Tohoku Math. J.
41 (1989), 3141
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Abstract. This paper characterizes various spaces of translation operators and
multipliers on Banach-valued function spaces. A relationship between invariant oper-
ators and multiplier operators is established. It explores a necessary and sufficient
condition for each invariant operator to be a multiplier.

1. Introduction and preliminaries. Throughout we let G be a locally compact
abelian group with Haar measure dt, 4 a commutative Banach algebra, Y and X Banach
spaces. Denote by L'(G, A) the space of all Bochner integrable A-valued functions
defined on G. It is a commutative Banach algebra under convolution. L?(G, X) is the
space of all X-valued measurable functions defined on G whose X-norms are in usual L?
space. It is a Banach space for each p, 1 <p =< 0.

A bounded linear operator T from a Banach function space E(G, Y) to another
F(G, X) is invariant if T commutes with the translation operators 7, (@ € G). Throughout
this paper, the space of all invariant operators from E(G, Y) to F(G, X) is denoted by

(E(@G, Y), G, X)).

Our purpose in this paper is to characterize the space of invariant operators under some

appropriate conditions.
If X and Y are A-modules, it is known (see Rieffel [12] and also Lai [7], [8]) that

(1.1) Hom,(X, Y*) (X ® ,Y)*,

in which a linear operator 7€ Hom,(X, Y*) corresponding to a continuous linear
functional ¥ on X® , Y is given by

(Tx)(Y) =Y (x®y) forall xeX, ye?Y.

Here Hom (X, Y*) is the space of all A-module homomorphisms from X to Y*, the
topological dual space of Y, that is, each Te Hom (X, Y*) satisfies

T(ax)=aT(x) forall aed, xeX,
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where T is a continuous linear operator from X to Y*; X® , Y denotes the A-module
tensor product space of X and Y.

If X is a Banach A-module, then L?(G, X), 1 £p< 00, is a Banach L}(G, 4)-module.
In [7] and [8], Lai has characterized various spaces of module homomorphisms for
Banach-valued function spaces defined on a locally compact Abelian group G under
certain appropriate conditions. The module homomorphism space is generally called the
multiplier space. It is well-known that, in the scalar-valued function spaces over G, a
bounded linear operator is a multiplier if and only if it is an invariant operator. For
example,

(1.2) Homy, 6(L'(G), LY(G)) =(L'(G), L'(G)) = M(G),

where M(G) denotes the space of bounded regular measures on G, that is, if T is a
bounded linear operator on L'(G), then the following statements are equivalent:

(@) T(fxg)=Tf+g=f*Tg for all f, ge L'(G).

(b) t,T=Tr, for seG, where 7, f()=f(ts" V) =f(t—5).

(c) There is a unique measure yue M(G) such that

Tf=uxf  forany felY(G).
Moreover, it is also known that
(1.3) Hom,\(L(G), F(G))=(L'(G), F(G)=F(G),

where F(G)=L?(G) (1<p<®) or Cy(G), the space of continuous functions on G
vanishing at infinity, and the relationship between both sides of = is given by the
following equivalent statements: Let 7 be a bounded linear operator of L(G) to F(G).
Then t,T= Tz, for all se G if and only if there exists a function g € F{G) such that Tf=
f*g for all fe L'(G). For all of these properties, one can consult Larsen [10]. However, in
the Banach-valued function spaces, an invariant operator need not be a multiplier. In
[13], Tewari, Dutta and Vaiya proved the following theorem.

THEOREM A ([13; Theorem 3]). Ifdim A>1 and A has unit of norm 1, then there is
a bounded linear invariant operator T of L'(G, A) such that

T¢ Hom (L\(G, A), L)(G, A)).

Using this result, they disprove Akinyele’s results about the equivalence between
the multiplier and invariant operator on L'(G, A). In [13], they proved that

(1.4) Homy. g, 4(L'(G, A), L'(G, A))= M(G, A)

provided 4 has an identity of norm 1. This result is extended by Lai [8] as in the
following theorems.

THEOREM B ([8; Theorem 9)). If A has an identity of norm 1 and X is a Banach A-
module, then the following statements are equivalent:
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(@) TeHompg 4(L'(G, 4), L'(G, X)).
(b) There exists a unique pe M(G, X) such that

Tf=fxu  forall feLY(G, A).
Moreover,
(1.5) Homy ., 4(L'(G, 4), L'(G, X))=M(G, X) .
Evidently, if X=A4, (1.5) is reduced to (1.4).

