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Abstract. The local and global density theorems for the Lebesgue measure in a
Euclidean space play a fundamental role in calculus. On the other hand Federer [5]
proved a local density theorem for a measure with a doubling condition on a metric space.

The aim of this paper is to prove a global density theorem for a measure with a
doubling condition and a class of integrable functions on a metric space. As a special

case this theorem also gives a simple and constructive proof to Federer’s local density
theorem.

A typical example of the above measures is the Hausdorff measure on a self-similar
set.

1. Introduction. Throughout the paper E=(E, d) denotes a metric space, B(x, r)
for xeE and r>0 the closed ball {yeE;d(x,y)<r} and U(x,r) the open ball
{y€E;d(x,y)<r}, and 1 a measure defined on a o-algebra %, of subsets of E such that
4, includes the Borel field #(E) of E,

MA)=inf{A(G); A=G,Gopen}, Ae%,,

and A(B(x, r))< oo for any r>0 and A-almost all xe E.
For a real measure u on (E, #(E)), (du/d2)(x) denotes the Radon-Nikodym derivative
in the sense of the Lebesgue decomposition of u with respect to A, that is,

du() =% (A + dusx)

where du(x) is singular with respect to dA(x).

When A is the Lebesgue measure, the following density theorems are well-known
and fundamental in calculus.

THeOREM 1 (Local density theorem, see for example Dunford and Schwartz [4]).
Let A be the Lebesgue measure on E=R". Then we have

i M(BC 1)

— 2 ae.(d)),
rvo AB(x, 1))

du

—(Xx)=

7 (x)
for any real measure u on R".

THEOREM 2 (Global density theorem). Let A be the Lebesgue measure on E=R",
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@ a A-integrable function such that f g P(X)dA(x)=1 and
su‘? T+xI e(x)|<o0,  for some a>n,

where | x| denotes the Euclidean norm, and define

o1y, x)=T"p(T(y—x)), xeR", T>I.

Then we have

T—- o

du .
E(x)= lim J "%{y, x)du(y), ae.(d4),

for any real measure . on R" and the exceptional null set is chosen independently of the
choice of ¢.

van der Vaart [8], by means of the local density theorem, proved the above theorem

in a more general form, and Bourgain and Sato [1] gave a simple and direct proof to
Theorem 2.

On the other hand Theorems 2.9.7, 2.9.15 and 2.9.17 of Federer [5] imply the
following local density theorem.

THEOREM 3 (Federer [5]). Assume that

AMB(x, 5r))

———— " <0, ae (dl).
o AB(x, 1))

Then we have

du (x)=lim H(B(x, r))

7, ae.(d}),
di rvo A(B(x, 1))

for any real measure u on E.

The aim of this paper is to prove a global density theorem for a class of measures
similar to those defined by Federer and a class of integrable functions.

DErFINITION 1. The B-function of A is the function defined by

_ A(B(x, 3r))
Bx)= fgo MB(x, 1)) ’

with the convention 0/0=1.

Note that B is lower semi-continuous hence Borel measurable (see Federer [5,
2.9.14]).

DEFINITION 2. A is called a Federer measure if
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B(x)<oo, ae. (dh).

REMARK. It is easy to show that 1 is a Federer measure if and only if there exists
a constant 4> 1 such that

o B, 47)

S Br.1) ©, a.e. (di).

DEFINITION 3.
7:(N=4B(x,r), r=0, xekE.
H(x)=log f(x)/log3, xekE.
DEerFINITION 4. A family of A-integrable functions
&={@, x); xeE, T>1}

is said to be admissible if it satisfies the following conditions.
H.1) [pory,x)dA(y)=1,x€eE, T>1.
(H.2) There exists a A-measurable function a=a(x)> H(x) such that

1
Qo=Qo(x)=_sup_[o(y, x)l%:(;)[l +(Td(x, y)J<+o0, if B(x)<oo.

>1,ye
The following is our main theorem:

THEOREM 4. Let A be a Federer measure on E, ®={¢(-, x); xe E, T>1} be an
admissible family, and assume that A is a Radon measure, that is,

MA)=sup{AK); K= A, K compact}, A€, .

