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Abstract. We prove a property of left cells in certain crystallographic groups W,
by which we formulate an algorithm to find a representative set of left cells of W in any
given two-sided cell. As an illustration, we make some applications of this algorithm to
the case where W is the aίfine Weyl group of type FA.

The cells of affine Weyl groups W, as defined by Kazhdan and Lusztig in [6], have
been described explicitly in certain special cases: for W of rank 2, see [11]; for W of
type An, see [16], [10]; for W of rank 3, see [1], [4]; for the cells with a-values 1, 2
and I Φ |/2 in a general W, see [2], [8], [9], [18], [19], where Φ is the root system
determined by W. It is known that there exists a bijection between the set of two-sided
cells in an affine Weyl group W and the set of unipotent classes in a certain complex
reductive group G associated with W. It is also known that the value of the ^-function
on a two-sided cell of W is equal to the dimension of the variety of Borel subgroups
of G containing an element of the corresponding unipotent class (see [14]). Thus for
an affine Weyl group IV, the two-sided cells of W are relatively well understood to
certain extent. But the classification of left cells in a given two-sided cell of W is not
known in general, even the number of these left cells. In the present paper, we shall
introduce an algorithm to find a representative set of left cells of W in a given two-sided
cell, where W is a group belonging to a certain family of crystallographic groups in-
cluding all the Weyl groups and all the affine Weyl groups. This algorithm has been
used by several person to describe the left cells in the following cases: for W of types
i?4, C4, Z)4 (see [20], [21], [24]), for the ones of rvalue 3 in a general irreducible af-
fine Weyl group W (see [15]), for the ones of a-values 4, 5, in W of type F4.

The content of this paper is organized as follows. § 1 serves as the preliminaries.
Some basic concepts and known results concerning the cells of certain crystallographic
group W are introduced. We prove a property of left cells of W in §2. This property
is crucial for us to formulate an algorithm in § 3, which is the main purpose of this
paper. The algorithm given in § 3 is to find a representative set of left cells of W in a
given two-sided cell. It needs some technique in applying this algorithm. Thus a part
of §3 together with the whole of §4 provide more concepts and results to this end.
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Finally, in § 5, we illustrate this algorithm by applying it to finding representative sets
of left cells in certain two-sided cells of the affine Weyl group of type F 4.

1. Preliminaries.
1.1. Let W=(W, S) be a Coxeter group with S its Coxeter generator set. Let <

be the Bruhat order on W\ y<w in W means that there exist some reduced forms
^ = ̂ 2 Si and y = siίsi2 sit with steS such that iu i2,..., it is a subsequence of
1, 2,...,/. For we W, we denote by ί(w) the length of w.

1.2. Let si = Z[u, u ~*] be the ring of all Laurent polynomials in an indeterminate
u with integer coefficients. The Hecke algebra 2tf of W over si has two sets of ^-bases
{Tx}xeW and {Cw}weW which satisfy the relations

(T T =T if /(wxυ'Λ

\{Ts — u~1)(Ts + u) = Q, if seS,

and

(1.2.2) Cw= Σ ^
y<w

where PyweZ[u] satisfies that PW f W= 1, Py,w = 0 if y£ w and degPyjW<(l/2)(/(w)-/(j)
— 1) if y<w. The Py.w's are called Kazhdan-Lusztig polynomials [6].

1.3. For y,weWwith ί(y)</(w), we denote by μ(y, w) or μ(w,y) the coefficient
of w*1/2)^)-^)-!) j n p^ ^ \γ e s a y that j and w are jointed, and written y—w, if
μ(^? W)T^0. TO any JCG 1̂ , we associate two subsets of S:

l?(x) = {seS\sx<x} and 0t{x) = {seS\xs<x} .

We have the following relations: for any XGWand seS,

(u~1H- M)CX, if ^ G j£f(x)

Σ μ(x,y)Cy9 if(1.3.1) CSCX=

and

if

(1.3.2) C X C S = μ(x,y)Cy, if sφΛ(x);'y
y—x

ys<y

where the numbers of elements y occurring on the right hand sides of (1.3.1) and (1.3.2)
are finite. Moreover, {Cs\seS} forms a generator set of the algebra jff over si.

1.4. In the present paper, we assume once and forever that PΓis irreducible (i.e.
its Coxeter diagram is connected) and satisfies the following conditions:
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(1) For any x9 y, ze W, we define hxyzesrf by

(1.4.1) CxCy

Then there exists a positive integer N such that

(1.4.2) M \ J I Z e Z[w] , for all x, y, z e W\

(2) Pyw has non-negative coefficients for any pair y,weW.

These include all the Weyl groups and all the affine Weyl groups (cf. [6], [7]).

