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Abstract. We will give an explicit description of extensions of the group scheme
of Witt vectors of length n (resp. the formal group of Witt vectors of length n) by the
multiplicative group scheme (resp. the multiplicative formal group) over an algebra for
which all prime numbers except a given prime p is invertible.

Introduction. Throughout the paper, p denotes a prime number, and Z(p) the
localization of Z at the prime ideal (p).

Let Wn (resp. W^ denote the group scheme (resp. the formal group scheme) over
Z of Witt vectors of length «, and W (resp. W) the group scheme (resp. the formal
group scheme) of Witt vectors over Z. Let Gm (resp. Gm) denote the multiplicative
group scheme (resp. the multiplicative formal group scheme over Z. In [3], we gave
an explicit description of the groups ExtA(WnA, GmA) and ExtA(WntA, Gm^), when A
is a ring of characteristic p> 0. More precisely, we constructed isomorphisms

using the Artin-Hasse exponential series.
In Theorem 2.8.1 of this note, we generalize these results to Z(p)-algebras A as

follows: (It is crucial to define an endomorphism F of Wz generalizing the Frobenius
endomorphism of Wfp. For the definition, see Section 1.)

THEOREM. Let Abe a Z(p)-algebra. Then there exist isomorphisms

After a short review on Witt vectors and the Artin-Hasse exponential series, we
state and prove the main theorem, generalizing the argument developed in [3].
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NOTATION. Throughout the paper, p denotes a prime number, Z(p) the localization
of Z at the prime ideal (77), and A a Z(p)-algebra.

'a,A

G,m,A

w
G.
G,
W,

A

a,A

m,A

n,A

the additive group scheme over A
the multiplicative group scheme over A
the group scheme of Witt vectors of length n over A

the group scheme of Witt vectors over A
the additive formal group scheme over A

the multiplicative formal group scheme over A
the formal group scheme of Witt vectors of length n over A
the formal group scheme of Witt vectors over A

Ho(Wn9A, GmjA) and H^(WnA,GmA) denote the Hochschild cohomology groups
consisting of symmetric 2-cocycles of WnA with coefficients in GmtA and of WnA with
coefficients in GmA, respectively.

For a commutative ring B, we denote by Bx the multiplicative group Gm(B).
For an endomorphism / of a commutative group M, tM (resp. M//) denotes

Ker[/: M->M] (resp. Coker[/: M

1. Witt vectors. We start with reviewing necessary facts on Witt vectors. For
details, see [DG, Chap. V] or [HZ, Chap. III].

1.1. For each r>0, we denote by Φr( J) = Φr(Γ0, Tl9 . . . , Tr) the so-called Witt

polynomial

in Z[Γ] = Z[Γ0, 7\, . . .]. We define polynomials

S,(X9Y) = SJ(X09...9Xr9Y09...9Yr)

and

in Z\X9 Y] = Z[X09 X19...9Y09Y19...] inductively by

Φr(S0(X, F), Si(X9 F), . . . , SJ(X9 F)) = Φr(

and

Φr(P0(X, F), P,(X9 F), . . . , Pr(X, Y}) = Φr(X)Φr(Y) .

Then as is well-known, the ring structure of the scheme of Witt vectors of length n
(resp. of the scheme of Witt vectors)

0, 7\, . . . , Γ^J (resp. ^z = SpecZ[Γ0, Tl9 T29 . . .

is given by the addition

, F), T^S^Y), T2^S2(X,Y\...
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and the multiplication

We denote by Wn^z (resp. Wz) the formal completion of WnZ (resp. Wz) along
the zero section. WΛtZ (resp. Wz) is considered as a subfunctor of WnZ (resp. Wz}.
Indeed, if A is a ring (not necessarily a Z(p)-algebra),

Wn(A) = {(α0, α l 5 . . . , #„_!)£ Wn(A)\ at is nipotent for all /}

and

at is nipotent for all i and
2 , . . .)e Wn(A)