THEOREM C ([8; Theorem 6)). Let X be a Banach A-module and A have an identity
of norm 1. If the topological dual and bidual spaces X* and X** of X have the Radon-
Nikodym property in the wide sense with respect to G, then the following statements are
equivalent:

(@) TeHomypg, 4(LY(G, A), L*(G, X)), 1 <p < o0.

(b) There exists a unique ge L?(G, X) such that

Tf=fxg for all feLY(G, A).
Moreover,
(1.6) Homy . 4(L'(G, A), L7(G, X))~ L?(G, X), l<p<oo.

Recently, Quek [11, Theorem 9] proved that if X has the Radon-Nikodym property
in the wide sense, then the isometric isomorphism of (1.6) in Theorem C holds. Quek’s
result improves Theorem C, since if X is embedded as a closed subspace of X** in the
norm topology, Theorem 2 of Diestel and Uhl [1; p. 81] implies that X has the Radon-
Nikodym property in the wide sense whenever X ** does.

As the remark in [13; p. 229] indicated, it would be interesting to characterize the set
of all bounded linear invariant operators on various Banach-valued function spaces
over G. In this paper, we shall characterize various spaces of translation operators and
multipliers under some appropriate conditions. Moreover, we establish a relationship
between invariant operators and multipliers, and reduce a necessary and sufficient
condition for each invariant operator to be a multiplier. Finally, we summarize our
results as follows. Throughout we let X and Y be Banach spaces and 4 a commutative
Banach algebra. Then we have:

(i) A bounded linear operator from L!(G) to F(G, X) (=L?(G, X) (1<p< )
or Cy(G, X)) is invariant if and only if it is a multiplier.
(i) The space (L'(G, Y), L*(G, X)) (1 <p<0) is isometrically isomorphic to
ZL(Y, L*(G, X)), the space of bounded linear operators of Y to LP(G, X).
(iii)) If p=1 in (ii), then

LYG, 1), LY(G, X)) = L(Y, M(G, X)),

where M(G, X) is the space of X-valued bounded regular measures on G.
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(iv) If LY(G, X) is an order-free L'(G, A)-module, that is, ¢ eL'(G, X) and
LY(G, A)* ¢ ={0} imply ¢ =0, then

HomL‘(G,A)(LI(G’ A)a Ll(Ga X))E'HOITIA(A, M(G’ X)) .

(v) If X and X* have the Radon-Nikodym property in the wide sense and
L7(G, X), 1 <p< o0, is an order-free L!(G, A)-module, then

Homy, g, 4(L'(G, 4), L*(G, X)) ~Hom (4, L*(G, X)) .

(vi) As in Theorem A, we can find a bounded linear invariant operator T
of LYG,A) to F(G,X) (=LP(G,X) (1=p=<0) or CyG, X)) such that T¢
Hom,(L'(G, A), F(G, X)) provided that 4 has a faithful algebra representation on
X, that is, ae A and aX={0} imply a=0. However, if X is an order-free Banach A4-
module, then

Homy ¢, 4(L'(G, 4), F(G, X))cHom (L'(G, 4), F(G, X)) .

(vii) Let 4 have unit of norm 1 and X be a unit linked Banach 4A-module. Then
each invariant operator 7: L'(G, A)— F(G, X) is a multiplier if and only if A= C, where
FG, X)=L*G, X) (1£p£ o) or Cy(G, X).

The authors would like to thank the referees for their valuable comments.

2. Invariant operators. We will prove first that if A=C in (1.5) and (1.6) then
every invariant operator of L}(G) to L?(G, X), 1 £p <o, will be a multiplier. Actually
we have the following theorem.

THEOREM 1. Let X be a Banach space. A bounded linear operator T:
LY G)-F(G, X) is an invariant operator if and only if it is a multiplier, where
FG, X)=L*G, X) (1=pZ o) or Cy(G, X).

To prove this theorem we need the following result which was informed by Seiji
Watanabe.

LEMMA 1. Let (S, B, 1) be a positive measure space (not necessarily finite), X a
Banach space and x,, x, two strongly measurable X-valued functions on S. Suppose that
x*(x,(5)) = x*(x,(5)) u-almost everywhere for each bounded linear functional x* on X.
Then x,(s)= x,(s) p-almost everywhere.

PROOF OF THEOREM 1. Let T be an invariant operator from L}(G) to F(G, X).
For any x* e X*, define a mapping T..: L}(G)— F(G)=F(G, C) by

T.f=x*Tf forall feL'(G).

Then T . becomes a bounded linear invariant operator. Indeed, 7. is clearly bounded
and linear. Now let 7, se G, be a translation operator. We have
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Ts(Tx*f)(t) = Tx*f(ts—l)=X* ° Tf(ts_l)zx* ° Ts(Tf)(t) =X* ° T(Tsf)(t)z Tx*(Tsf)(t)
for all fe L}(G) and teG, that is,
T, 1 w=Ta1,.

