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Abstract. We will give an explicit description of extensions of the group scheme
of Witt vectors of length n (resp. the formal group of Witt vectors of length n) by the
multiplicative group scheme (resp. the multiplicative formal group) over an algebra for
which all prime numbers except a given prime p is invertible.

Introduction. Throughout the paper, p denotes a prime number, and Z, the
localization of Z at the prime ideal (p).

Let W, (resp. W,) denote the group scheme (resp. the formal group scheme) over
Z of Witt vectors of length n, and W (resp. W) the group scheme (resp. the formal
group scheme) of Witt vectors over Z. Let G,, (resp. G,) denote the multiplicative
group scheme (resp. the multiplicative formal group scheme over Z. In [3], we gave
an explicit description of the groups Exty(W, ,, G,. ») and Exty(W, ,, G, ,), when 4
is a ring of characteristic p>0. More precisely, we constructed isomorphisms

W(A)F" = HYW, 4, Gp.4) »

W(A)/F" - Hé( Wn,/b GAm_,A) ’
using the Artin-Hasse exponential series.
In Theorem 2.8.1 of this note, we generalize these results to Z,-algebras 4 as
follows: (It is crucial to define an endomorphism F of W, generalizing the Frobenius
endomorphism of W . For the definition, see Section 1.)

THEOREM. Let A be a Z ,y-algebra. Then there exist isomorphisms
W (A4) = Hom(W, 4, G,y 4) ,
W(A)F" =~ Hi(Wp 45 G, 4)
mW(4) =~ Hom(W, ,, G, ) ,
WAF" > HYW, 4, G ) -

After a short review on Witt vectors and the Artin-Hasse exponential series, we
state and prove the main theorem, generalizing the argument developed in [3].
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NotaTiON. Throughout the paper, p denotes a prime number, Z,,, the localization
of Z at the prime ideal (p), and 4 a Z,-algebra.

G, , : the additive group scheme over 4

G, ,: the multiplicative group scheme over 4

W, 4: the group scheme of Witt vectors of length n over 4

W, : the group scheme of Witt vectors over 4

Py

G, 4 : the additive formal group scheme over 4

Py

G, ,: the multiplicative formal group scheme over 4

Py

W, 4: the formal group scheme of Witt vectors of length n over 4

W, : the formal group scheme of Witt vectors over A

HW, 4,G,. ) and HXW, ,, G, ,) denote the Hochschild cohomology groups
consisting of symmetric 2-cocycles of W,,, 4 With coefficients in G‘m, 4 and of W, , with
coefficients in G, 4, respectively.

For a commutative ring B, we denote by B* the multiplicative group G,,(B).

For an endomorphism / of a commutative group M, ;M (resp. M/l) denotes
Ker[/: M— M] (resp. Coker[/: M— M]).

1. Witt vectors. We start with reviewing necessary facts on Witt vectors. For
details, see [DG, Chap. V] or [HZ, Chap. III].

1.1. For each r>0, we denote by &(T)=®(T,, T4, ..., T,) the so-called Witt
polynomial

SN =T +pT{ ' +---+p'T,
in Z[T]1=Z[T,, T,, ...]. We define polynomials
S(X, Y)=S,(Xo,..., X,, Yo, ..., ¥})
and
P(X, Y)=P(Xy,..., X,, Yg,..., Y})
in Z[X, Y]=Z[X,, X, ..., Yy, Yy, ...] inductively by
D(So(X, Y), Si(X, V), ..., S(X, Y)=0,(X)+ DY)
and
D(Py(X,Y), P(X,Y),..., P(X, Y)=D(X)D[(Y).

Then as is well-known, the ring structure of the scheme of Witt vectors of length n
(resp. of the scheme of Witt vectors)

W,z=Spec Z[T,, Ty, ..., T,_,] (resp. Wp=Spec Z[T,, Ty, T, ...])
is given by the addition
To—SoX, Y), T,—S(X,Y), T,—S,X,Y),...
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and the multiplication
To—Py(X,Y), T\—P,(X,Y), T,—»P,X,Y),....