Then for any real measure u on E we have

(= lim J 0x(y, Y, ace. (),
d}. T—- E

where the exceptional null set can be chosen independently of the choice of ®.
2. Examples.
(1) Examples of Federer measures.

ExAMPLE 1 (Lebesgue measure). The Lebesgue measure on E=R" is a Federer
measure with f(x)=3".

DEFINITION 5. A Borel measure A on (E, d) is said to be self-similar if there exists
a positive number H such that

o<cpyiint inf BEM ooy qupsup HBET)

b
xeE 0<r<d(E) r xeE r>0 r
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where d(E) (< o) denotes the diameter of E.

Hutchinson [7] showed that the Hausdorff measure on a self-similar set with ““the
open set condition” is a self-similar measure.

ExAMPLE 2 (Self-similar measure). A self-similar measure on E is a Federer
measure.
Indeed, using the notation in Definition 5, we have

AB(x,3r) _u C4)

x)=su <
Poo=s5up = B ) o)
EXAMPLE 3 (Bernoulli measure). Let S={1,2,3,..., p} be a finite set and define

a metric d on the product space E=S® as follows: For x={x,},°, and y={y,};>,€E
define

0, if x;#y,,

n(x, y)= ,
sup{n>1; x, =y, 1<Vk<n} if x;=y,,

fix a positive number a>1 and define d(x, y)=a ", x, ye E.

On the other hand, let 4, be a probability measure on S such that 1,({k})=1/p
for any 1<k <p. Then the product measure A1=(4,)® is a Federer measure.

Indeed, for any xe E and r>0 such that a "<r<a~ """ we have

MB(x, ))=My€E; d(x, ) <N =My={y} €E yy=x, | <k<n),

so that A(B(x, r))=1/p".
Define H=Ilogp/loga. Then we have

Y Ca B
p r p

ExAMPLE 4. A finite Radon measure A on E such that

1im sup MB(x, 3r)

n st m o, a.e. (diA(x)

is a Federer measure. The proof is easy.

ExampLE 5 (Invariance under the absolute continuity). A finite Borel measure p
on E absolutely continuous with respect to a Federer measure A is also a Federer measure.

Indeed, we may assume that du(x)= f(x)dA(x) where f(x) is a non-negative
A-integrable function on E. Then by definition we have u(xeE; f(x)=0)=0 and if
f(x)>0, by Theorem 4
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1
(B(x, 3r)) 2B ) ) T g s
r\o DX, ¥ r\o X, T
— d Al
3B 7)oy O
<sup MBI e i),

>0 A(B(x,7)
and then Example 4 shows that u is a Federer measure.

ReMARK (Existence of non-Federer measures). Davies [3] and Darst [2] showed

that on a compact metric space there exist different probability measures that agree on
balls.

(2) Examples of admissible families. Let A be a Federer measure on E and vy,,
p(x) and H(x) be functions given in Definitions 1 and 3.

ExaMmPLE 6. For x, ye E and T>1 define

1
7y T F1dw, X))
T

Then @={¢(-, x); xe E, T>1} is an admissible family. Indeed, for any a(x)> H(x) we
have

or(y, x)=

1 1
lo(y, x) va<7>(1 +T7d(y, X)“)=————1— 1o, 4](d(y, X))VX<LT>( 1+ T*d(y, x))
ol 7))

=1ITo,41d(y, x)X1 + T™d(y, x)“‘)s(l + T“(—}>G>=2 <00 .

ExampLE 7. For any a(x)> H(x) define

1 -1 1
, X)= ——dA —— . E, T>1.
or(3 %) (f 1+ T°(y, m) Ty S

Then @={@(*, x); x€ E, T>1} is an admissible family. This follows from Lemma 2
below.

Combining Examples 2 and 7, we have the following theorem:

THEOREM 5. Let A be a self-similar measure on E given in Definition 5. Then for
any real Borel measure u on E we have for any positive number o> H
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A= lim ( f ——~]———dl(y)>_l j V) ae @y
7 T-w \ Jg 14 T%d(y, x)* g 1+ T%d(y, x)* ’

where the exceptional null set can be chosen independently of the choice of a.