1.5. Let x,yeW. We denote x<Ly (resp. x<Ry), if there exists some weW with

K,y,χ Φ 0 (resp. hywx φ 0). We denote x < LRy, if there exists some w e W with x < L w < R y,

or equivalently, if there exists some w' eW with x<Rw' <Ly. We write x~Ly (resp.

x~Ry, resp. x~LRy), if the relation x<Ly<Lx (resp. x<Ry<Rx, resp. x<LRy<LRx)
holds. These are equivalence relations on W, and the equivalence clases of W with

respect to ~L (resp. ~R, resp. ~LR) are called the left (resp. right, resp. two-sided) cells

of W. The preorders < L , <R and <LR on elements of W induce partial orders on the

corresponding cells of W.

1.6. By (1.3.1) and (1.3.2), we see that for x,y,zeW, hxyz has non-negative

coefficients as a Laurent polynomial in u and hxyz(u) = hxyj<u~ι). By the assumption

1.4, (1), we can define a function a: W^N by

(1.6.1) a(z) = max deg hx y z, for zeW.

The following are known properties of the α-function:

(1) x<LRy=>a(x)>a(y). In particular, x~LRy=>a(x) = a(y). So we may define

the a-value a(Γ) on a left (resp. right, resp. two-sided) cell Γ of Why a(x) for any xeΓ

(cf. [11]).

(2) a(x) = a(y) and x < L j (resp. x<Ry)=>x~Ly (resp. *-*>>) (cf. [12]).

(3) Let δ(z) = deg Pez for z e W, where e is the identity of the group W. Then the

inequality

(1.6.2) φ)-2δ(z)-a(z)>0

holds for any zeW. The set

(1.6.3) @ = {w

is a finite set of involutions. Each left (resp. right) cell of W contains a unique element

of^(cf. [12]).

1.7. Let Wbe an irreducible affine Weyl group of type X. Let G be the connected

reductive algebraic group over C of type Xv, where Xv is the dual of X. Then the

following result is due to Lusztig (cf. [14]).

THEOREM. There exists a bijection u i—• c(u)from the set lϊ(G) ofunipotent conjugacy
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classes in G to the set Cell(W) of two-sided cells in W satisfying

(1) tf(φ)) = dimS u;

(2) c(u) is finite if and only if Z°G(u) is unipotent;

(3) For any ce Cell(JF), there exists some Iξ=S with cnWj

where u is any element in u, dim95u is the dimension of the variety of Bore I subgroups of

G containing u, ZQ(U) is the identity component of the centralizer of u in G, and Wι is

the subgroup of W generated by I.

2. A property of left cells of W. It is known that the elements in the same left

cell of PFhave the same generalized τ-invariant (see [23] and also 4.2 for the definition).

But the generalized τ-invariant does not determine a left cell uniquely in general. In

this section, we shall show a property of a left cell of W which conjecturally characterizes

a left cell of W. In particular, this property enables us to design an algorithm to find

a representative set of left cells in a given two-sided cell of W and, furthermore, in the

whole group W.

To each element xeW,we associate a set Σ(x) of all the left cells Γ of W satisfying

the condition that there exists an element yeΓ with y—x, 0t(y)<^0t{x) and a{y) — a(x).

It is obvious that any Γ e Σ(x) is in the two-sided cell of W containing x. Thus for any

x,yeW, we have Σ(x) n Σ(y) Φ 0 only if x ~LR y.

The following result is crucial in this paper.

THEOREM 2.1. Ifx~Lyin W, then St(x) = 0t(y) and Σ(x) = Σ(y).

The assertion 0t{x) = 0t{y) in the theorem is known already (see [6]). So we need

only to show Σ{x) — Σ{y). To do so, we need the following:

LEMMA 2.2. If two elements x,ye W satisfy the conditions x—y, ^(x)φ^(y) and

a{x) = a{y\ then Σ(x)^Σ(y).

PROOF. Take any ΓeΣ(x). We must show ΓeΣ(y). Now there exists an element

weΓ with w—x, 0t(w)^0t{x) and a(w) = a(x). Choose any te0t(w)\@(x) and any

se£?(x)\£?(y). (Such elements /, s do exist by our assumption.) Then we see from

(1.3.1) and (1.3.2) that

(2-2.1) y

By the associativity of the algebra f̂, we have an expression

(2.2.2) CsCyCt

Thus the ^-coefficient of Cw in (2.2.2) is

( 1 2 3 ) Σ hs,y,vK,t,w = Σ KuvKυ'w '
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The left hand side of (2.2.3) can be rewritten as

vΦx

which is non-zero by (2.2.1) and by the positivity of the Z-coefficients of the hatβtγS

in u. This implies that on the right hand side of (2.2.3), there must exist some z'eW

with

(2.2.5) * , . * .* '#0#Λ S t Γ , i W .

By 1.6, (1), we have inequalities

(2.2.6) a(y) < a(z') < a(w) = a(x) = a{y),

and hence a{z') = a{w). This implies z'~Lw by 1.6, (2) and by the fact w<Lz', that is,

z'eΓ. Note that z'—y and @(z')$@(y) (since te@(z')\ffl(y)). This implies ΓeΣ(y).