This shows that T,. is invariant whenever T is.

By (1.3) and [10, Theorem 3.1.1], we see that the invariant operators and multipliers
are equivalent in the case of scalar-valued function spaces. It follows that for any
x*e X*,

x*o T(fxg)=Tu(fxg) =[x Tug=f*(x*c Tg)=x*o(f* Tg)
for all f, ge L'(G). Hence by Lemma 1, T(f'* g)=f* Tg for all f, g € F(G). Note that every
function in F(G, X) is strongly measurable. Hence
TeHomy(LY(G), F(G, X)) .

The “if part” of the theorem is trivial. Indeed, for f, g € L'(G), t € G, and a multiplier
T,

bl

(Tt)(f*9)=T(f*19)=T(vg /) =(19) x Tf=1(g = T) =1(T(g */) = (t.T) (S *9) -

Note also that L'(G) * L'(G) = L'(G) by Cohen’s factorization theorem. Therefore every
multiplier is invariant. g.e.d.

Applying Theorem 1, we can establish the following theorem for invariant
operators.

THEOREM 2. Let X and Y be Banach spaces. Then the following two statements are
equivalent:

(i) Te(L'(G,Y), LG, X)).

(i) There exists a unique Le L(Y, M(G, X)), a bounded linear operator of Y to
M(G, X), such that

T(f®y)=f+xLy  forall feL'(G), yeY.
Moreover,
2.1 (LY(G, Y), L\(G, X))~ Z(Y, M(G, X)) .

PROOF. (i) =(ii). Let Te(LY(G,Y), LY(G, X)). For each yeY, we define
T,: LY(G)—~L!(G, X) by

T,f=T(fy) for all feL!(G).

Evidently, 7, is translation invariant whenever 7 is, so that T,e(L'(G), L'(G, X)).
Applying Theorem 1, we see that 7, is a multiplier, that is,
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TyGHole(G)(LI(G), LI(G, X)) .
It follows from Theorem B, by taking 4 =C, that there exists a u,e€ M(G, X) such that
T, f=f*up, for all feL'(G)

and || 7| = |, ]. Note that || T, || <||y|ly|| T||. Thus the mapping Y—M(G, X), defined by
L: y—p,, is bounded linear such that

T(fy)=f«L(y)  with [L|<|T].
(ii) = (i). Conversely, if Le#(Y, M(G, X)), we define a mapping T7}:
LYG)x Y- LY(G, X) by
Ti(f, »)=f*L(y) for all feL'(G), ye?Y.

Then T} is a bilinear continuous operator, and by the universal property of tensor
product, there exists a linear map

T,: LNG)®, Y=L'(G, Y)-»L'(G, X)
such that

T,(f®y)=f*L(y) forall feLY(G), yeY

and satisfying || T, | <||L|. This T, is translation invariant since

T (f®y)=1(f* L() =1, * L(y)= Ty (7, /) = T 1(fy) = T 7 (f®Y)

for all se G, ye Y, fe L'(G). Hence T, e(L(G, Y), L'(G, X)). By the first paragraph in
the proof, we obtain ||| =|L|.

Finally, the one-to-one correspondence between (L'(G, Y), LY(G, X)) and
L(Y, M(G, X)) is obvious. Therefore we obtain

(L\(G, Y), L\(G, X))~ Z(Y, M(G, X)). q.ed.

According to Theorem C with A =C and Theorem 1, the invariant operators of
LY(G, Y) to LP(G, X) for 1 <p <o can be characterized as in the proof of Theorem 2.

THEOREM 3. Let X and Y be Banach spaces. If X and X* have the Radon-Nikodym
property in the wide sense with respect to G, then the following two statements are equiv-
alent:

(i) Te(LY(G,Y), LG, X)).

(ii) There exists Le £(Y, L*(G, X)), 1 <p <oo, such that

T(f®y)=T(fy)=f+*L(y)  foral feL'(G), yeY.

Moreover,

(L\(G, Y), L7(G, X)) = Z(Y, L?(G, X)) .
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REMARK 1. (i) Note thatif Y=C, then Theorems 2 and 3 reduce to Theorem 1.
(ii) If Y=C=JX, then the spaces in Theorems 2 and 3 coincide with the spaces of
usual multipliers, that is,

(LY(G), L(G))=Hom,(L(G), LY(G)) = M(G) ,
(LY(G), L7(G))~Homy(L'(G), L(G)) = L*(G) .