αf = 0 for all but a finite number of /

1.2. The restriction homomorphism of ring schemes R: Wn+ιtZ^> WnZ is defined
by the canonical injection

Γ0r->Γ0, TI\-*TI, . . . , T . ih +T;.! :

Z[Γ0, Γ1? . . . , Γπ_ J ̂  Z[Γ0, 7\, . . . , ΓJ ,

while the Verschiebung homomorphism of group schemes F: WnZ^> Wn + l^z is defined

by

7 o I » 0, 7 ! I > 7 05 5 1 n ' ^ - * « - ! •

Z|_yo? - / 1 ? ? -* ΠJ ~* Z|_7Q, 7^^, ..., . / π _ i J .

Then the sequence

ym Rn

(EmjΠ) 0 —> Wn,z > Wn + m§z > PFm,z —> 0

is exact for all n,m>l (cf. [DG, Chap. V.I.I]).
We denote also by R: Wn + l^z^ WnZ (resp. V: WnZ -+Wn+l z) the homomorphism

of formal group schemes induced by R: Wn + lίZ-+ WnZ (resp. V\ WntZ-> Wn+l^z). We
also have an exact sequence of formal group schemes

(Em,n) 0 -̂  WnΛ -ΓL ^π+m,z — ̂ m>z -̂  0 .

Let k, I be integers with k>l>0. We define a polynomial Sk<t(X, Y) = Skj(X0,...,

Xl-ί,Y0,...,Yl_1)taZlX0,...,Xl-1,Y0,...,Yl-1]by

The extension (Em „) is defined by the 2-cocycle

(Sm,m(X, Y), Sm+1,m(X, Y),..., Sm+n_1>m(X, Y))
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of Z2(Wm^ WHtZ) or of Z\Wm^ WΛtZ), respectively.

1.3 (cf. [1, Ch.O.1.3]). Now we define an endomorphism of Wz, generalizing the
Frobenius endomorphism of WFp.

Define polynomials

Fr(T} = Fr(T^ . . . , Γr, Γr+1)6β[Γ0, . . . , Γr, Γr+1]

inductively by

Φr(F0( J), . . . , Fr(Γ)) = Φr+1(Γ0, . . . , Γr, Γr+1)

for r>0. Then

and

Fr(T)=T? (mod/?)

for each r>0. We denote by F: Wn + ̂ ^z^ ^«,z the morphism defined by

Then we can verify without difficulty the following:
(1) F is a homomorphism of ring schemes;
(2) FR = RF\

(3) FV=p;
(4) VF—p on W^ if and only if A is of characteristic p> 0.
Note that

Hence (2) implies that the system (F: lVn+ljZ^> Wn2)n>\ defines an endomorphism F
of the ring scheme Wz. It is obvious that Wz is stable under F. If A is an /yalgebra,
F: WA-+ WA is nothing but the usual Frobenius endomorphism.

2. Statement of the theorem. We first recall the definition of Hochschild co-
homology. For details, see [DG, Ch. II.3 and Ch. III.6].

2.1. Let A be a Z(p)-algebra and G(X, Y) = G(X0,Xl9 . . ., Xn.l9 Y0,Yί9...9 Yn-J
a formal series in A[f_X09Xl9 ...9 Xn_i9Y09Yl9 ...9 Fn_1]]x (resp. a polynomial in
A[X0,X1,...,Xn-1,Y0, Yl9 . . . , yπ- i]

x). Recall that G(X, F) is called a symmetric
2-cocycle of WnA (resp. WnA) with coefficients in Gm A (resp. Gm^) is G(A", F) satisfies
the following functional equations:

(1) G(S(X, Y), Z)G(X, Y) = G(X, S(Y, Z))G(Y, Z)
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(2) G(X,Y) = G(Y,X).