•
THE PROOF OF THEOREM 2.1. Since ~L is an equivalence relation on W, it is

enough to show Σ(x)^Σ(y). By our hypothesis, there exists a sequence of elements

xo = x,xί9...9xr=y in W with r > 0 such that for every /, l < / < r , all the conditions

xi_ί—xi9 ^>{xi-1)φ^>{xi) and a(xi_1) = a(xi) are satisfied. Thus by Lemma 2.2, we

have Σ(xi_1)^Σ(xi) for 1 <ί<r. But this implies Σ(x)^Σ(y) immediately. •

By Theorem 2.1, we can use the notation Σ(Γ) for any left cell Γ of W, which is

by definition Σ(x) for any xeΓ.

We have the following conjecture which asserts that the converse of Theorem 2.1

should also be true.

CONJECTURE 2.3. For x9yeW9 we have an equivalence

x~Ly ^ &(x) = &(y) and Σ(x) = Σ(y).

REMARK 2.4. (1) In the above conjecture, the condition 0t(x) = 0t{y) on the right

hand side is necessary. For example, let (W, S) be the affine Weyl group of type B2

with 5={,si

0, sl9 s2} such that the order o(s0s2) of the product %s 2 is 2. Then so^Ls2

but Σ(so) = Σ(s2) = {ΓSi}. Also let x = s0s2s1s2 and y = s0s2s1s0. We have x+Ly but

Σ(x) = Σ{y) = {ΓS0S2Sι, ΓSoS2}. Note that the notation Γw (w e W) stands for the left cell of

W containing w.

(2) The above conjecture has been verified in the following cases:

(a) W is any Weyl group;

(b) W is any irreducible affine Weyl group of type φFA\

(c) W is an affine Weyl group of type F4, and the element x satisfies either
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or 9t(x) = {sθ9 sl9 s2} with a(x)φ{Ί, 9, 10, 13, 16} ,

or Λ(x) = {s39sA} with a(x)φ{6, 7, 9, 10, 13, 16} ,

where o(s0s1) = o(s1s2) = o(s3s4) = 3 and o(s2s3) = 4 (see [22]).

(3) If for any xe W, we define a set Σ'(x) of left cells in the same way as that for

the set Σ(x) but by changing the condition Ά(y)φΛ(x) to St{y)^St(x)9 then we have

a result similar to Theorem 2.1: If JC~L J in W, then ^(x) = ^(y) and Σ'(x) = 2;χy). But

this result is less important than Theorem 2.1, because for a given element x, it is easier

to find all the elements y satisfying y—x, 0t{y)^0ί{x) and a(y) = a(x) than to find y

satisfying the same conditions but with 0t{y)^.0l{x) instead

3. Algorithm for finding a representative set of left cells. A subset Ka W is called

a representative set of left cells of W (resp. of W in a two-sided cell Ω), if | Â n Γ\ = ί

for any left cell Γ of W (resp. of W in Ω), where the notation \X\ stands for the

cardinality of a set X.

It is known that the set Q) (see 1.6, (3)) is a representative set of left cells of W.

But it is not easy to find the whole set 2 in general. In this section, we shall apply

Theorem 2.1 to design an algorithm for finding a representative set of left cells of W

in a given two-sided cell Ω. When W is an affine Weyl group, the number of two-sided

cells of W and the a-values of these cells are known, and our algorithm could actually

be used to find a representative set of left cells of the whole group W.

The algorithm will be based on the following:

THEOREM 3.1. Let Ω be a two-sided cell of W. Then a non-empty subset MaΩ is

a representative set of left cells of W in Ω, if M satisfies the following conditions'.

(1) X^LΪ for any χ^y in M\
(2) Let yeW. Suppose that there exists an element xeM such that y—x9

and a(y) = a(x). Then there exists an element zeM with y~Lz.

PROOF. By condition (1), it suffices to show that for any given left cell Γ of W in

Ω, the intersection Γ n M is non-empty. It is known that in Ω, the intersection of a left

cell with a right cell is non-empty. Thus for any element weM, there exists a sequence

of elements w0 = w', w l 9 . . . , wr = w in Ω with r > 0 such that wΈΓ and that for every /,

l < / < r , we have wt_x—wt and ^(w^^φ^Wi). We choose weM and a sequence

wo = w\ w l 9 . . . , wr = w as above with r as small as possible. We must show r = 0. Sup-

pose r>0. Then by the condition (2), there exists some zeM with w r_ 1^Lz. Then by

repeated application of Theorem 2.1, there exists a sequence of elements zr^1=z,

z r _ 2 , . . . , zί9 z0 in W such that for every ij with 0</<r— 1 and 1 <j<r— 1, we have

Zj—Zj-i and z i^Lw i. Now the sequence z0, zί9..., zr_1=z satisfies all the above

conditions but with shorter length, which contradicts the minimality of the integer r.
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3.2. In principle, Theorem 3.1, (2) provides us with a method of rinding a re-
presentative set of left cells of Win any given two-sided cell Ω from a non-empty subset
ofΩ.