3. Multipliers of vector-valued function spaces. Let Y=A in Theorems 2 and 3 be
a commutative Banach algebra. Then we have the following characterizations.

THEOREM 4. Let A be a commutative Banach algebra (not necessarily with
identity) and X a Banach A-module. Suppose that L'(G, X) is an order-free L'(G, A)-
module. Then
(3.1) Hom, g, 4(L'(G, ), L'(G, X))=Hom (4, M(G, X))

PrROOF. Let TeHomyp.g 4(L'(G, 4), L'(G, X)). Then for any teG and
f,9eLY(G, 4),

g*(Tr)f=T(g = (/) =T(1 (@) xf)=7(9) * Tf=1(9 * Tf) =g * 1(Tf) ,

and hence LY(G, A) *(Tr,—1,T)f={0} for all teG and fe L (G, 4). Since L*(G, X) is
order-free, it follows that T is invariant, that is, Te (L*(G, 4), L'(G, X)). According to
Theorem 2 with Y= A, there exists a unique Le ¥ (4, M(G, X)) such that

(@) T(fa)=f*L(a) for all fe L'(G), ac A.
Here L(a)e M(G, X) and f* L(a) is an X-valued Bochner integrable function over G,
since L!'(G) acts on M(G, X) under convolution and f* L(a) vanishes on the singular
part of M(G, X). Hence it is an element of L'(G, X) and the relationship between T and
L in (a) is well posed.

Moreover, for f,ge L'(G), a,be A,

T(faxgb)=T((f*g)ab)=(f*g) * L(ab)
and
I(fax* gb)=fax T(gb)=(f *g) »aL(b) .

Note also that L!'(G)*L!(G)=L'(G) by Cohen’s factorization theorem and that
M(G, X) is an order-free L'(G)-module by Theorem B with 4 =C. It follows that

L(ab)=aL(b) for all a,beA.
This shows that L is an A-module homomorphism, that is,
LeHom (4, M(G, X)).
Conversely, for Le Hom (4, M(G, X)), we define
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(b) T.(fa)=fx L(a) for all fe L}(G), ac A.
Then fae L(G, A) and T} is a bounded linear mapping from L!(G, 4) to L*(G, X), since
LY(G)* M(G, X) is contained in the space L!(G, X). We show that Ty is an L(G, 4)-
module homomorphism. Indeed, for any f, ge L'(G) and a, be 4, we have

Ty(gb * fa)=T((g */)ba)=(g [) x L(ba)=(g *[) » bL(a)=gb * (f * L(a)) =gb * T,(fa) .

Since {gh: be A, ge L'(G)} is total in L(G, A), it follows that T, is an L}(G, A)-module
homomorphism.

It is easy to show | T)|=||L|| for T and L in the relations (a) and (b). Therefore the
isometric isomorphism of (3.1) is proved. g.e.d.

By the same argument as in Theorem 4, we have the following theorem.

THEOREM 5. Let A be a commutative Banach algebra and X a Banach A-module.
Suppose that X and X* have the Radon-Nikodym property in the wide sense with respect
to G and that L*(G, X) is an order-free L'(G, A)-module. Then

(3.2) Homy g, 4(L(G, 4), L?(G, X))=Hom «(4, L*(G, X))  for 1<p<oo.

If A has unit of norm 1 and X is a unit linked Banach A-module, that is,
ex=x for all xe X, where e is a unit of 4, then M(G, X) and LP(G, X) become unit
linked A-modules. Thus M(G, X) and LP(G, X) are isometrically isomorphic to
Hom (A4, M(G, X)) and Hom (4, L?(G, X)), respectively.

Thus we have the following:

REMARK 2. If 4 has an identity of norm 1 and if X is unit linked in Theorems 4
and 5, then

(3.1) is isometrically isomorphic to M(G, X), and

(3.2) is isometrically isomorphic to L*(G, X).

4. Necessary condition for an invariant operator to be a multiplier. This section
gives a main characterization for an invariant operator to be a multiplier in Banach
function spaces. Although a multiplier is an invariant operator, the converse is not true.
For example, one can consult Theorem A. We will prove the following theorem.

THEOREM 6. Let A be a commutative Banach algebra of dimension greater than
one with an identity of norm 1, and let X be a unit linked Banach A-module such that the
corresponding representation is faithful (i.e., ac A and aX={0}=a=0). Then there
exists a bounded linear invariant operator T of L)(G, A) to F(G, X) such that

T¢ Hom ,(LY(G, 4), F(G, X)),
where F(G, X)=L"(G, X) (1<p< ) or C,(G, X).

