian H-umbίlical surface satisfying

h(eί9 eί) = λJeί , H(el9 e2) = μJe2 , h(e2, e2) = μJel

such that the integral curves of el are geodesies in M. Then we have:
(ii-1) If M is of constant sectional curvature, then either M is flat or, up to rigid

motions of C2, L is a Lagrangian pseudo-sphere.

(ii-2) If M contains no open subset of constant sectional curvature, then, up to rigid
motions of C2, L is a complex extensor of the unit circle of E2.

PROOF, (i) Let M be a Lagrangian minimal surface in C2 without totally geodesic
points. We define a function yp by

yp : UMp ^R.v^ yp(v) = <h(v, v\

where UMp = {veTpM: <ι;, ι;> = 1}. Since UMp is a compact set, there exists a vector v
in UMp such that γp attains an absolute minimum at v. Since p is not totally geodesic,

it follows from (1.3) that ypτ^0. By linearity, we have yp(v)<Q. Because yp attains an
absolute minimum at v, it follows from (1.3) that (h(v, v), Jw> = 0 for all w orthogonal
to v. So, using (1.3), υ is an eigenvector of the symmetric operator AJv, By choos-

ing an orthonormal basis {el9e2} of TpM with eί=v9 we obtain h(el9eί) = λJeί9

h(e^ ei}~ — λJe2, h(e2, e2)= —λJe± for some λ. This proves Statement (i).
Statement (ii) can be proved in the same way as Theorem 4.1 with minor modifi-

cation. Π

REMARK 4. 1 . Since minimal Lagrangian surfaces of C2 are not complex tensors
of the unit circle in general, the assumption on the integral curves of e1 given in Statement
(ii) of Theorem 4.3 cannot be omitted.

REMARK 4.2. If M is a Lagrangian //-umbilical submanifold satisfying (1.1) with
λ = μ, then, by (4.13), we obtain λ = a/(b — s) for some real numbers b and 0^0. By
applying a reparametrization of s if necessary, we have λ= — a/s. Combining this with

(4.28) we conclude that a Lagrangian-umbilical submanifold of Cn with n>3 is a
complex extensor given by Example 2.3.

REMARK 4.3. If Mis a Lagrangian //-umbilical submanifold of C", n > 3, satisfying
(1.1) with λ = 0, then, according to (4.28), M is the complex extensor of the unit
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hypersphere of En via a linear function F(s) = a + eiθs for some constant a e C and θ e R.
Since the complex extensor is not totally geodesic, Proposition 2.2 implies ae~lθφR.

Therefore, M is a complex extensor given by Example 2.4.

In this case, (2.19) implies

(4.29) μ =

It is easy to verify that λ and μ given above satisfy the second order differential equation

(4.13).

REMARK 4.4. Similarly, from (4.13) and (4.28), we know that a minimal La-

grangian //-umbilical submanifold of C", n>3, is a complex extensor of the unit
hypersphere given by (4.28), where λ = λ(s) is a solution of the following second order

differential equation:

(4.30)

5. Flat Lagrangian //-umbilical submanifolds in Cn. Let Nl9 N2 be two Rie-

mannian manifolds with Riemannian metrics g± and g2, respectively and / a positive

function on 7V\ xN2. Then the metric g = f2gι+g2 is called a twisted product metric
on N^xN2. The manifold N1 x N2 together with the twisted product metric g = f2g^ + g2

is called a twisted product manifold, which is denoted by fN^ xN2. The function / is

called the twisting function of the twisted product manifold.
We recall the following existence and uniqueness theorems of Lagrangian im-

mersions (cf. [3], [4], [5]).

THEOREM A. Let M be a simply-connected Riemannian n-manifold and σ a
TM -valued symmetric bilinear form on M satisfying

(1) <σ(Jr, Y), Z> is totally symmetric,

(2) (Vσ)(*, Y, Z) = Vxσ( 7, Z) - σ(Vx 7, Z) - σ( 7, VXZ) is totally symmetric,
(3) R(X, Y)Z = σ(σ(Y, Z), X)-σ(σ(X, Z), Y).

Then there exists a Lagrangian isometric immersion x: M-^Cn whose second fundamental
form h is given by h(X, Y) = Jσ(X, Y).

THEOREM B. Let Ll9 L2: M— »C" be two Lagrangian isometric immersion of a

Riemannian n-manifold M with second fundamental forms h1 and h2, respectively. If

for all vector fields X, Y, Z tangent to M, then there exists an isometry φ of C" such
that L1=L2oφ.