A subset Pa Wis said to be distinguished if PΦ0 and x*Ly for any xΦy in P.
Now assume that P is a subset of Ω. We introduce the following two processes.
(A) For each xeP, find elements yeW such that there exists a sequence of

elements xo = x, xu . . . , xr=y in Wwith r>0, where for every /, 1 </<r, the conditions
xi~1xi-ίeS and ^ ( ^ . J l ^ X f ) are satisfied, add these elements y on the set P to
form a set P' and then take a largest possible subset Q from P' with Q distinguished.

(B) For each xeP, find elements ye W such that y—x, M{y)Ί^0t(x) and a(y) =
a(x), add these elements y on the set P to form a set P' and then take a largest possible
subset β from P' with g distinguished.

Note that the resulting sets in both Processes (A) and (B) are automatically in the
two-sided cell Ω.

A subset P of Ω is said to be A-saturated (resp. B-saturated) if Process (A) (resp.
Process (B)) cannot produce an element z satisfying ZΦLX for all xeP.

Thus a representative set of left cells of W in a two-sided cell Ω is exactly a
distinguished subset of Ω which is both A- and B-saturated. So to get such a set, we
may use the following:

ALGORITHM 3.3. (1) Find a non-empty subset P of Ω (usually we take P to be
distinguished for avoiding unnecessary complication if possible);

(2) Perform Processes (A) and (B) alternately on P until the resulting distinguished
set cannot be further enlarged by both processes.

REMARK 3.4. The above algorithm has been applied by several person to classify
the left cells of affine Weyl groups W in the following cases.

(1) For W of type Z)4, by myself [20] (I understand that Chen Chengdong [3]
also dealt with this case but his method is different from mine).

(2) For W of type C4, by myself [21].
(3) For W of type £ 4 , by Zhang [24].
(4) For all the left cells with their α-values equal to 3 in any irreducible affine

Weyl group W, by Rui [15].
(5) For all the left cells with their a-values equal to 4 and 5 in W of type F±, by

myself.
We shall deal with the case (5) and one of the cases (4) in § 5 to illustrate our

method.

3.5. We need some techniques in applying our algorithm. The following known
results may be useful in this respect.

(1) Let / be a subset of S such that the subgroup Wι of W generated by / is finite,
and let w7 be the longest element in Wt. Then a(wI) = S(wI).
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(2) Suppose that a two-sided cell Ω of W contains an element of the form vv7 for

some /c=5. Then the set {weΩ\@(w) = I} forms a single left cell of W.

(3) Assume that x=yz with *f(x) = i(y) + t(z) for x, y, z e W. Then we have x < Lz,

and hence tf(x)>α(», α(z). In particular, if I=@(x) (resp. /=iί?(x)), then

(4) If x, ye W satisfy x—y and ^(x) |^( j>) , then x~xyeS. More precisely, we

have x~1ye&(x)v0l(y), where the notation I v Y stands for the symmetric difference

of two sets X and Y.

(5) If x,yeW satisfy >>—JC, St(y)φSt{x) and φ c ) = #(>>), then we have either

y~1xeS oτ y<x with ί{x) — ί(y) odd, and we also have J?0/) = Jί?(jc).

Result (5) tells us the extent of elements y with y—x, 3l(y)φSt(x) and a(y) = a(x)

for a fixed element x. This result is of particular importance in performing Process (B).

Correspondently, the result (4) is special for performing Process (A). Besides, the result

(1) is good for choosing a starting distinguished subset in Algorithm 3.3; the results (2)

and (3) are often used in checking whether a given set is distinguished or not.

4. Graphs, generalized τ-invariants and strings. In order to perform Algorithm

3.3 effectively, we shall develop more concepts as well as some related results in this

section.

4.1. Given an element x e W, we consider the set M(x) of all elements y such that

there exists a sequence of elements x o = x, xl9..., xr=y in W with some r > 0 , where

for every /, \<i<r, the conditions JC^L 1 ^eS and ^ ( x ^ j f 0t{x^) are satisfied. The set

M(x) could be either finite or infinite. Clearly, we always have xeM(x). For x, x'e W,

we have either M(x) = M(x') or M{x) n M{x') = 0. The following well-known result

will be useful in §5.

PROPOSITION. x,x'eW satisfy x~Rx' if there exist y, ze M(x) and y\ z'e M(xf)

such that y—y\ z—z\ 3t(y)φ3t(y') and Λ(z ') ίΛ(z). In particular, we have a(x) =

a{x'\

Now we define a graph ΪR(x) associated to x as follows. Its vertex set is M(x). Its

edge set consists of all two-element subsets {y,z}c:M(x) with y~1zeS and 0t{y)%0t(z).

To each vertex y e M(x), we are given a subset 0t{y) of S. To each edge {y, z] of 5DΪ(x),

we are given an element seS with s=y~γz.

Two graphs 9JΪ(x) and 30ΐ(x') are said to be quasi-isomorphic if there exists a

bijection φ from the set M(x) to the set M(x') satisfying the following conditions.

(1) Stiyί) = St(φ(w)) for all w e M(x).