PROOF. Since 4 has an identity, say e, there exists a nonzero multiplicative linear
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functional ¥ on A. Define ¥ : A—A by Y(a)=x(a)e for all ae A. Then ¥ is a bounded
linear operator on 4. Since dimA4>1, we have {y(a)e: ae A} A. Thus there is an
element b e A such that Y(b) #b. For any xe X and ¢ e F(G)=F(G, C), set

begp@=¢Y(a)x, aed.
Then p, , is a bounded linear operator of 4 to F(G, X). It is easy to see that the mapping
LYG)x A3(f, a)=f* u, 4(a) e F(G, X)
is bounded linear, so it follows from the universal property of tensor product that there
exists a bounded linear map T, ,: L'(G)®,4—F(G, X) such that T, ,(/®a)=
f*u, 4(a) for all fe L'(G) and ae 4. Let us identify L'(G, 4) with LY(G)®,A. Then
T, ,e(L'(G, 4), F(G, X)). Indeed, let t€G. For any fe L'(G) and a€ 4,
(T, o(Ja) =T, (/* (@Y (@)x)) = (1. f) * (PY(@)x) = T 4,((z.)a) =T 4(t,(f@)) .
Since {fa: ae A, fe L'(G)} is total in L'(G, A), it follows that T, , is invariant.
Suppose now that T, ,€ Hom,(L'(G, 4), F(G, X)) for all xe X and ¢ € F(G). Then
(f* @b —Y(b))x=(f*§)bx—(/* PI(b)x =b(([* $)x)—f* (pY(b)x)
=b(f*(pY(e)x)) — T ,(fb)=bT, ,(fe)—T, 4(/b)
= x,¢(fb) - Tx,¢(fb) = 0 s

and hence

1% @llr) I(6—Y(B)x] x =0

for all fe L'(G), ¢ € F(G) and xe X. However, note that L'(G) * F(G) # {0}. Therefore
(b—yY(b))x=0 for all x e X. Since the corresponding representation is faithful, it follows
that b—y(b)=0, a contradiction. Thus T, , ¢Hom,(L'(G, 4), F(G, X)) for some
x,€ X and ¢y F(G). Then T= T, 4, is a desired operator. q.e.d.

REMARK 3. Note that
Hom (L(G, A), F(G, X));éHole(G,A)(Ll(G, A), F(G, X))

in general. If X=A4, p=1, then Theorem 6 is reduced to Theorem A. Also under
the same condition as in Theorem 6, we can show, by the same method, that there
is a bounded linear invariant operator T of LG, A) to F(G,X) such that
T¢Homy g 4(L'(G, A), F(G, X)) where F(G, X)=L"(G, X) (1=p=< ) or Cy(G, X).

However we have the following inclusion relation.

THEOREM 7. Let A be a commutative Banach algebra with identity e of norm 1 and
X an order-free Banach A-module. Then

Homyg, 4(L'(G, 4), F(G, X))=Hom(L'(G, 4), F(G, X)),
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where F(G, X)=LP(G, X) (1<p=< ) or Cy(G, X).

PrROOF. Let TeHomy, g 4(L'(G, A), F(G, X)). Fix ae 4 and ¢eL'(G, A), and
set £=T(a¢)—aT¢p. We have only to show that £=0. To do so, let f be any element of
LY(G). Then

S*(e&)=(fe) xS =(fe) x T(ap) — (fa) x Tp=T((fe) x (ap)) — T(fa) x $) =0,

and hence for any x*e X*, we have

[x(x*oe)t)= J f(t—s)x*(e&(s))ds = x* {j fit— S)eé(s)ds}= x*(f *(e&)t))=0
G G

almost everywhere. Since L'(G) is faithful, it follows that x* o e =0 for all x* € X*. By
Lemma 1, e£(f)=0 a.e. and hence A&(r)= {0} a.e. Since X is order-free, it follows that
&()=0 a.e., that is, £=0. q.e.d.

REMARK 4. If X=A, p=1, then Theorem 7 is reduced to Corollary 5.2 in [13].
In view of Remark 3, we ask under what conditions
(L'(G, A), F(G, X))= Hole(G,A)(Ll(G, A), F(G, X)) .
The answer is that 4 must be isometrically isomorphic to the complex field C.

THEOREM 8. Let A be a commutative Banach algebra with identity of norm 1, X be
a unit linked, order-free, Banach A-module and A a faithful representation on X. Then each
invariant operator T: LY (G, A)>F(G, X) is a multiplier if and only if A=C, where
F(G, X)=L*G, X) (1=p=< ) or Cy(G, X).

PROOF. The proof of this theorem follows immediately from Theorem 1 and
Remark 3.
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