The purpose of this section is to investigate flat Lagrangian //-umbilical sub-
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manifolds in Cn which occurs in Case (i) of Theorem 4.1. More precisely, we prove

the following:

THEOREM 5.1. (i) Let M be a simply-connected open portion of the twisted product
manifold fRx En-1 with twisted product metric

(5.1) 9 = f2dxl+ Σdx2,
7 = 2

where the twisted function is of the form:

(5.2) f = β(*ι)+ Σ *j(xι)xj
j=2

for some functions /?, α2, . . . , απ of x±. Then, up to rigid motions of C", there is a unique
Lagrangίan isometric immersion Lf\ M^Cn without totally geodesic points whose
second fundamental form satisfies

(5.3) λfo, eί) = λJe1 , H(el9 βj) = h(ej9 ek) = Q , 2<j, k<n ,

where

> * π = -J 7 J. Λ ? Z, Λ •> ' fl Λ

tot OX 2 OXn

(ii) Ifn>3 and L: M-+Cn is a Lagrangian H-umbίlical isometric immersion of a
flat manifold into Cn without totally geodesic points, then M is an open portion of a twisted
product manifold fR x En~1 with twisted product metric given by (5.1) and twisted function
f given by (5.2) for some functions β, α 2 , . . . , απ.

Moreover, up to rigid motions of C2, L is given by the unique Lagrangian immersion
Lf given in Statement (i).

(iii) IfL: M-> C2 is a Lagrangian H-umbilίcal isometric immersion of aflat surface

into C2 without totally geodesic points, then one of the following two cases occurs.
(iii-1) M is an open portion of a twisted product surface fR x E1 with twisted product

metric given by (5.1) and twisted function f given by (5.2) for some functions
β, α2. Moreover, up to rigid motions ofCn, L is given by the unique Lagrangian
immersion Lf mentioned in Statement (i).

(iii-2) L is the complex extensor φ = F®G of a circle of radius, say r, in E2 via
F, where F is the unit speed curve in C given by

(5.4) F(s)= ^+ ^

for some beR.

PROOF. Assume M is a simply-connected open portion of the twisted product
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manifold fR x En~1 with twisted product metric given by (5.1) and twisted function /

given by (5.2) for some functions β, α2, . . . , αM.
We define a symmetric bilinear form σ on M by

dxk

J9k =

Then (σ(X, F), Z> is totally symmetric in X, Y and Z.
From (5.1) and (5.2), we find

(5-6) V ^ - L — f f , Vβ/ =: Vβ/ = 0 ,
5%! / Cbq fc = 2 ίλX/c 0Xj / OX! d;Cfc

(5.7) /i=-^ = j8'(^i)+ Σα'^i)^-. fj = ̂ - = «j> j,k = 2,...,n.
dx1 3 = 2 dXj

From (5.5)-(5.7) we know that (Vσ)CAΓ, 7, Z) is also totally symmetric in X, Y and Z.
Furthermore, (5.5), (5.6) and (5.7) imply that σ and the Riemannian curvature
tensor R of M satisfy

(5.8) R(X, Y)Z=σ(σ( 7, Z), ̂ ) - σ(σ(JT, Z), Y) .

Therefore, according to Theorems A and B, up to rigid motions of Cn there ex-
ists a unique Lagrangian isometric immersion Lf : M -> C" whose second funda-
mental form is given by h = Jσ. If we put

(5.9) eι=λ^> ^=^-,...,en = -j-, λ=f~1,
OX I OX 2 CXn

we obtain (5.3). Since the twisted function / is positive, the immersion Lf has no
totally geodesic points. This proves Statement (i).

Now we prove Statement (ii). Assume L: M-+Cn be a Lagrangian //-umbilical
isometric immersion of a flat manifold into Cn without totally geodesic points.
Suppose the second fundamental form of L is given by (1.1) for some suitable functions
λ and μ with respect to some suitable orthonormal local frame field.

Since n>2 and M is Lagrangian //-umbilical in C", the flatness of M and
Gauss' equation imply μ = 0. Thus, we have

(5.10) h(el9 eJ^λJe, , h(el9 ej) = ̂ ej9 ek) = 0 , J 9 k = 29...9n9

where λ is nowhere zero. Without loss of generality, we may assume λ>0. From
(5.10) and Codazzi's equation, we find

(5.11) ejlnλ = ωi(el), ω{(eJ = Q , 2<j,k<n.