We denote by Z2(WnΛ, Gn<A) (resp. Z\WnΛ, Gm<A)) the subgroup of A\_\X0, Xt, . . . ,
*„_ 1; Y0, Ylt . . . , Yn. 1]]'

x (resp. a polynomial of A[_X0, Xί,...,XH_ί,Y0,Yί,...,
Yn-ιY) formed by the symmetric 2-cocycles of Wn>A (resp. WnA) with coefficients in

LetF(Γ) = F(Γ0, rl5 .... Γn_!) be a formal power series in
(resp. a polynomial in A[T0, Γl5 .. ., Γ^J"). Then'F(*)F(F)F(S(*, Y)Y^Z\WnΛ,
O (resp. Z2(^x, G?.x)). We denote by ̂ (̂ .O (resp. B\Wn,A,Gm,A)) the
subgroup of Z2(WnA, GΠtA) (resp. Z2(WnΛ, GmA)) of the symmetric 2-cocycles of the
form F(X)F(Y)F(S(X, Y))'1. Put

^o2(^π,A,J = Z2(^, Gn,A)IB2(Wn,A, Gn,A)

and

H*(Wn,A, Gn A) (resp. Hl(WnΛ, Gm^) is isomorphic to the subgroup of Eκi\(Wn^ Gn,A)
(resp. Ext^(WnA, GmtA)) formed by the classes of commutative extensions of WnA by
Gm,A (resp. WΛtA by Gm A), which split as extensions of formal ^-schemes (resp.
^-schemes).

2.2. Recall now the definition of the Artin-Hasse exponential series

τjpr \
-

>o P /

For Γ=(ΓΓ) r>o?Put

Ep( T X)=
r>0 \ r > 0 P

It is readily seen that

Ep( T X)Ep(U X) = Ep(S(T, U); X) .

For T=(Tr)r>0 and X=(Xr)r>0, we define a formal power series Ep(T; X)eZ(p}[[T,
by

r>0 /7 r>0

It is verified without difficulty that

Ep( J; *)£p(t/; X) = E,J(S(T9 U); X)

and

-L Φr(Pr(T, X))} .
P* )
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Ep(T X)Ep(T y) = £p(Γ; S(X, Y)) .

LEMMA 2.3. Let T=(T0, 7\, T2, . . . ), X=(X0, Xlt X2,... ). Then

Here FT= (F0(Γ), ̂ (Γ), F2(T), . . . ) W ™= (0, *o, *ι, )•

PROOF. Indeed, we have

Ep(FT; X) = Ep
V>o

Σ rφr+ι(Γ)-Φ,
r > 0 P P

2.4. Let n be a positive integer. We define a polynomial Φr,n(AT) = Φr>B(ΛΓ0, Λ^, . . . ,
„_!) hi Z[AT0, *!,...,*„_!] by

^!,...,^) if r < n - l ,
r n = i, , r;

[φJ(X0,X1,...,Xn-1,0,0,...) if

For A'=(A;)r>0, we put

o

For example, we have

REMARK 2.5. This definition of the formal power series Epn( T; X) is a modification
of that of Epn(a; T) in [3,11.1.4]. As long as we treat the case of characteristic p>0,
there is no difference between the two definitions.

LEMMA 2.6. Let X= (X0, Xlt . . . , Xn_ ,), Y= ( Y0, Y,, . . . , Yn_ J and S= (S0(X, Y),

. .S^^Y)). Then

Ep,n(T; X)Ep<n(T; Y)Ep,n(T; S)~l= Ep(F»T; §„) ,

where Sn = (Sn,n(X, Y), Sn+1,n(X, Y), . . .).

PROOF. Indeed,

Ep,n(T X)Ep,n(T;
r>0 P

Σ Λ *r(rx/'"5r.""+/'"+i5r+'i:;I+ - +prsr,n)
'
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Σ ~Φn+i(T)(S^+pS^,n+ +pίSn+i.n)
i>0 P

;>o p

Σ Λ
i>0 P

2.7. Now we define a formal power series Fp<n(U;X, Y) in U—(U0, t/ l5 ...),
X=(X0, X,,..., *._!> and Y=(Y0, Y,,..., }"„_,) by'

FrJU; X, Y) = Ep(U; Sn) =

Then obviously

COROLLARY 2.7.1. Let A be a Z(p)-algebra and αe W(A). Then:

(1) Ep,n(
(2) £,>; D e HomA _ gr( ̂ π^, Gm>j4) if a e Fn W(A)

(3) Fp,n(α; X, F) 6 Z2( ̂ B>^, Gm,x) am/ Fp,n(F«a; X, Y)eB2( Wn,A, Gm,A);

(4) Fp>; Jί, F)eZ2(^π>Λ, Gm,J W FpιΠ(F"a; Jf, y)eB2(^, Gm,J z/«e W(A).