We denote by W,,,z (resp. W) the formal completion of W, z (resp. W) along
the zero section. W,,.z (resp. W) is considered as a subfunctor of W,z (resp. Wp).
Indeed, if 4 is a ring (not necessarily a Z,-algebra),

W,(A)={(ao, ay, - .., a,_,)€ W,(A); a; is nipotent for all i}
and
a; is nipotent for all i and }

W(Ad)= , Ay, Ay, ... ) EW(A);
) {(ao e 2 ) () a;=0 for all but a finite number of i

1.2.  The restriction homomorphism of ring schemes R: W, | ; — W, 7 is defined
by the canonical injection

To— Ty, Ty—Ty,...,T,

n

Z[T,, T,,....,T,_11-2[T,, T,,..., T,],

—IHTn—I:

while the Verschiebung homomorphism of group schemes V: W, ; » W, . 5 is defined
by
Ty—0,T,—Ty,...,T,—»T,_,:
Z[T,, Ty,...,T,]>Z[Ty, Ty,..., T,_].

Then the sequence

n

Vm
(Em,n) 00— Wn,Z — Wn+m,Z - Wm,l —0

is exact for all n, m>1 (cf. [DG, Chap. V.1.1]).

We denote also by R: W, . 1.z— W,,,Z (resp. V: W,,’z W,, 1,z) the homomorphism
of formal group schemes induced by R: W, > W, z (tesp. V: W, ;> W, z). We
also have an exact sequence of formal group schemes

- ym . R" a
(Em,n) 0 - Wn,Z - Wn+m,Z - Wm,Z - O .

Let k, I be integers with k>/>0. We define a polynomial S, (X, Y)=S, (X, ...,
XY ., Yi_)in Z[Xy, ..., X;_1, Yo, ..., Y,_ 1] by
S X, Y)=SXo, ..., X;-1,0,...,0, Y, ..., Y;_1,0,...,0).
The extension (E,, ) is defined by the 2-cocycle
(Sm,m(X’ Y)’ Sm+ l,m(X9 Y)’ R} Sm+n—1,m(X’ Y))
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of ZXW,, 2, W, z) ot of ZXW,, z, W, z), respectively.

1.3 (cf. [1, Ch.0.1.3]). Now we define an endomorphism of W, generalizing the
Frobenius endomorphism of W .
Define polynomials

F(T)=F(T,,...,T,,T,,)eQ[Ty, ..., T,, T, 1]

inductively by

OF|T), ..., F(T)=®,.1(To, ..., T,, T, 1)
for r>0. Then

F(TeZ[T,,..., T, T,,,]
and
F(T)=T? (modp)

for each r>0. We denote by F: W, ;— W, z the morphism defined by

To—Fy(T), Ty—>F(T),...,T,_—F,_(T):

Z[To,, Ty,..., T,_ 1> Z[Ty, Ty, ..., T,].

Then we can verify without difficulty the following:
(1) Fis a homomorphism of ring schemes;

(2) FR=RF;

(3) FV=p;

(4) VF=pon W, ,if and only if 4 is of characteristic p>0.
Note that

Wz:!iﬂ Wnyz .
R

Hence (2) implies that the system (F: W, ., z = W, z),» defines an endomorphism F
of the ring scheme W,. It is obvious that W, is stable under F. If 4 is an F-algebra,
F: W,— W, is nothing but the usual Frobenius endomorphism.

2. Statement of the theorem. We first recall the definition of Hochschild co-
homology. For details, see [DG, Ch. II.3 and Ch. III.6].

2.1. LetAbea Z,-algebraand G(X, Y)=G(Xo, X, ..., X,—1, Yo, Yy, oo, Yyl y)
a formal series in A[[ Xy, X{, ..., Xu—1> Yo, Yiy .-, Y,_ 111 (resp. a polynomial in
Al Xo, X1y o s Xue 15 Y0, Y1y oo, Y 1]7). Recall that G(X, Y) is called a symmetric
2-cocycle of W,,, 4 (resp. W, ) with coefficients in (;',,,, 4 (resp. G, 4) is G(X, Y) satisfies
the following functional equations:

1 G(S(X, Y), 2)G(X, Y)=G(X, S(Y, Z))G(Y, Z)
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2 G(X, Y)=G(Y, X).

We denote by Z2(W, 4, G, ) (tesp. Z*(W, 4, G,, ,)) the subgroup of A[[X,, X1, .. .,
Xo-1,Y0, Yy,..., Y,_ 111" (resp. a polynomial of A[Xy, Xi,..., Xp_1, Yoo Yio---s
Y,_11*) formed by the symmetric 2-cocycles of W, , (resp. W, ,) with coefficients in
G‘m, 4 (resp. G, o).