Let 3) and ®1 be the distributions spanned by {e^} and {e2, ..., en}, respectively.
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Then (5.9) and (5.10) imply that Q)L is integrable and moreover the leaves of 2L are
totally geodesic submanifolds of Cn. Because 2 and Q)L are both integrable and they
are perpendicular, there exist local coordinates {xί9 x2,..., xn} such that d/dx^ spans

2 and {d/dx2,..., d/dxn} spans Q)L. Since 2 is one-dimensional, we may choose x^
such that d / d x ί = ( \ / λ ) e ί . Let TV""1 be an integral submanifold of 2L. Then TV""1 is a
totally geodesic submanifold of Cn. Thus, TV""1 is an open portion of a Euclidean
(n— l)-space En~l. Therefore, M is an open portion of the twisted product manifold
fix En~i

9 where/= \/λ and / is an open interval on which λ is defined. Therefore, M
admits the metric g = f2dx2 + g0, where g0 is the standard Euclidean metric of En~l.
In particular, if jc2, . . . , xn denote the canonical Euclidean coordinates on £'""1, then

(5.12)

(5.12) implies that the Levi-Civita connection of M satisfies

(5 Πϊ V* a — —- f V f, V — — V — 0ly i V v d/δxι p — /* Λ J L*ι Jk ~ •> v 0/0x1 ~ — /" 3 ' d/dxj Λ —
1 ./ {7-X^ k = 2 @Xk CX; J OX i U^k

for 2<7, /c<n. Using (5.13) we obtain

(5.14)
bq fc=2

 J dxk

Since M is flat, (5.14) yields fjk = Q,j, k = 2, . . .,«. Therefore, / satisfies (5.2) for some
functions β, α2, . . . , απ. Consequently, by Statement (i), up to rigid motions, L is given
by immersion Lf as mentioned in Statement (i).

For Statement (iii), we assume L: M -> C2 is a Lagrangian //-umbilical isometric
immersion of a flat surface into C2 without totally geodesic points which satisfies
h(el, e ΐ ) = λJel, h(e1, e2) = μJe2, h(e2, e2) = μJe^ with respect to some orthonormal frame
field el9 e2. Then, by the flatness of M, we have either μ = 0 or λ = μ identically on M.

If μ = 0, then we obtain (iii-1) by using the same argument as in Statement (ii).
If λ = μ identically on M, then we have

(5.15) H(eί9 eί) = λJe1 , H(el9 e2) = λJe2 , H(e29 e2) =

By (5.15) and Codazzi's equation, we obtain

(5.16) e2λ = ωί(e1) = 0 , e^λ= -λωl(e2),

which implies

(5.17)

Therefore, there exists a coordinate chart {x, y] such that d/dx = λ~1e1, d/dy = λ~1e2

With respect to x, y, we have
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(5.18)
dx " dy

(5.16) and (5.18) imply that λ = λ(x) is a function of x. Since M is flat, λ = λ(x) and

(5.18) yield λλxx — λx = 0. By solving this second order ordinary differential equation,

we find

(5.19) λ(x) = —
r

for some real numbers b, r/0. Using (5.18) and (5.19) we get

d d d d d d
(^ 9fh \7 — A V — h \7 A
^J.ZUJ V β/dx - ~ Λ ' Vδ/dx^ ~°~^ ' Vd/dy^. "~ ° ~^

ox ox dy dy dy dx

(5.15), (5.19), (5.20) and Gauss' formulas yield

(5.21) Lxx = (i + b)Lx, Lxy = (i + b)Ly, Lyy = (i-b)Lx.

Solving the first equation of (5.21), we obtain

(5.22) L(x, y) = A(y) + e(i + b)xB(y)

for some C2-valued functions A(y), B(y). Using (5.22) and the second equation in (5.21),

we know that A(y) is a constant vector. Thus, by applying a suitable translation if
necessary, we may choose A = 0. Solving the last equation in (5.21) and using (5.22)
with A = 0, we obtain

for some vectors cl9 c2eC2.

Because L is Lagrangian, we may choose the following initial conditions:

(5.24) L,(0, 0) = - , θ , Ly(0, 0) - (0, r)

by virtue of (5. 18) and (5. 19).

Combining (5.23) and (5.24), we obtain

(5.25) L(x, y) =

which implies that L is the complex extensor of a circle of radius r in E2 with F given

by (5.4). Π

REMARK 5.1. The Lagrangian immersion Lf mentioned in Statement (i) of

Theorem 5.1 is not necessary a complex extensor in general. For example, if M= flx E1

is the twisted product surface with g=f2dx2 + dy2, f(x) = β(x)+y for some function β,
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then up to rigid motions of C2 the immersion Lf takes the following form:

(5.26)

I 5_ / 5
/ / A ' "V " 1 i " ' "V " l r>( \ i ~ ' "V — I j U / v ^ n> = l y exp ix H i β(.x) exp - zx jdx / - , 0
I 7 * 1 ^ I ^ I f- V / Γ- \ ^ / / \ \ / -1/-V 7

Γ (l-\/* \ Y / 5 + v 5 \
J^ fl*)exp^- ι*)<fej^0, ^ ^—J

which is not necessary a complex extensor of any plane curve in general.

REMARK 5.2. For a general study of Lagrangian isometric immersions of real-
space-forms of constant sectional curvature c into a complex-space-form of constant
holomorphic sectional curvature 4c, see [6].
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