(2) For y, z e M(x), {y, z) is an edge of 9Jl(x) if and only if {φ(y), φ(z)} is an edge

Note that in the above definition we make no requirement on the labelings of the

corresponding edges. This is why we put the prefix "quasi".

4.2. By a path in the graph SQΪ(x), we mean a sequence of vertices zθ9zl9...,zt
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in M(x) such that {zf_ l9 z j is an edge of SDΪ(x) for any /, 1 < /< t. Two elements x, x' e W

are said to have the same generalized τ-invariant if for any path z 0 = x, zί9..., zt in the

graph 9W(JC), there exists a path z'0 = x\ z[,..., z[ in 9K(x') with ^(z/) = ^(z i ) for every

i, 0 < i< t, and if the same condition holds when the roles of x and x' are interchanged.

Note that our definition of the generalized τ-invariant is slightly different from the

one given by Vogan [23]. The following result could be shown simply by Theorem

2.1.

PROPOSITION. All the elements in the same left cell of W have the same generalized

τ-invariant.

The converse of the above proposition is not true in general. It may happen that

two elements in different left cells of W have the same generalized τ-invariant.

4.3. A set I" of left cells of W is said to be represented by a set M of elements

of W if Σ is the set of all the left cells Γ of W with Γ n Mφ 0 .

Given a non-empty subset X of a two-sided cell Ω of W, we want to find from X

an A-saturated and distinguished subset Xoϊ Win Ω by performing Process (A), where

the set of left cells represented by X contains the one represented by X. This can be

done in virtue of the graphs 9M(x), x e X, by picking out a largest possible distinguished

vertex set from those graphs $0t(x).

4.4. A sequence of elements in W of the form

(4.4.1) ys9 yst, ysts,...

m—\ terms

is called an {s, ί}-string (or just a string) if s, teS and yeW satisfy the conditions that

the order o(st) of the product st is m and &(y) n {s, t] = 0. The number m— 1 is called

the length of this string. Clearly, when (4.4.1) is an {s, ί}-string, the sequence

(4.4.2) yt, yts, ytst,...

m—\ terms

is also an {s, ί}-string.

Suppose that we are given two {s, ί}-strings xu x2,..., xm_ 1 and yu y2,..., ym_ x

with o{st) = m. We denote the integers μ(xh yj) by atj for \<ij<m— 1. Then the

following is known:

PROPOSITION 4.5 (cf. [11]). Let the situation be as above.

(1) When m = 3, we have a12 = a21, cι11=a22\

(2) When m = 4, we have a12 = a21=a23 = a32, a11=a33, a13 = a3l and a22 =

011+013-

We have the following result corresponding to this.

PROPOSITION 4.6. Let the situation be as above.
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(1) Ifm = 3,then

(2) Ifm = 4, then
(a) Xχ

(b) χ1

(c) xi
(d) x2~Ly2o either x1^Lyί or xx~Ly3o either x1^Lyί or x3^Ly1

oeither x3~L.y1 or x3~Ly3oeither x^Ly3 or x3~Ly3.

PROOF. Assertion (1) was shown by Kazhdan and Lusztig [6]. Now we shall show
(2). We may assume t φ @(y2) without loss of generality. For feJti? and WEW,WQ write
f>Cw if the term Cw occurs in the expression

with aw Φ 0.

Let us first show the implication *I~L.> ; 2 = > J C 2~L.} ; I-
We have y2<LXγ and hence there exists some zeW with CzCxι>Cy2. By the

assumption tφ@(y2), we have Cy2Ct>Cyι and then CzCXίCt>Cyi by the positivity of
the Z-coefficients of Λx,y>w's in u{ (ieZ). Thus by the associativity of the Hecke algebra
Jf, there must exist some xeW with CXlCt>Cx and CzCx>Cyι. So yι<Lx and
a(y1)>a(x)>a(x1) = a(y2) = a(y1). This implies yx~Lx. Now by Theorem 2.1, we have
0t(x) = 0t{y^) and &(x1) = <M(y2). Since x—xί and since yu y2 are neighboring terms
in an {s, ί}-string, this implies from 3.5, (4) that x, xί also must be neighboring terms
in an {s, ί}-string and hence x=x 2 . So x2~Lyι

The remaining part of the assertion (2), (a) as well as (2), (d) can be proved similarly.
Next we show the implication . * I ~ L > ; I = > *:3~L.>;3

By (2), (d), we have x2 ~Ly2 and hence either x3 ~Ly3 or x3 ~Lyx holds. If x3 ~Ly3,
then we are done. Now assume x3~Ly±. Then Xι~Lx3. Again by (2), (d), we have
either y3~Lx3 or y3~Lx±. In either case, we get y3~Lx3.

The remaining part of (2), (b) and part (2), (c) can be shown similarly. •

REMARK 4.7. Results analogous to 4.5 and 4.6 hold for arbitrary m.