Let (T)=KT,, T, ..., T,_,) be a formal power series in A[[T,, Ty, ..., T,— 111"
(resp. a polynomial in A[To, Ty, ..., T,,_,1*). Then' AX)F(Y)F(S(X, Y)) '€ ZXW, 4
G, ,) (tesp. Z2(W, 4 G,, 4)). We denote by B*(W, 4, G, ,) (resp. B3 (W, 4, G,, ,)) the
subgroup of Z2( W,,_ A GA,,, 4) (resp. Z*(W, 4, G, ,) of the symmetric 2-cocycles of the
form F(X)F(Y)F(S(X, Y))~!. Put

Hg( Wn,AGn,A) = ZZ( I/f/n,A’ Gn,A)/BZ( I/f/n,A’ Gn,A)
and
Hg( Wn,A9 Gm,A) = Zz( Wn,A’ Gm,A)/B 2( Wn,Aa Gm,A) .

H3(W, 4 G, ,) (resp. H(W, 4, G,, o) is isomorphic to the subgroup of Ext}(W, 4, G, ,)
(resp. Exty(W, 4 G, ,)) formed by the classes of commutative extensions of W,,, 4 by
GA,,,, 4 (resp. W, 4 by G, ,), which split as extensions of formal A-schemes (resp.
A-schemes).

2.2. Recall now the definition of the Artin-Hasse exponential series

e

Ur )e Z,[[U1].
P

E,,(U)=exp<z

r>0

For T=(Tr)r209 pUt

E(T; X)=[] E,,(T,XP’)=exp< y i <D,(T)X"'>.
p

r=0 r=0
It is readily seen that
E(T; X)E,(U; X)=E,S(T, U); X) .

For T=(T,),», and X=(X,),,, we define a formal power series E,(T; X)e Z,,[[ T, X]]
by

1 1
r=0 p r>0 p

It is verified without difficulty that
E(T; X)E,(U; X)=E(S(T, U); X)

and
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E(T; X)E(T; Y)=E|(T; S(X, Y)) .
LemMMA 2.3. Let T=(To, Ty, T5,...), X=(Xo, X1, X5, ...). Then
E(FT; X)=E|(T; VX) .
Here FT=(Fy(T), F((T),Fy(T),...) and VX=(0, Xy, X}, ...).
ProOF. Indeed, we have

E(FT; X)= E( y L <P,(FT)¢,(X)>
p

r>0
1 1
=Ep< Zo ? ?,.4(T) ; P, I(VX)>=Ep(T; V'X).

2.4. Letn be a positive integer. We define a polynomial &, ,(X)=9®, ,(X,, X5, ...,
Xy-1) in Z[Xo, Xy, ..., X, 1] by

D(Xo, Xyy.-., X)) if r<n—1,
D(Xo, X1, .00, X,-1,0,0,...) if r>n.
For X=(X,),»0, We put

P, (X)= {

1
E, T; X)=E/T, Xy, ..., X,-1,0,0, ...)=exp< Y — <D,(T)d>,,,,(X)> .

r>0 P
For example, we have
E, \(T; X)=E/T; X,) .

REMARK 2.5. Thisdefinition of the formal power series E, ,(T; X) is a modification
of that of E, ,(a; T) in [3,I1.1.4]. As long as we treat the case of characteristic p>0,
there is no difference between the two definitions.

