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Introduction. Let G be a connected reductive unramified group de-
fined over a non-archimedean local field F, T a maximal torus in G and
B a Borel subgroup of G containing T. We denote by G(F), B(F), •••,
the locally compact and totally disconnected groups of irrational points
of G, By •••, respectively. Let XTeg(T) be the set of regular unramified
characters of T(F) and I{X) = Inά(G(F), B(F); X) the admissible represen-
tation of G(F) induced by XeXτβg(T). In this paper, we first give the
irreducible decomposition of I(X) and then construct an Eular factor at-
tached to some irreducible component of /(%). This study stems from
the problems mentioned in [2, Section 12]. For G = GLn or GSp4, the
same subject was treated by Jacquet, Godement, Shalika, Piatetski-Shapiro
and Rodier. In [22], Rodier investigated the case of split classical type
groups G and gave a construction of Euler factors associated to the
standard representation of the L-group LG of G. Our result in the first
part is a generalization of these results of Rodier to the case of unramified
groups G. In the second part, we give a complete classification of ir-
reducible rational representations of LG and construct an Euler factor for
a pair (r, p(Dx)) of an (almost arbitrary) irreducible representation r of
LG and a certain constituent ρ(Dχ) of I(X) for XeXieg(T). Furthermore,
we give a precise relation between our Euler factors and those defined
by Langlands.

Now we give a summary of this paper. Let S be the maximal F-
split torus contained in T, X*(S) the character group of S and WG(S)
the relative Weyl group of G. For %eXrθg(Γ), the transform of X by
w e WG(S) is denoted by Xw. Let V=X*(S) <g)Λ and C+ the Weyl chamber
in V corresponding to B. First, for XeXτeg(T), we define a subset H(X)
of the coroot system ΨV(G, S) of G with respect to S (see Section 2).
The set H(X) plays an important role in the irreducible decomposition of
/(%). Since it is known that I(X) is irreducible if and only if H(X) is
empty, we are interested in the case where H(X) is not empty. Put
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JH(X) = {constituents of /(%)}

and

C(X) — {connected components of V — U Ker(αv)} .

For DeC(X), we choose an element we WG(S) such that w^C+cD. Let
p(D) be the unique irreducible subrepresentation of I(XW). Then it is
shown that ρ(D) depends only on D and is contained in JH(X). Hence
one has a map p: C(X)-+JHQL). Our first main result is the following:

THEOREM. Let XeXτeg(T).

(1) The map p: C(Z) ->/ff(Z) is bijective.
(2) Let (HOC)} be the set of coroots which are represented by an

integral linear combination of elements of HOC). Then (H(X)) is a root
system and HOC) is a basis of (H(X)). In particular, the elements of
HOC) are linearly independent. Thus, combining with (1), one sees that
the length of a composition series of I(X) is equal to 2]Hau and \H(X)\ is
bounded by the semisimple F-rank of G.

(3) Let Dχ = Πa^BHiX) (av)~\R+) and φ a non-degenerate character
of U(F), where U is the unipotent radical of B. Then, for DeC(X),
p{D) has a Whittaker model with respect to φ if and only ifD = Dx.

These are proved in Section 3. Let ^ " ^ ( Z , ψ) denote the Whittaker
model of p(Dx). In the rest of this paper (from Section 4 to the end),
we will assume that the characteristic of F is equal to zero. In Section
4, we give an explicit form of the restriction to S(F) of a Whittaker
function / e W~βέ?(X, φ). This is used for calculations of the "zeta
integral" (see below). In order to define the "zeta integral", we need a
classification of finite dimensional irreducible rational representations of
the L-group LG of G. Let &(LG) be the set of equivalence classes of
irreducible rational representations of LG. In Section 5, we give a
parametrization of elements of ^ ( L G ) . In terms of this parametrization,
we introduce the coweight ξr of S, e(χ) e N and c(r) 6 C for each r 6 &(LG)
and define a subset &+(LG) of ^ ( L G ) (see (5.6)). Now, for/e 2^ST(Z, φ)
and r e &(LG), the "zeta integral" is defined by

( #) Z{s, r,f) =
F*

where 3% is the modulus character of B(F). Note that (#) coincides with
the definition given by Jacquet—Langlands [13] when G ~ GL2 and r is
the natural representation of LG - GL2(C). The second main result is
the following:
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THEOREM. (1) Let r e ^+(LG). Then for any f e 2 ^ r ( % , φ), the
zeta integral Z(s, r, f) is absolutely convergent for Re(s) > 0.