2.8. Let >4 be a 2Γ(p)-algebra. We now define homomorphisms

rn,, _gr( WnΛ, Gm> A) α ̂  £p>; JQ ,

" -» //0

2( ̂ n,Λ, <?„,„) α h^ /•„>; X, Y) ,

ξ°nΛ : Fn W(A) -» Hom^ _ gr( ̂ ,,jΛ, Gm, J α κ-> £p>; JQ ,

ί-U •• W(A)IF» -, ̂ ( ̂  ̂  Gm κ) . β ̂  Fp π(fl. χ γ)

In this notation, our main result is given as follows:

THEOREM 2.8.1. Let A be a Z(p)-algebra. Then the homomorphisms

n,A, Gm,A) ,

ξa\A:

ξ^A : W(A)IF"

are isomorphisms.
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We verify some compatibilites for ξ% and ξ\, which are needed to prove the theorem.

LEMMA 2.9. Let A be a Z(p}-algebra. Then:
(1) The diagrams

FnW(A) > Fn

and

FnW(A)

κO
Cn

are commutative. Here the horizontal arrows denote the canonical injections.
(2) The diagrams

FnW(A)

fί

and

αr^ commutative.
(3) 77ze diagrams

W(A)IFn -—+ W(A)IFn

ίί+1
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W(A)IF"

ί.1

are commutative.

(4) The diagrams

ί.'+ι

W(A)IF"

and

W(A)/Fn W(A)/F"

are commutative. Here the horizontal arrows denote the canonical surjections.

PROOF. By Lemma 2.3, we have the equalities

and

which imply (1) and (2).
Now we prove (3). Noting that

we obtain

(r<n-\)

, Tn) .

Putting U=F"V, we get

Fp,a+l(FU; X, Y)Fpιn(U; X, Y)'1 =
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which implies that

; X, F)] = [Fp,n(t7; X, F)] in

To verify (4), it is enough to note that

Fp<π+l(U; VX, VY) = EP(U; Sn+1,n+1(VX, VY), Sn+2,n+ί(VX, VY),

= Ep(U;Sntn(X,Y),Sn+ί,n(X,Y),...)

= Fp(U;X,Y).

LEMMA 2.10. Let A be a Z(p)-algebra. Then the diagrams

Fr,W(A) - > W(A)IFm

fO fl

Γ ,

and

F»W(A) > W(A)IF"

ξ° I ^1
'" Sm

are commutative. Here the horizontal arrows above denote the maps induced by a \—> a,
and d's denote the boundary maps defined by the exact sequences of formal group schemes

or of group schemes

PROOF. The extension of formal group schemes

is defined by the 2-cocycle

ί^ (Y V\ <? (Y V\ <? (Y V\\<='72ίW W \\^m,m(Λ^ *)>^m+l,m\Λ> * )> - •> ^m + n- l,m(Λ9 * )) e ̂  \Wm,A-> " n A) .

Hence the boundary map d: ^or^A_lgτ(WnA,Gm^-^HQ(WmΛ,Gm^ is defined by
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Eftn(a T)^Ep,n(a; Sm,m(X, Y), Sm+1,m(*> Y),..., Sm+n_1>m(X, Y]}.