Lemma 2.6. Let X=(Xo, X1, ..., X,_,), Y=(Yo, Yy, ..., Y,_,) and S=(Sy(X, Y),
S(X, V), ..., S, (X, Y)). Then

E, (T; X)E, (T; Y)E, (T; S)" ' =E,F'T; §,),
Where gnz(Sn,n(X’ )/)’ Sn+ l,n(X9 Y)’ cee )‘

Proor. Indeed,

E,(T; X)E, (T; Y)E, (T; )" ' = eXp( > L, P(TN®, (X)+ P, ,(Y)—D, (S )))

r>0 p

1 ren ren-1
=exp( T CADNP"SE "+ ST ))

rzn
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1 iy .
=exp< Z _pT n+l(T)(an+pSt{)+1n - +Pl n+i,n))

1
=exp< Z ~pT n+i(T)q)i(Sn.m Sn+ 1,n> + <> Sn+i,n)>
( 1
—exp( T
iso p'

—E(F'T;S,).

(D (Fn )(Di(Sn,m Sn+ 1,my > Sn+i,n)>

2.7. Now we define a formal power series F, (U; X, Y) in U=(U,, Uy, ...),
X=(Xo, X¢,..., Xy—pand Y=(Y,, Y,,..., Y,_,) by
Fp,n(U; X’ Y)=Ep(U5 S~n) Ep(U n,n> n+ 1,n0 * - ') .
Then obviously
F,(U; X, Y)eZ? ( nZ U] Gm z(,,)w])
COROLLARY 2.7.1. Let A be a Z,-algebra and ac W(A). Then:

(1) E,.(a T)eHom,_( Wn,/h ém,A) if ae pW(A);

() E,.(a T)eHom, (W, 4, G, ) if acgn W(A);

(3) F,.a X, Y)eZXW, 4, G, ) and F, (F'a; X, Y)e BAW, 4, G, );

(4) F,aX, Y)eZXW, 4G, ) and F, (F'a; X, Y)e B(W, ,, G, o) if ac W(A).

2.8. Let 4 be a Z,-algebra. We now define homomorphisms
Enas pWA) > Homy (W, 4,Gpa); a—E,,(a;X),
1 WA)F"— H3(W, ,, Gm,,.) i amF, @ X, Y),
E04: W (A) > Hom_ (W, .G, ) arE, (@ X),
ma: WAF" > H3W, 4G ); a—F, (@ X,Y).
In this notation, our main result is given as follows:
THEOREM 2.8.1. Let A be a Z,-algebra. Then the homomorphisms
At P W(4) —»Hom,, _ eWna> G ) 5
¢mat pW(A)—Hom,, _( Wn,A’ Gm,A) >
Eiat WAF" > HEW, 4, Gy 4)
Ena: WAF" > HEW, 4, G ),

are isomorphisms.
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We verify some compatibilites for 2 and &}, which are needed to prove the theorem.

LEMMA 2.9. Let A be a Z,-algebra. Then:
(1) The diagrams

Fn W(A) I Fn+1 W(A)
léf lrss’ﬂ
. . R* . .
Hom,_ (W, 4, Gy g) —— Hom,_ (W, 4, G 4)

and

mW(A) - 1 W(A)

l g0 l 2.,
*

R
Hom,_ (W, 4, G, ) —— Hom,_, (W, 4 G, 4)

are commutative. Here the horizontal arrows denote the canonical injections.
(2) The diagrams

Fn+1 W(A) _— Fn W(A)
Jcsﬂ l:s
- ~ * -~ A
HomA-gr( Wn+ 1,4 Gm,A) - HomA-gr( Wn,/b Gm,A)

and

e 1 W(A) — mW(A)
l &, l &

Vv
HomA - gr( Wn +1,4 Gm,A) - HomA - gr( Wn,A7 Gm,A)

are commutative.
(3) The diagrams

WA — WA F
l & J &

a A R a A
Hg( Wn,A’ Gm,A) I Hg( Wn+ 1,4> Gm.A)

and
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WAYF s

lc,: l L,

R
Hg(Wn,A, Gm,A) - Hg(WnH,Aa Gm,A)

are commutative.
(4) The diagrams

WAF™ ——  WA)F

l:; l L,

a A V* a A
Hg( Wn+ 1,4> Gm,A) - Hg( Wn,Aa Gm,A)

and

WA)F*Y ——  W(A)F"

l & l &
2 v* 2
HO(Wn+1,A’ Gm,A) - HO(Wn,A’ Gm,A)

are commutative. Here the horizontal arrows denote the canonical surjections.