3. Preliminaries for the proof of Theorem 4. For the proof of Theorem 4, without
loss of generality, we may assume:

(A1) 0<y(r)=AB(x,r) <0, for any r>0 and any xe E.

(A.2) 1<p(x)<oo for any xeE.

LeMMmA 1. For any xe E, r>0 and T> 1, we have
(1) (TN < P)TH (1),
) vx<LT> = B0x) T T Oy ().

PrOOF. First we show (1). By definition we have
13N <P(x)y(r), forany xeE, r>0.

For any T> 1, considering 7= 308 T/log3 < 3llee T/log31+1 (1] js the largest integer which
does not exceed ), we have :

Pl Tr) Sy, (3008 T3 1p) < Pr)fios THOE AT Ly (1) < B(ox) 08 THE DT 1y (1) = B) TH Dy (r) .
We obtain (2) by replacing r by r/T in (1).

DErFINITION 6. For any A-measurable function o =a(x)> H= H(x) define

(¥, X) , x,yeE, T>1,

- 1+ 7%d(y, x)*
(1= f Sy, x)dA(y),
E

F(y, x)=c¥T)"'f3{(»,x), x,yeE, T>1.

LEMMA 2. For any xe E, T>1 we have

1 1 i 20(x)B(x) i
? Px <7>S6‘x(T)S __—_Ot(x)—H(X) 7x< T>< +o.
ProoOF. For y(r)=17.(r) we have

1 : dy(r)
yy=| f2 =| ——  _diy)=1 0
<0 Lf ) J t+rdr ) 'fiﬁl EET
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R a—1
= lim {__Y(L)__*_a]"“ r_y&dr .
R-o ( 14+ T*R* 0 (1+T°’r°‘)2

By Lemma 1 and the monotonicity of y, the right hand side
H R o0 — 1
< lim {.@R_V(l)_+aj T 4
R-w (14 T*R® o (1+T%r%?

1/T a.a— 1 <) Ta a=—1
—a [T | 0 ety
o (1+T7%% 1T (1+T77r%

where

© e a—1
a0,
yr (1+T7r%)

©  Tea— 1 TH H 1
<af r2r r2 dry (—)
yr (1+T7%r%) T

oora+H—1 1 <) dr 1
< —d — )< = d _
“BL 1+ ”(T) “BL pooB ”(T)
o 1
2 (2)
a—H T

~1T T~ l.y(r)
Jo (1+T%r%?

1T Taraz—l < 1 )
<a ——dry| —

Jo (A +T%%? T

r1 a—1

Jo (1+r%? T
On the other hand we have

© T a—1 © T a—1
Ci<T>=“J _r_v(Lz)d,Zaf T
o (14717 yr (L+T%r%)?

_ © ra——l,y(r/n © ra—l 1 _1 1
”‘L (14792 d'Z“L (T+r9? d’y<7)‘?v<7>‘

LemMMA 3 (see Rudin [6, Lemma 7.3]). Let A be a measurable subset of E such
that MA)< + o0 and ¥ = {U(x,, 1,); 1€ A} an open covering of A, thatis, Ac|J,_, Ulx,, 1,).
Then, if M =sup f(x,) < + o, there exist Uy, U,, ..., U,€ & such that Uy,n U;= &, (k #J)
and " WU)>Q2M) ™ M(A).
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Proor. Since A is a Radon measure, there exists a compact subset K such that
Kc A4 and A(K)>A(A)/2. Since K is compact, there exist S;, S,, ..., S,€& such that
Ur-,Si>K. Without loss of generality we may assume that S,=U(x,r), and
ry=ry>---2r,>0. Define Uy, U,, ..., U, by

U,=S,, k2)=min{k>1; S,nU, =},
U_z = Sk2y k(3)=min{k > k(2); S;n(U,uU,)=J},

Us =S85, k(@)=min{k>k(2); S, n(U;vU,uU;)=},

For any 1<i<p there exists 1<j<i such that U;nS;# &, r;>r; Therefore we
have S;c Ul(x,;), 3ry;)) so that
P n
K= U 8= U Ubxgy 3rig) -
. i

j=1

Consequently we have

l n n
?/I(A) <AK)< .;1 MUy 3y < .;1 B )MU(xigys Tiiiy)

=M 'Zl MUy i) =M ‘21 AU;) .
i=

j=

Let a=w(x) be a A-measurable function such that o(x)> H(x), and define for any
finite Borel measure y on E

D, pu(x)= 1i1;1 sup J Fi(y, x)du(y) -
o )

Let Q be the set of all rational numbers. Then we have

D (x)=inf sup f (v, x)du(y) ,

NeN TeQ,T>N
so that D u(x) is a A-measurable function.
The following lemma is fundamental in the proof of Theorem 4.