Noting that

Fp,m(a; X, Y) = Ep(a; Sm,m(X, Y), Sm+lιJX, Y),..., Sm+n_lιm(*, Y), Sn + m,m(X, Y), ),

we obtain

Fp>; X, Y)Ep<n(a; Sm,m(X, Y), Sm+l,m(X, Y),..., Sm + n.1:m(X, F))'1

= Ep(a 0,..., 0, Sm+n,m(X, Y), Sm+n + 1,m(X, Y),...)

= Ep(F"a; Sm+n,m(X, Y), Sm+n+1,m(X, Y),...),

which implies the asserted commutativity of the diagram. The case of group schemes
is verified similarly.

3. Proof of the theorem.
3.1. It remains to prove the case n = 1, in view of the commutative diagrams with

exact rows:

0 > FnW(A) > Fn

FW(A) > W(A)/F"

,er(Ga,A, Gm,A)

W(A)IFn+l > W(A)IF

ίί

induced by the exact sequence of formal group schemes

and
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0 > FnW(A) > Fn

W(A) > W(A)jFn

ξi

W(A)jF

induced by the exact sequence of formal group schemes

0 — Ga,A ^Wn+ltA^Wn,A

The following lemma implies the bijectivity of

ξ?,A :

and

LEMMA 3.2. Let A be a Z(p}-algebra and F(T) ε A\_[T\~\ x . IfF(X+ Y) = F(X)F( Y\

then there exists a€FW(A) such that F(T) = Ep(a\ T). Moreover, if F(T)eA[T'] x , then
aeFW(A).

PROOF. Put

F(T)=f[Ep(ckT
k), ckεA,

and set a = (cpr\>0 and G(T) = ]\kφpEp(ckT), where P={pJ J>Q}. Then

F(T] = Ep(a;T)G(T),

hence

(G(X)G(Y)G(X+ r)-1)-1 = Ep(a; X)Ep(a; Y)Ep(a X+ Y)-1

= FpΛ(Fa;X,Y).
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Note that

FpΛ(Fa\ X, Y) = 1 + the term of degree pr (mod degree pr + 1)

for some r. If G(T) φ 1, then G(T) = 1+ cTk (mod degree k + 1) with cφ0 for some k>0.
Then k is not a power of/?, and

G(X)G(Y)G(X+ YΓ^ = \+c{Xk + Yk-(X+ Y)k} (mod degree fc+1).

It follows that G(T) = 1 and Fpί(Fa; X, Y)=l, and therefore Fα = 0.

To prove the bijectivity of ξ\Λ: W(A)/F-+H%(όatA9OmtA) and ξ\Λ: W(A)/F-+
Ho(Ga,A> Gm,A)> we need several lemmas. We put P={pj',j>Q} as above.

SUBLEMMA 3.3. Let U=(U0, £/!,.. .). Then we have

( ι γpr+l j_ yp r + 1 —(Y-i. γ\pr+l \
14*^°'^.-'^) —(^+ } ).r>0 /? P J

PROOF. By definition,

FpΛ(U X, Y)

\ r > 0 pr

where

S r+l f l(JT, Y) = Sr+1(X,Q, . . . ,0, 7,0, . . . ,0).

Hence we obtain the assertion, noting that

(x+ γyr+l+pΦr(slfl(x, r), s2Λ(x, Y\ ..., sr+lil(jr, Y))

= Φr+l(S0(X, Y)9Sltl(X, Y),S2tl(X9 Y)9...,Sr+ltl(X9 Y))

= Φ r + 1(jr,o,...,o)+Φ r + 1(r,o,...,θ)=.
and that

ΦXSL^Jr, n ^2,ι(^ n - - > Sr+ι.ι(^ r)) =
/?

COROLLARY 3.3.1. Let A be a Z(p}-algebra anda = (ai)i>0e W(A). Then

xp+γp-(x+γγ
Fp !(α; X, Y) = 1 + a0 (mod degree p+l).

P

Moreover, ifa^Qfor z<r, then

Xpr+1 4- Ypr+1 — (Y-4- Y\Pr+l

Fpfl(α; X, F)= 1 +ar LJLJ (mod degree pr+
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PROOF. By Lemma 3.3,

xp+γp-(x+γγ
Fp !(J7; X, r) = exp £/0 - - ' + terms of degree >p .