Proor. By Lemma 2.3, we have the equalities
E,wi1(Us Xo, .o, Xy )=E, (U; Xo, ..., X;-1)»
and
E,,+1(U;0, X, ..., X,_)=E, (FU; X, ..., X,_1),

which imply (1) and (2).

Now we prove (3). Noting that

¢,n+l(r)—¢,,,(r)={0 L=
’ ’ prTY " (rzn),

we obtain

0

1 .
Ep,n+ I(V’ T)Ep,n(Va T)_l =exp< Z _,._ ¢r+n(V)Trf )=Ep(Fn Va Tn) .
r=0 p
Putting U=F"V, we get
Fpni1(FU; X, Y)F, (U; X, Y) "' =E(U; X,)E(U; Y,)E(U; S,(X, Y))™*,

p
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which implies that
[Fpni1(FU; X, Y)]=[F, (U, X, Y)] in H( Wn+ 1,Z,)[U) Gm,z,p,{v]) .
To verify (4), it is enough to note that
FppisUs VX, VY)=EJU; Sy 101 (VX VY), Sy 00 a(VX, VY), )
=E(U; S, /X, Y), S,1,/X, Y),...)
=F,(U; X, Y).
LeMMA 2.10. Let A be a Z -algebra. Then the diagrams

mW(A) —  WA)/F™"

Jf,? Jc;,

a A 0 A A
HomA - gr( Wn,A, Gm,A) I Hg( Wm,A’ Gm.A)

and

mW(A) —  WA)F"

Jff lz;

0
HomA—gr( Wn,A’ Gm,A) — Hg( Wm.As Gm,A)

are commutative. Here the horizontal arrows above denote the maps induced by ar a,
and 0’s denote the boundary maps defined by the exact sequences of formal group schemes

P 4 R" .
0— Wn,A - Wn+m,A - Wm,A —0
or of group schemes
ym R"
0— Wn,A - Wn+m,A I Wm,A —0.
ProOF. The extension of formal group schemes
I G R" .
0— Wn,A_’ n+mA Wm,A—_’O
is defined by the 2-cocycle
(Sl X ¥), S 1mXe V), s St 1l X YNEZ (Wi gy Wi ) -
Hence the boundary map d: Hom,, _,( Wy 4sGpg) > Hi(W,, 4G, ) is defined by
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E,(a; T)— E, (a; Sy n(X, Y), Sy 1K Y), oo Sppin— 1l X, Y))
Noting that
Fol@; X, Y)=E@; Sy m(X, ¥), Spus 1 X, V) oo, S 1l X ¥), Sy X, Y), .00,
we obtain
Fopo@ X, V)E, (@5 SpX, V), S 1 X, V), Sy X, V)71
=E (a0,...,0,8,p (X, Y), Spips 1mX, Y),..0)
= EF"&; Sy nnl(X, Y), Spins1.mX, V), ..)
which implies the asserted commutativity of the diagram. The case of group schemes

is verified similarly.

3. Proof of the theorem.
3.1. It remains to prove the case n=1, in view of the commutative diagrams with
exact rows:

O —_— Fn W(A) — Fn+1 W(A)

lé.? lcsﬂ
*

0— HomA—gr(Wn,As Gm,A) - HomA—gr(Wn+1,A’ Gm,A)

. (A — W(A)F

J &0 l 3
(rmy*

A ~ il A A
- HomA—gr(Ga,A’ Gm,A) - Hg(Wn,A’ Gm,A)

L Way T s WUF —— 0

Jc:ﬂ F‘l

R* - A (Vm* A A
- Hg( Wn+ 1,4> Gm,A) - Hg(Ga,A’ Gm.A) 5

induced by the exact sequence of formal group schemes
V’I

A - R .
O Ga.A > Wn+ 1,4 > Wn,A 0 ’

and
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0— mW(A) — s 1 W(A)
lé,? lcsﬂ
R*
0 - HomA—gr(Wn,As Gm,A) - HomA—gr(Wn+ 1,A4> Gm,A)