5. Applications to W of type F 4 . In this section, we assume (JV, S) to be the
affine Weyl group of type F± with S= {s0, sί9 s2, s3, s4} the Coxeter generator set, where
o(s0sί) = o(s1s2) = o(s3s^) = 3 and o(s2s3) = 4. We shall apply the algorithm provided in
§ 3 to find a representative set of left cells in certain two-sided cells of W.

5.1. Let W(i) = {weW\a(w) = i} for any non-negative integer i. Then from the
knowledge of unipotent classes of the complex connected reductive algebraic group of
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type F4 and from Theorem 1.7, we see that for each /=4, 5, the set W{i) forms a single

two-sided cell of W, and that the set W(3) is a union of two two-sided cells of W. We

want to find representative sets of left cells of all the two-sided cells Ω of W with

) = 3,4, 5.

5.2. We first consider the two-sided cell W{Ar). Let

X= {Wj I Iβ {{2, 3}, {0, 3, 4}, {1, 3, 4}, {θ, 1, 3}, {θ, 1, 4}, {l, 2, 4}}} ,

where we denote st by / for brevity. Then A'is a distinguished subset of W{4r) (see 3.2).

We perform Process (A) on X. The graphs ^(wj) (see 4.1) with

Ie {{θ, 3, 4}, {1, 3, 4}, {0, 1, 3}, {θ, 1, 4}, {l, 2, 4}}

are all finite. By Proposition 4.2, we see that the set of vertices in each of these graphs

are distinguished. Any two of these vertex sets represent either the same set of left cells

or disjoint sets of left cells. The graph 9W(w{2>3}) is infinite. By 3.5, (2) and Proposition

4.6, we may pick out a finite subgraph 9W(w{2f3}) from it such that the vertex set of this

subgraph forms a maximal distinguished subset in the vertex set M(w{2i3}). Thus we get

A-saturated and distinguished sets X, which are the set of all vertices of the graphs in

Figures 1, 2 and 3, where the vertices x are represented by boxes, inside which we

I 0,2 I—=—I 0,3 [—^—[ 0,4 [

FIGURE 1. 9W(w{2f3}) F I G U R E 2. 9 W ( H > { 0 3 > 4 } )

F I G U R E 3.
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describe the corresponding subset 0ί(x) of S. The vertices x with ${x) = Ie

{{2, 3}, {0, 3, 4}, {0, l, 4}} are the elements w7. The labeling i of an edge indicates that

its two terminals x, y have the relation x=yst. We can check that the set X is also

B-saturated. Hence by Theorem 3.1, we assert that X forms a representative set of left

cells of W in W(4).

REMARK 5.3. As a starting distinguished set in the algorithm, X is usually chosen

with larger cardinality and shorter elements if possible. This may make our process

easier and faster. Thus the elements of the form w/? la S, are ideal candidates to be

selected into the set X. This is because of their shorter lengths, computable α-values

and being distinguished (see 3.5, (1), (2)). But we should be cautious when a given

two-sided cell Ω of W is not of the form W{i). One should make sure that the set X is

indeed wholly in a two-sided cell. The next example will tell us something about this.

5.4. Now let us consider the two-sided cells of W with a-values equal to 3. As men-

tioned in 5.1, W{3) is a union of two two-sided cells of W. W{3) contains four elements

of the form vv7, where /e{{0, l}, {l, 2}, {3, 4}, {0, 2,4}}. At this stage, we do not know

how to distribute these four elements into two two-sided cells. Let X= {w{O1} = Olθ} and

let Ωx be the two-sided cell of W containing 010. First we want to find a representative

set of left cells of Win Ωx by performing Processes (A) and (B) on X. The graph ΪR(θlθ)

is displayed in Figure 4, where the vertex x with ^(x) = {θ, 1} is the element 010. Since

$R(0l0) contains the vertex J = 01021 with ^t{y) = {\, 2}, this implies w{1 1) = \2\eΩι by

3.5, (2). By Proposition 4.2, we see that the vertex set M(010) of 9K(010) is distinguished.

M(010) is A-saturated but not B-saturated. Indeed, let z = 010232 eM(θlθ) and z' = z4.

Then z'—z and 0t(z') = {0, 2, 4} 5 {0, 2} = ^ ( z ) . Observe the graph in Figure 5, where the

fourth and the fifth vertices from the left are the elements z, z', respectively. By

FIGURE 4.

FIGURE 5.
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FIGURE 6.

FIGURE 7. 501(343)

Propositions 4.1 and 4.5, we see that z~Rzf and hence z'eQv This implies

i by 3.5, (2). The graph ΪR(O24) is as in Figure 6, where the vertex x

with 0t{x) = {o, 2,4} is the element 024. Let M(024) be the vertex set of 9M(024). Then by

Proposition 4.2, we see that the union M(θlθ) u M(024) is distinguished. By a case-by-case

checking, we also see that M(θlθ) u M(024) is both A- and B-saturated and hence forms

a representative set of left cells of Win Qγ by Theorem 3.1.