Hence we obtain

VP _i_ VP —
FpΛ(U X, Y}= 1 + U0 (mod (X,

Moreover,

Fptl(09...909Ur9Ur+l9...'9X9Y)

= exp Ur h terms of degree >pr+l 1 ,
\ P

since Φj(0, . . . , 0) = 0 for i< r and Φ r(0,..., 0, Ur) =prUr. Hence we have

Fptl(09...909Ur9Ur+l9...'9X9Y)

p
These imply the assertion.

LEMMA 3.4. Let A be a Z(pΓalgebra and F(X, Y)eZ\GaΛ, Gmt^A{[X9 Y]Y .
Then there exist aeW(A) and G(T) = l\kφp(l +cfcΓ

k)e^[[Γ]]x such that F(X, Y) =

FpΛ(a;X, Y)G(X)G(Y)G(X+Y)-1.

PROOF. Dividing F(X, Y) by its constant term, we may assume that F(X9 Y) = 1
(mod degree 1). Assume now that there exist aί9 c^A (0<z<r— 1 and \<j<k,jφP)

such that

Fp>0, «!,..., flr_2, 0 9 . . . ' 9 X 9 Y)Gk(X)Gk(Y)Gk(X+ Y)~^F(X, Y) (mod degree k) ,

where r = [logpA:], the greatest integer not greater than logpfc, and Gk(T) = \\j<k(\ +
CjTj). Let //(Jf, Y) denote the homogeneous component of degree fc of F(̂ , Y)

[Fptl(a09al9...9ar-2909...;X9 Y)Gk(X)Gk(Y)Gk(X+Y)-lTl Since F(̂ T, Y){FpΛ(aQ9

al9...9 α r_2, 0, . . . X, Y)Gk(X)Gk(Y)Gk(X+ YΓlYlεZ2(Ga^ Gm^ we see that H(X9 Y)
satisfies the functional equations:

1) H(X+ F, Z) + H(X9 Y) = H(X9 Y+Z) + H(Y, Z);
2) H(X9Y) = H(Y9X).

By Lazard's comparison lemma [2, Lemma 3], there exists aeA such that

H(X9 Y) =
a{Xk + Yk - (X+ Y)k} if k is not a power of p

Xk+Yk-(X+Y)k

if A: is a power of p .



EXTENSIONS OF ALGEBRAIC AND FORMAL GROUPS 255

(1) When k is not a power of/7, put ck = a and Gk + ΐ(T) = Gk(T)(l + ckT
k). Then we have

FpΛ(ak, X, Y)Gk+1(X)Gk+l(Y)Gk+l(X+ Y)~1=F(X, Y) (mod degree k+ 1)

since

(1 + ckX
k)(l + ck Y

k){ 1 + ck(X+ Y)k} ~1 = 1 + ck{Xk +Yk-(X+ Y)k} (mod degree k+l).

(2) When k=pr, put flr_1 = α. By Corollary 3.3.1, we have

XpT'+ YpΓ — (X+ Y)pr

Fp i(0,..., 0, <z r _ι, 0,... A", F)= l+a r _! (mod degree pr + 1).

Hence we obtain

Z7 /si ~ /-ι (\ V V\/^ ί V\/~^ ί \r\f~1 ( V i V\ ~ 1 JΓί V V\
Γ p tι\QQ9 . . . , #r-2? βr- 1? ^> 5 ̂ » * /^/ti^ /^kl -* J^fcV^ "T" -* J = = ^ V ^ ? ^ /

(mod degree pr+ 1),

noting that

Fpι l(α0,..., α r_2, 0,... X, Y)FpΛ(Q,..., 0, a r_ 15 0,... X, Y)

Continuing this process, we find a e W(A) and G(T) = }\kφp(\+ ckT
k) ε v4[[Γ]] such that

P(X, Y) = Fptl(a;X, Y)G(X)G(Y)G(X + Y)~l.