, (A s WA)F

l &0 l !
vry*

0
—_— HomA—gr(Ga,A7 Gm,A) —_— Hg(Wn,Aa Gm,A)

F - -
s WAFTt WA)JF ——0
&y Jz:
R* (Vry*
- Hg(Wn-f- 1,4> Gm,A) - Hg(Ga.A’ Gm,A) >

induced by the exact sequence of formal group schemes

4 R
0 Ga.A - Wn+ 1,47 Wn,A 0.

The following lemma implies the bijectivity of
f?,A : pW(4)—>Hom,, _ gr(éa,A’ Gm,A)
and
&Y a1 pW(A) > Hom, (G, 4, Gy ) -

LEMMA 3.2. Let A be a Z ,-algebra and (T)e A[[T]]™. If (X + Y)=F(X)F(Y),

then there exists ae ;W(A) such that KHT)=E/a; T). Moreover, if (T)e A[T]", then
ac  W(A).

PrOOF. Put
F(D)=1] E(aTY, c€Ad,
k=1

and set a=(c,),»o and G(T)=[],,p E,(c,T), where P={p’; j>0}. Then
F(T)=E,a; T)G(T),
hence
(GX)G(Y)G(X+ Y)~ 1) =E (a; X)E,(a; Y)E,(a; X+ ¥)~*
=F, (Fa; X, Y).
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Note that
F, (Fa; X, Y)=1+the term of degree p” (mod degree p"+1)

for some r. If G(T) # 1, then G(T)=1+cT* (mod degree k + 1) with ¢#0 for some k> 0.
Then k is not a power of p, and

GX)G(Y)GX+Y) '=1+c{X*+Y*—(X+Y)} (mod degree k+1).
It follows that G(T)=1 and F, ;(Fa; X, Y)=1, and therefore Fa=0.

To prove the bijectivity of ¢! ,: W(4)/F— HG, 4 G, 4) and &} : W(A)/F—
H3(G, 4, G,, o), we need several lemmas. We put P={p’; j>0} as above.

SUBLEMMA 3.3. Let U=(U,, Uy, ...). Then we have

1 Xpr+1+Ypr+1_X+Ypr+1
FP,I(U; X, Y)=exp< Z T (pr(UO’ Uls ceey Ur) ( ) > .
r>0 p V4

ProOF. By definition,
F, (U X, Y)

|
=exp< Y — @(Uq, Uy, ..., U)P[S, 1(X, Y), S, 1(X, ¥), ..., S,s1.1(X, Y))) ,

r>0 p
where
S, 11X, Y)=8S,,,X,0,...,0,7,0,...,0).
Hence we obtain the assertion, noting that
X+ YY" +pd,(S; 4(X, ), S,.1(X, Y), ..., Spy1.4(X, Y))
=, 1(So(X, ¥), §14(X, Y), S, ,(X, Y), ..., S,41,4(X, )
=P, (X,0,...,00+®,,,(¥,0,...,00=X""+ yr"’
and that
XPT YT (X4 Y
. .
CorOLLARY 3.3.1. Let A be a Z ,-algebra and a=(a;);» o€ W(A). Then

X4+ YP—(X+ Y)Y
p

¢r(Sl,l(X, Y)a S2,1(Xa Y)’ DY Sr+1,l(Xa Y))=

F,(a; X, Y)=1+a,

(mod degree p+1).

Moreover, if a;=0 for i<r, then
Xpr+1+ Ypr+1_(X+ Y)Pr+l
p

F,ia;X,Y)=1+a, (mod degree p"*1+1).
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ProOF. By Lemma 3.3,

XP+ YP—(X+ Y
p

F,,(U; X, Y)=exp<U0 + terms of degree >p>.

Hence we obtain

XP4 YP—(X+ Y

F,,(U; X, Y)=1+U, (mod (X, Y)?*1).

P
Moreover,
F,,0,...,0,U,U,,y,...; X, Y)
Xpr+1 Ypr+1_ X Ypr+l
=exp<U, + (&+ 1) +terms of degree>p"*! |,
P
since ®,(0,...,0)=0 for i<r and ®,0,...,0,U,)=p"U,. Hence we have

F

p,

{0,...,0,U, U,y ...; X, Y)
Xpr+1+ Ypr*l_(X_'_ Y)pr+1
P

=1+U, (mod (X, Y)" "' +1).