LEMMA 4. Let A be a Federer Radon measure, p a finite Borel measure on E, and
A a Borel subset of E such that W(A)=0. Then there exists a Borel subset A, of E such
that (AN Ay)=0 and
D u(x)=0, x€eA,.

Proor. Without loss of generality we may assume that u is a probability measure
and, since 4 is o-finite, A(4)< c0. '
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In order to prove A({x € 4; D u(x)>0})=0, it is enough to show A(4,)=0 for any
p, where we define

Ap={xeA; Dau(x)>L, Bx)<p, oz(x)><1 +L>H(x)} , DEN.
p P

Note that, by definition, for any pe N, xe 4, there exists a sequence T, = T(x) /'+ o0
such that

1
J Fr(y, x)du(y)>—,  keN.
E p

For xe A, and T=T(x)>1 assume

1

JFGIT(y,X)dﬂ(Y)>—', kEN’

E p
and define

I=Tx)={yeE, e *> iy, x)>e **V} k=0,1,2, - -~
Then, since 0< f%(y, x)<1, x, ye E, we have E=|J ", I'; and by Lemma 2
11\ _1

55 e\ ) S D < | SH0n X)) < X el -
2p T) p E

8

Let /=1I(T) be the minimal integer that exceeds log(4pe/(e—1))—logy,(1/T). Then
we have

1
L < ) Ze CUNEWTUNE D W

2P k>1

<Y e I+ ] e__ <) e ul)+ lp <i>

k<l —e k<l T

so that

k<l T

Ze ki(ry)>— ! <i>
4p

Define b=(1—(H/®))/2>0 and L=(1—e"?%)/4p. Then there exists a natural number
K(T)<I=I(T) such that u(I',)> Ly, (1/T)e'* ~PXD)_ Otherwise we have

1 1 1
e "ul,)< ), Ly, e~y {—),
kgl iy Z ' <T> 4p ’ <T>

which is a contradiction.
For any ke N we have
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r(x)c{yeE;f(y, x)>e &V ={ €eE;——— e“"*”}
)= {y Sy, x) }=4y 1+ T%d(y, x°

c{yeE;d(y,x)<T le** Vi =: S (x)
and, since e®**V*>1, by Lemma 1

1 1
AUS.(x) < A= ket 1)a | ~ . H(k+1)/a
(Sx) <y < e ) By (—)e ,

so that
LY a-om< Lok - a6 + 1)
B(Skery(¥)) = (T yry) = Ly, T e = —ﬁ“ e ASkry(x)) -

On the other hand since xe 4, we have B<p and a(x)>(p+ 1)H(x)/p, so that

H 1 H H H
(1—b)k——(k+1)=—(1——>k——z S S
o 2 o o o p+1

LZ——I—(I _e—1/2(p+1)) ,
4p
and there exists a positive number

§= (1— e~ 12+ Dy=pl+1)

4p?
independent of xe A, and k(7)) such that
I(Skcry(x)) = SMSy(ry(x)) -

On the radius of Sy, we have by Lemma 1(2)
1 k 1 1 / 1

radius(Sy ) =— exp[_m—+—:| <— exp[ (D+ ]
T o T

o

A 1 | 4pe3 o (1 ) < 1 {4pe3 <1>‘1}”"
<—exp| —|lo —logyl =) == o —
T P o g e—1 g T T (e—1 ' T

37TH 1/a
SL<£Z—> -0 as T—ooo.
T\ (e—1)y,(1)

Define a collection of open balls

1
&= {Sk(T)(x); xed, T>1, f Fi(y, x)d/l(Y)>;} .
E

Then for any xe 4, and any ¢>0 there exists Se ¥ with xe€ S such that radius(S) <e
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and u(S)=>0A(S).