Since the union M(010) u M(024) contains no element x with ^(x) = {3,4}, this

implies that w{34} = 343φΩί. So the element 343 is contained in another two-sided cell

Ω2 of W in W{3). Now we want to find a representative set of left cells of W in Ω2 by

performing Processes (A) and (B) on the set X= {343}. The graph 501(343) is as in Figure

7, where the vertex x with @t(x) = {3,4} is the element 343. By Proposition 4.2, the vertex

set M(343) of the graph 9W(343) is distinguished. We can check that the set M(343) is

both A- and B-saturated. So M(343) forms a representative set of left cells of W in Ω2

by Theorem 3.1.

5.5. Now we consider the two-sided cell W{5) of W. There is only one element,

i.e. 02323, in W(5) which has the form Wj. The graph 9W = 9W(02323) is as in Figure 8,

where there are two vertices x with 0t(x) = {o, 2, 3} in the graph, the one on the left

hand side is the element 02323. By 3.5, (2), the vertices 023234323 and 02323 are in the

same left cell of W. This implies that the vertex set M(02323) of the graph SOΪ is not

distinguished. Let W be the subgraph of 9M consisting of the part of 9W located on the

left side of the dotted line. Then by Propositions 4.2 and 4.6, the vertex set M'(02323)
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FIGURE 8. <0l(θ2323)
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of SDΪ' is a distinguished subset of M(02323) with the maximal cardinality.

5.6. The set M'(02323) is A-saturated but not B-saturated. Indeed, to the vertex

7 = 023231234, we have an element yf=y3 which satisfies y'—y and 0t(y') = {l, 4, 3 }^

{l, 4} — 0t{y)\ to the vertex z = 0232343123, we have an element z' = z2 which satisfies z'—z

and J!(z') = {2, 3}^{3}=^(z). We also have a(y') = a(z') = 5 by applying Propositions

4.1 and 4.5 on the graphs 9K(02323), 9Jt(/) and SR(z'). The set M'(02323)u{/, z'} is

distinguished. The graphs StR(jμ') and y$l{z') are displayed in Figures 9 and 10, respectively,

where the x with $(x) = {l, 3, 4} in 9K(/) is the element/, the vertex x' with ^(x ') = {2, 3}

in 9W(z') is the element z'. Note that SR( >>') is quasi-isomorphic to 2W(H>{0>3>4}) (see Figure

2). By Proposition 4.2, we see that the vertex set M(yf) of 9tR(jμ') is distinguished and

that the sets of left cells represented by the vertex sets M'(02323), M(y'), M(z') of W,

yjl(y'), ySl{z') are pairwise disjoint. But it is not clear whether the vertex set M(z') is

distinguished or not.

5.7. Let α = zr42 and α' = zr43, β = z'n, β' = z'l3, γ = z'no, γ' = zfl30, ^ = z'l20l and

<5/ = z/l3Ol. They are vertices in $R(z'). We shall check whether x, x' are in the same left

cell of W or not for xe {α, β, y, δ}.

PROPOSITION. In the above setup, we have

(1) α ^ L α ' ; (2) β~Lβ'; {2>)y-

By Proposition 4.6, (1), we have the equivalence

(4) δ~Lδ'.

(5.7.1) (2)o(3)o(4).

So it suffices to show (1) and (2). Now we show (2) and postpone the proof of (1) to

later stage.

5.8. The proof of (2). We have ί(β) = 13 and S(β') = 11. Consider the element

β" = 40232341232312. We have β" = 4j3 = 234jS', M(β") = {l,2} and *f(j?") = 14. Thus by 3.5,

[0,1

FIGURE 10. SK(z')
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FIGURE 11.

FIGURE 12.

(3), we have

(5.8.1) β"<Lβ,β'

Observe the graph in Figure 11, where the leftmost vertex is the element β". The lengths

of the elements x in this graph (which are represented by vertices with labeling 3t(x))

monotone decrease along the path when getting farther from β". The other terminal

vertex is the element v = 402323. It is easily seen that υ ~L02323 = w{0>2,3} and hence a(v) = 5.

By Propositions 4.1 and 4.5, we see β" ~Rv and so #(/?") = 5. Thus by 1.6, (2) and the

fact a(β) = a(β') = 5, this implies from (5.8.1) that

(5.8.2) β~Lβ"~Lβ'

REMARK 5.9. The element β" plays a key role in the above proof. It seems quite

accidental in finding such an element β". But if we express elements of Wm their alcove

forms (see [17] for the definition), then we see that the element β" could be obtained

from β and β' in a quite natural way. Actually, all the results of the present section

are worked out by using the alcove forms of elements.

5.10. The set M''(02323) u M ( / ) u M ( z ' ) is A-saturated t>ut n o t B-saturated. For

the element w=y'leM(y'), we have w' = wl satisfying w'—w, 0ί{w') = {l, 2, 4} ^{2, 4} =

${w) and a(w') = 5. The last condition on w' is obtained by applying Propositions 4.1

and 4.5 on Wl(yf) and 9K(w'). The graph SK(w') is displayed in Figure 12, where the
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FIGURE 13.

vertex x with 0t{x) = {\, 2, 4} is the element w'. Note that 9Jt(V) is quasi-isomorphic to

30ΪO{o,i,4}). The vertex set M(w') of Wl(w') is distinguished and the set of left cells

represented by M(wf) is disjoint from those by M'(02323) u M(y') u M(z') by Proposition

4.2.