(2) Let P(r, X) be the set of polynomials P(X) e C[X] such that
P(qF*)Z(s, r, f) is an entire function of s for every f e W^^fiX, φ),
where qF is the cardinality of the residual field of F. Then, for any
(r, X) e &+(LG)x Xveg(T), P(r, X) is a non-trivial principal ideal of C[X]
and has the generator Pr,χ{X) e C[X] with Pr,x(0) = 1.

These are proved in Section 6. The generator PTtX(X) of P(r, X) is
uniquely determined by the pair (r, X) and is independent of the choice
of φ. The Euler factor attached to (r, X) is defined to be L{s, r, X) =

Finally, for re^+(LG) and XeXies(T), let L(s, r, Sp(X)) be the Euler
factor defined by Langlands (see [2]). In Section 7, we compare L(s, r,
Sp(X)) with L(s, r, X). Then we have the following:

THEOREM. For any (r, X) e^ + ( L f f )xI r e g (Γ), L{e{r){s-c{r)\ r, X)'1 is
a factor of L{sf r, SpiX))*1 as a polynomial in QF8.

With more conditions on (r, %), one has L(e(r)(s — c(r)), r, X) =
L(s, r, Sp(X)), but pairs satisfying these extra conditions are few and
far between (see (7.3) and (7.4)).

ADDENDUM (December 22, 1987). I received from Professor F. Rodier
the following paper:

V. A. Dung, Decomposition de la serie principale du sous-groupe des
points A -rationnels d'un groupe algebrique affine reductif quasideploye sur
un coups k p-adique de caracteristique 0, These, Universite Paris VII (1985).

Dung investigates the irreducible decompositions of principal series
representations Ind(G(F), B(F); X) for any connected reductive quasi-
split group G and any regular quasicharacter X. Therefore, when F
is of characteristic zero, our Theorems (3.2) and (3.3) are special cases
of Dung's results. Further, by Chapter VI, Propositions 2 and 3 of
Dung's paper, we know the irreducible constituents of /(%) which are
square integrable or tempered.

TABLE OF CONTENTS

1. The structure of G 495
2. Summary of the unramified principal series 497
3. The irreducible decomposition of the unramified principal series 500
4. Explicit form of Whittaker functions 512
5. Parametrization of irreducible representations of LG 520
6. Construction of Euler factors 524
7. Comparison of L{s, r, Sp(X)) and L(s, r,X) 527
8. Examples 529



494 T. WATANABE

NOTATION. Let F be a non-archimedean local field. Let G be a
connected reductive algebraic group defined over F. Throughout this
paper, we assume G is unramified, that is, G is quasi-split over F and
split over an unramified extension of F. Let E be the minimal splitting
field of G. We fix the notation as follows:

I |F (resp. | \E) = the normalized absolute value of F (resp. E)
vfF = a prime element of F
qF (resp. qE) — the cardinality of the residue field of F (resp, E)
&F = the maximal compact subring of F
3?F = the maximal ideal of έ?F

S = a maximal i^-split torus in G defined over F
T = the centralizer of S in G, (which is a maximal torus of G defined

over F)
B = a Borel subgroup of G defined over F containing T
U = the unipotent radical of B
X*(T) (resp. X*(S)) = the character group of T (resp. S)
X*(T) (resp. X*(S)) = the cocharacter group of T (resp. S)
V=X*(S)®R
Φ = the relative root system of G with respect to S
Φ+ — the set of positive roots of Φ with respect to B
Δ = the set of simple roots of Φ
C+ = the Weyl chamber in V corresponding to B
GE = GxE
ΦE — the absolute root system of G with respect to T
ΔE = the set of simple roots of ΦE with respect to B
Nβ(S) (resp. N0(T)) = the normalizer of S (resp. T) in G
WG(S) (resp. WG(T)) = the relative (resp. absolute) Weyl group of G.