These imply the assertion.

LEMMA 3.4. Let A be a Z,-algebra and F(X, Y)e ZX(G, 4, G, )< A[[X, Y1]™.
Then there exist ae W(A) and G(T)=]_[k¢P(1 +¢, T e A[[T]]* such that F(X, Y)=
F, (@ X, Y)G(X)G(Y)G(X+Y) ™.

Proofr. Dividing F(X, Y) by its constant term, we may assume that F(X, Y)=1
(mod degree 1). Assume now that there exist @;, c;e 4 (0<i<r—1 and 1<j<k, j¢P)
such that

F,i(a, ay,...,8,_5,0,...;X, Y)G(X)G(Y)G(X + Y)" '=F(X,Y) (mod degree k),

where r=[log,k], the greatest integer not greater than log,k, and Gk(T)=l—L'<k(1 +
chj ). Let H(X, Y) denote the homogeneous component of degree k of F(X, Y)
[F,1(ag, ay, ..., 8,_2,0,...; X, V)G(X)G(Y)G(X+Y) ']7'. Since F(X, Y)[F, (ao,
ap, oy 822,05 X, V)GX)GUY)G(X+ Y) 17 e ZX(G, p, G,, 5), We see that H(X, Y)
satisfies the functional equations:

1) HX+Y,Z2)+HX, Y)=HX, Y+Z)+ H(Y, Z);

2) H(X, Y)=H(Y, X).
By Lazard’s comparison lemma [2, Lemma 3], there exists a€ 4 such that

a{X*+ Y —(X+ Y)Y} if k is not a power of p
H(X, Y)= Xk+ Yk_(X+ Y)k
a
p

if kisapowerofp.
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(1) Whenkisnotapowerof p,put ¢,=aand G, 1(T) = G(T)(1 + ¢, T*). Then we have
F,i(@; X, Y)Gyy 1(X)Gy 1 1(Y)Gy i (X +Y)"'=FX, Y) (mod degree k+1)
since
1+ X1+ Y1+ X+ )} =14 {X*+ Y*—(X+ Y)*} (mod degree k+1).
(2) When k=p", put a,_,=a. By Corollary 3.3.1, we have
X+ Y —(X+ Y)W

F,10,...,0,a,_4,0,...; X, Y)=1+4aqa,_, (mod degree p"+1).
—— p

r—1
Hence we obtain

Fp,l(ao’ Y ar—Za ar—la 0, cees X’ Y)Gk(X)Gk(Y)Gk(X+ Y)_IEF(X9 Y)
(mod degree p"+1),

noting that
Fp,l(a07 -“,ar—z’oa 9X’ Y)Fp,l(o’ "'901 a1, 0’ 9Xa Y)
=F,(ag,...,8-3,a,_1,0,...; X, 7).

Continuing this process, we find ae W(A4) and G(T) = nk“ (14 ¢, T*)e A[[T]] such that
FX,Y)=F, (a; X, V)GX)G(Y)G(X+Y)™".

LEMMA 3.5. Let Abea Z -algebraand F(X, Y)e Z*(G, 4, G,, 4) = A[X, Y]*. Then
there exist ae W(A) and G(T')zl_[k“,(l +¢,T*e A[T]* such that F(X, Y)=F,,(a; X,
Y)G(X)G(Y)G(X+ Y)~ 1.

PrROOF. As above, dividing F(X, Y) by its constant term, we may assume that
F(X, Y)=1 (mod degree 1). By Lemma 3.4, there exist a=(a;);> € W(A4) and G(T)=
[Ter(1 +ckT")§A[[T]]" such that F(X, Y)=F, (a; X, Y)G(X)G(Y)G(X+Y)™'. We
prove that ae W(A) and G(T)e A[T] ™.

Let d be the degree of F(X, Y) and let a denote the ideal of 4 generated by the
coefficients of the terms of degree >1 in F(X, Y). Since the polynomial F(X, Y) is
invertible, a is nilpotent.