LEMMA 3.5. Let A be a Z(pΓalgebra andF(X, Y) e Z2(Ga,A, GmΛ) c A\_X, Y] x . Then
there exist ae W(A) and G(T) = l\kφp(\+ckT

k)εA[TY such that F(X, Ύ) = FpΛ(a\ X,

Y)G(X)G(Y)G(X+Y)-*.

PROOF. As above, dividing F(X, Y) by its constant term, we may assume that
F(X, Y)=\ (mod degree 1). By Lemma 3.4, there exist a = (ai)i^0eW(A) and G(T) =

UkφP(l+ckT^eA[LT]Γ such that F(X, Y) = Fptl(a;X, Y)G(X)G(Y)G(X + F)'1. We
prove that αe W(A) and G(Γ)e^[Γ]x.

Let d be the degree of F(X, Y) and let α denote the ideal of A generated by the
coefficients of the terms of degree > 1 in F(X, Y). Since the polynomial F(X, Y) is
invertible, α is nilpotent.

Now observe the following:
1) For jφ P, put

fc=l

where Hk(X, Y) is homogeneous of degree jk. Then the ideal generated by the coefficients
of Hl(X9 Y) coincides with (Cj), and the ideal generated by the coefficients of Hk(X9 Y)
is contained in (Cj)k for k> 1;

2) Put
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FpΛ(0^.,0, a»0,...;X,Y)=l+Σ Hk(X, Y ) ,

i

where Hk(X, Y) is homogeneous of degree pi+lk. Then the ideal generated by the

coefficients of H^X, Y) coincides with (at)9 and the ideal generated by the coefficients

of Hk(X, Y) is contained in (at}
k for k> 1. These imply the following:

1) If j is not a power of p and (s— l)d<j<sd, then c/eα s;

2) If (s-l)d<pi + 1<sd, thenceα s.
Hence, a{ and cj are nilpotent for all / and 7, and are zero for all but a finite number

of / and j.

3.6. Now we prove the bijectivity of ξ\jA: W(A)IF^HQ(GaΛ,GmίA) and ξ\tA\

Lemma 3.4 and Lemma 3.5 imply the surjectivity of ξ\ A: W(A)/F-+ //o(Gα^, Gm A)

and ξltA : W(A)IF-+ H*(Ga,A, GmtA), respectively.
Now assume that FpΛ(a\ X, Y)εB2(Ga^GmΛ) for aeW(A). Then there exists

F(T)eAimT such that F(X)F(Y)F(X+ r)Jl = FM(α; X, Y}. Put F(T) = Y\k>1Ep(ckT
k).

Then

Fp5l(α;^, Y)Fptl(Fb;X,Y)-l= Π Ep(ckX
k)Ep(ckY

k)Ep(ck(X+ Y)^1 ,
kφP

where b = (cpr\>Q. As in the proof of Lemma 3.2, we see that ck = Q if k is not a power

of A hence Fpil"(β; *, Y) = FpΛ(Fb', X, Y). K follows that ξ^: W(A)/F^Hξ(OatA9OmtA)
is injective. It is similarly seen that £i^: W(A)/F^>Hl(GaA, GmtA) is injective.

REMARK 3.7. EndA_gr(^,J (resp. End^_gr(^π,J) acts on H*(Wn^ GmΛ) (resp.

^O(^H,AJ ^m,yi)) by the pull-back. We can describe the action under the identifications
Hl(W^ GmΛ)=W(A)IF» and //0

2(^, Gm.A>=W(A)/F* as follows:
Let [A] denote the endomorphism of WΛtA or WntA, defined by A = (Z? r)0< r<n_1 e

Wn(A). Then α[A] = (FMΛ) α.

REMARK 3.8. It is more or less known that Hξ(όatA9 GmtA) = Q and H%(GatA9

GmiA) = Q if A is of characteristic 0. We can also verify these facts, noting that the

homomorphism F is surjective on W(A) and on W(A).
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