Since p is a finite Borel measure and u(4,)=0, for any ¢>0 there exists an open
subset G> 4, such that u(G)<e. Furthermore for any xe 4, there exists S, e % with
x€S, such that S,cG. Then # ={S,;xeA4,} is an open covering of 4, and, since
SUPye4, B(x)<p, by Lemma 3 there exists a mutually disjoint finite subcovering
Uy, Uy, ..., U, such that

n 1
Y MUY>——UA,).
k=1 2p
Consequently we have

n 2p & 2 n 2 2
HA)<2p Y AUY<Z- Y. u(Uk)=—’iu< U Uk>s—”u(G)<—”e
k=1 0 k=1 o k 0 )

and since ¢ is arbitrary we have A(4,)=0.

4. Proof of Theorem 4. Recall that we made the assumptions (A.1) and (A.2).

Let @={¢(y, x); y, x€ E, T>1} be an admissible family which satisfies (H.1) and
(H.2) for a=a(x)> H(x) and u a probability measure on E.

First we prove the theorem when ¢4(y, x)>0, y,x€E, T>1.

(First step) Define

(Dgu)(x)= lim J or(y, x)du(y), xe€E,
T E

if the limit exists. By (H.2) and Lemma 1 we have

Qq(x) < 2004

< Fi(y, x), v, xeE, T>1,
v(UT1+Td(y, x*) ~ a—H i

(PT(y9 X)S

so that

lim sup J 0r(y, D) <222 Dy, xeE.
T— o E o— H

Let A be a A-measurable subset of E such that u(4)=0. Then by Lemma 4 there exists
a Borel subset 4, = 4, which is determined only by {F%(y, x)}, such that A(4\ 4,)=0and
(Dou)x)=0,  xe€d,.

(Second step) Denote the Lebesgue decomposition of u with respect to 4 by
dp(x)= f(x)dA(x) + dp(x) ,

where u, is singular with respect to A so that there exists a A-measurable subset J< E
such that u(J°)=A(J)=0. From the first step there exists a A-null Borel subset N, such
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that
(Dou)x)=0,  xeJ*\N .
Therefore in order to prove the theorem it is enough to show

(Dou)(x)=f(x), a.e.(dd),

if du(x)= f(x)dA(x).
(Third step) Fix any x,€ E. For any me N, any re Q and any A-measurable subset
A define

urA)= () =ndi(y)
A NnB(xo,m) n{y; f(y)>r}
Then p)" is a finite measure on E.
Put E,={y; f(y)<r}. Then we have u[(E,)=0 so that by Lemma 4 there exists a
A-measurable subset C}'c E, such that A(E,\ C}")=0 and

(D¢u£")(X)=}im j oy, x)duy(y)=0, xeCy.
- 00 E

Define C,=(),.x Cr. We have A(E,\C,)=0. Furthermore define N=|J re Q(E,\C,).
Then we have A(N)=0.

(Fourth step) For any x¢ NuJu N, fix any re Q such that f(x)<r. By definition
we have xe E, and x¢ N so that xe C,. By Lemma 1(2) we have for any m > d(x, x,)

or(y, ¥du(y)<—= ————— du(y)
Ly:d(y.xo)>M) ’ 'yx(l/T) {»;d(y, x0) > m} 1+T d(y’ x)
TH
= Qo j T adr na du(y)
(1) {v; d(y, x0) > m) 1+ T*d(y, x)
erﬂ ult

= su s d(y, x)>m),
= ()m—d(x xg)F o 1+u* w(y; d(y, x)>m)

so that for any ¢>0 there exists my=m(x, ¢)e N such that

inf J @1(y, x)dpu(y) = J @1y, X)du(y)—e .
T>1 J B(xo, mo) E
Considering for any A-measurable subset A4
H(A 0 B(xg, mg))—rMAn B(xo, mg))= (f(y)—ndiy),
A n B(xo, mo)

we have
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f or(y, x)du(y)—r J or(y, x)dA(y)= J (f(y) =@y, x)dA(y)
B(xo0,mo) B(xo0, mo)