Now observe the following:

1) For j¢ P, put

I+ XA+ Y){1+c(X+ Yy} '=1+ i H(X,Y),
k=1

where H (X, Y)is homogeneous of degree jk. Then the ideal generated by the coefficients
of H,(X, Y) coincides with (c;), and the ideal generated by the coefficients of H, (X, Y)
is contained in (c;)* for k>1;

2) Put
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F,i(0,...,0,a,0,..; X, Y)=1+ Y H(X.,Y),
—_— k=1
]

where H, (X, Y) is homogeneous of degree p'*'k. Then the ideal generated by the
coefficients of H,(X, Y) coincides with (;), and the ideal generated by the coefficients
of H,(X, Y) is contained in (a,)* for k> 1. These imply the following:

1) If jis not a power of p and (s—1)d<j<sd, then c;ea’

2) If s—1)d<p'*!<sd, then g;ea’.

Hence, a; and c; are nilpotent for all i and j, and are zero for all but a finite number
of i and ;.

3.6. Now we prove the bijectivity of ¢} ,: W(4)/F— HXG, 4 G, ,) and &f ,:
W(A)/F_’ Hg(Ga,A’ G, 0)-

Lemma 3.4 and Lemma 3.5 imply the surjectivity of &} ,: W(A)/F— H3(G, 4, G, 1)
and ¢} . W(A)/F— H(G, 4, G,, ,), respectively.

Now assume that F,,(a; X, Y)e BZ(GAa, A G:,h 4) for ae W(A). Then there exists
F(T)e A[[T]]” such that F(X)F(Y)F(X+Y)™'=F, (& X, Y). Put F(T) =], ,E(c.T").
Then

Fp,l(a; Xa Y)Fp,l(Fb; Xs Y)_ ! = kI;L Ep(cka)Ep(ck Yk)Ep(Ck(X+ Y)k)_ ! )

where b=(c,), 0. As in the proof of Lemma 3.2, we see that ¢, =0 if k is not a power
of p, hence F, ,(a; X, Y)=F, ,(Fb; X, Y). It follows that &} ,: W(A4)/F— H¥(G, 4G, 4)
is injective. It is similarly seen that ¢} ,: W(A)/F — H3(G, 4, G, ) is injective.

REMARK 3.7. End,_,( W,,, ) (resp. End,_ (W, ,)) acts on HE( W,,, 4 G, o) (resp.
H¢(W, 4, G, ,) by the pull-back. We can describe the action under the identifications
HYW, 4, G, )= W(A)/F" and HXW, 4, G,, )= W(A)/F" as follows:

Let [b] denote the endomorphism of A,,, 4 0r W, 4, defined by b=(b,)o<,<n-1€
W,(A). Then a[b]=(F"b) - a.

REMARK 3.8. It is more or less known that Hg(GH,A, GAm,A)=0 and H(G, 4
G, 4)=0if A is of characteristic 0. We can also verify these facts, noting that the
homomorphism F is surjective on W(A) and on W(A).

REFERENCES

[1] L.ILLuse, Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. Ecole Norm. Sup. (4) 12
(1979), 501-661.

[2] M. LaAzARrD, Sur les groupes de Lie formels & un paramétre, Bull. Soc. Math. France 83 (1955), 251-274.

[3] T. SEkiGucHI AND N. Suwa, A note on extensions of algebraic and formal groups I, II, Math. Z. 206
(1991), 567-575; 217 (1994), 447-457.

[DG] M. DEMAZURE AND P. GaBRIEL, Groupes algébriques, Tome 1, Masson-North-Holland, Paris-



EXTENSIONS OF ALGEBRAIC AND FORMAL GROUPS 257

Amsterdam, 1970.
[HZ] M. HazewINKEL, Formal groups and applications, Academic Press, New York, 1978.

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS
CHUO UNIVERSITY Tokyo DENKI UNIVERSITY

13-27 KASUGA 1-CHOME, BUNKYO-KU KANDA-NISHIKI-CHO, CHIYODA-KU
Tokyo 112 Tokyo 101

JAPAN JAPAN