5.11. On the other hand, for the element α' = z'43 e M(z'), we have f/ = α'l satisfying

77—α', &(η) = {l, 3, 4} 5{3, 4} = ^(α') and α(f/) = 5. The last condition on η is obtained

by applying Propositions 4.1 and 4.5 on SPί(z') and Ώl(η). SOΪO7) is displayed in Figure

13, where the vertex x with &(x) = {l, 3, 4} is the element η. We see that SPΪO/) is

quasi-isomorphic to 90l(.y') One may ask whether the set of left cells represented by

the vertex set M(η) of $Jl(η) is the same as the one represented by the set M(y'). The

answer is as follows.

PROPOSITION. The sets M(η) and M(y') represent different sets of left cells of W

which are disjoint.

PROOF. Take b=y'23eM(y') and c = η23eM(η) which are in the corresponding

positions of two graphs with ${b) = @t{c) = {ϊ). Thus to show our result, we need only

to show b^Lc. By Theorem 2.1, it suffices to show Σ{b)φΣ(c). Consider all the left

cells Γ with Λ(Γ) = {2, 3} in the sets Σ(b) and Σ(c). We see that the element c' = cl sat-

isfies d—c, 0ί(c') = {2, 3} =i {3} = 0ί{c) and a{d) = 5. More precisely, we have d e M(02323)

and

d ~
L
 02323123423231231 = 023231234323123 = de M

f
(02323) ,

i.e. Γd e Σ(c) (see 2.4, (1)). Now we need only to show Γd φ Σ(b). Consider all the elements

b' satisfying b'—b, a(bf) = 5 and 0t(b') = {2, 3}. They are ^=023231232, ^ = 0232312343232

and z\ where b'l9 b'2eM'(02323) with dφb\, b'2. So z\ b'iφΓd for /= 1, 2, i.e. ΓdφΣ(b).

5.12. Now we are ready to show the assertion (1) of Proposition 5.7.

The proof of Proposition 5.7, (1). Recall that for η = oc'l, we have ΓηeΣ(<x') with

= {l, 3, 4}. By Propositions 5.11 and 4.2, we see that the set of left cells represented

by the set M(η) is disjoint from those represented by the union M/(θ2323)uM(>>')u



122 J.-γ. SHI

By Theorem 2.1, we need only to show that none of the left cells Γ with

) = {1,3,4} in Σ(α) is equal to Γη. It is equivalent to showing that none of the

elements b with b—α, ^(6) = {l, 3, 4} and a(b) = 5 is in Γη. By direct computation, we

see that such an element b must be one of the following elements: bί=aιl, b2 = 02323431,

b3 = 0232341234. It is easily seen that b2 e Λf (02323) and b3 =yf. Now our proof is completed

by the following:

LEMMA 5.13. bί~Ly'.

PROOF. We have b1 = 023234312341 and y' = 0232341234 with JS?^) = j£?(/) = {o, 2, 3}.

Let b' = 4b1. Then <£ψ) = {0,2,4} and so b'~Lbx. On the other hand, we have

b' = 4023234312341 = 234/ with φ') = S(y') + 3, and so b'<Ly'. This implies

(5.13.1) 6I<L/

Now consider the graph in Figure 14, where the vertices x, y with 0t{x) — \}^ 4} and

$(y) = {\, 3, 4} are the elements α, bί9 respectively. By Propositions 4.1 and 4.5, we see

that OL^Rb^ and hence a(bί) = 5 = a(yf). So by 1.6 (2), we get bγ~Ly' from (5.13.1).

5.14. Let SR'(z') be the subgraph of 9Jί(z') as in Figure 15 and let M'(z') be its

vertex set. Then by the discussion in 5.5-5.13, we know that the union

M'(02323) u M{y') u M'(z') u M(w') u M(η)

is both distinguished and A-saturated. We can check that it is also B-saturated and

hence forms a representative set of left cells of W in W{5) by Theorem 3.1.

REMARK 5,15. In the above examples, we always take a starting distinguished set

FIGURE 14.

o 0 0

I 0,4 I—^—I 0,3 I—^—I 0, 2 I

FIGURE 15. W{z')
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X in the algorithm to be a set of elements of the form w/? IaS. This is because all the

two-sided cells which we have dealt with contain such elements. But in general, it could

happen that there is no element of such form in a given two-sided cell Ω, e.g. when Ω

is the two-sided cell with a(Ω) = Ί in W of type D4 or with a(Ω)= 13 in W of type F 4 .

When this happens, we may choose the elements of the set X in a standard parabolic

subgroup of Why Theorem 1.7, (3), which is easier to find.
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