B(xo,mo)

<

(S =1y, x)dA(y) < J or(y, x)dur(y)

J‘B(xo, mo) N{y; f(y)>r} E

so that

J o1y, x)du(y)—SSJ

B(xo,mo)

o1(y, x)du(y) < J

oy, x)du:"°(y)+rj or(y, x)dA(y) ,
E E

and by (H.1), the extreme right hand side
=L¢T(y, X)dpye(y)+r.
Since xe C,,
lir;l sup f or(y; x)du(y)<r+e.
" JE
Since £>0 is arbitrary,
lir;l#sgp L oy, Ydu(y)<r,
and since r> f(x) is arbitrary, we have
lim sup J . or(y, X)du(y) < f(x) .

(Fifth step) For any meN, any re Q and any A-measurable subset 4 define a
finite measure v} on E by

vi(4)= (r=S()dA(y) -

A nB(xo,m) n{y; f(y)<r}

By discussions similar to those as in the third and fourth steps we have
li;n inf J @(y, x)du(y) = f(x) -
- 00 E
Summing up the above we have thus proved

f(x)=T1im _[ or(y, x)du(y), a.e.(dA(x)).
—o )

Next we shall prove the theorem when ¢ need not be non-negative.
(Sixth step) Define
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¢7(y, x)=max(en(y,x),0), @7(y, x)=max(—e(y,x),0).
Then by (H.2) we have

BQq»

(0F0 9IS P22 P30, g7 () 1< BQ"

FH(y, x) .

Applying the preceding discussions in the second to fifth steps, for A-almost all xe E
we have for any re Q such that f(x)<r and any ¢>0

lir;l sup J o1y, x)du(y)=1ir;1 Supj o1 (¥, X)— o7 (y, x)du(y)
-0 E -

E

<lim supr“ @7 (ys x)dl(y)—J or(, x)dl(y)}+e=r+s,
E E

T— o

so that

lim sup L @1y, X)du(y) < f(x) .
Similarly we have

liﬁ i:f JE or(y, x)du(y) = f(x) ,
and hence the theorem.

5. Further generalizations. Theorem 4 can be extended to a non-Radon measure.
In fact one of the following three conditions (M.1)~(M.3) implies

AU, Ux,, r.)=0 provided AU(x, r)=0 forall 1.

(M1) The metric space E is separable.

(M.2) A(B(x,r))>0 for any r>0 and A-almost all xe E.

(M.3) 1is t-regular, that is, for every directed family {O,} of open subsets of E,
AJ,0)=sup, (0.
Therefore we have the following theorem:

THEOREM 6. Assume that

5
B9 =sup 2B%SID e @)
r>0 AB(x, 1))
and let H(x)=log B,(x)/log5. Define the admissible family ® by Definition 4 for B,(x)
and H(x), instead of B(x) and H(x), respectively. If one of (M.1)~(M.3) are satisfied, then
we have the same conclusion as that in Theorem 4.



FEDERER MEASURE 595
REFERENCES

[ 1] J. BouRGAIN AND H. SATO, A direct proof to van der Vaart’s theorem, Studia Math. 84 (1986), 125-131.

[2] R. B. DarsT, Two singular measures can agree on balls, Mathematika 20 (1973), 224-225.

[3] R. O. Davies, Measures not approximable or not specifiable by means of balls, Mathematika, 18
(1971), 157-160.

[4] N. Dunrorp AND J. T. SCHWARTZ, Linear operators, Part I. Interscience, New York, 1957.

[5] H. FEDERER, Geometric measure theory. Grundlehren der Math. Wiss. 153, Springer-Verlag, Berlin,
Heidelberg and New York, 1969.

[6] W. RupiN, Real and complex analysis, McGraw-Hill, New York, 1966.

[7]1 J. E. HutcHiNSON, Fractals and self similarity, Indiana Univ. Math. J. 30 (1981), 713-747.

[8] H.R. VAN DER VAART, Determining the absolutely continuous component of a probability distribution
from its Fourier-Stieltjes transform, Ark. Mat.: 7 (1967), 331-342.

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE

KyusHU UNIVERSITY-33
Fukuoka 812

JAPAN