For each subset θad, let
Pθ = the standard parabolic subgroup corresponding to 0,
Λffl = the Levi subgroup of Pθ containing T,

and
Uθ = the unipotent radical of Pθ.

We denote by G(F), B{F), , the locally compact and totally disconnected
groups consisting of irrational points of G, B, . Let <5| be the modulus
character of PΘ(F). We write δB instead of δ 0 . For each subfield L of
E, let AddL = Spec(L([X]) be the one dimensional additive group defined
over L.

REMARK. In the first half of this paper (from Section 1 until Section
3), the characteristic of F is arbitrary. In the second half of this paper
(from Section 4 on), the characteristic of F is assumed to be zero.
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l The structure of G. Let F be a non-archimedean local field and
G a connected unramified reductive algebraic group defined over F. In
this section, we summarize known facts on the structure of G using the
terminology in [8].

1.1. A "root ray" of G with respect to S is an open half line with
starting point 0 in 7 containing at least one root relative to S. Let
ψ = ψ(G, S) be the set of root rays of G with respect to S. For aeψ,
let σ{a) (resp. τ(α)) be the non-divisible (resp. non-multipliable) root con-
tained in α. If σ(a) Φ τ(α), a is called "plural". Let Ψo = {a eψ\σ(a) e A}.
For aeψ, denote by — a the root ray containing the root — σ(a).

1.2. Now we assume G is split over F. Thus one has E — F and
T = S. For aeΦ, let U~ be the root subgroup corresponding to a. For a
subfield Fλ of F, an ^-isomorphism AddFl -»U« is called an "-PΓepinglage"
of C/~. For any i^-epinglage #« of Uζ, there exists a unique i^-epinglage
x_a of Uza satisfying the following conditions:

(1.2.1) ma = afβ(l)2.β(l)2ίβ(l) 6 NG(T).

(1.2.3) There exists an FΓhomomorphism ζα of SL2 into G such that
for any u e AddFl

1 0\

This x_a is called the epinglage opposite to xa.
A Chevalley F-system of G (with respect to T) is a family {xa}aeΦ

of i^-epinglages of U~ satisfying the following conditions:
(1.2.4) For any αGΦ, the epinglages xa and x_a are opposite to each

other.
(1.2.5) For α, βeΦ, there exists ε(α, /3)e{±l} such that »Wβ(̂ ,(%) =

ma'Xβ(ε(af β)'U)*mά1 for any ^eAdd^, where wa is the element of WG(T)
defined by a.

1.3. Returning to the general case, let G be quasi-split over F. For
aeΦE, let Γa = {7 e GB\(E/F) \ Ί{a) = α} and Lα the invariant field of Γa

in £7. Lα is called the field of definition of α. Also, let Z7~ be the root
subgroup of GE corresponding to a. Note that U~ is defined over La.
Let xa: AddLa-*U: be an Lα-epinglage of Uϊ. Then for ΎeG&l(E/F), one
has 7(Lβ) = L7(a) and TO^QT"1 is an Lr(α)-epinglage of U~{cc). Thus, one can
take a family {xa}aejE of .E-epinglages satisfying the following properties:

(1.3.1) xa: AdάE-*U~ is induced from an Lα-epinglage for each a e J s .
(1.3.2) x

na)
 = yox^y-

1
 for any α e Λ and 7 e GsA(E/F).
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Furthermore, it is known that this family {xa}aejE is extended to a
Chevalley E'-system {xa}aBφE of GE satisfying the following:

(1.3.3) If the restriction a\s oί aeΦE to S is non-divisible, then
xa: AddE-+Ua is induced from an Lα-epinglage and one has xria) = 7°#α°7~1

for any 7eGal(£ r/ί 7).
(1.3.4) If a\s is divisible, then there exist distinct roots β and β' in

ΦE such that β\s = β'\s = (a\s)/2 and a = β + β'. The field Lβ is a separable
quadratic extension of La and Lβ, = Lβ. For any 7 e GalCS/i*7), there exists
e(τ) e {±1} such that yoχaoy-\u) = xUa)(e(7)u). When 7 6 Gal(JB?/Lβ), one has
ε(7) = — 1 if and only if 7 induces the unique non-trivial automorphism
on Lβ.

{%a}aβΦE is called a Chevalley—Steinberg system of G .

1.4. For a root ray aeψ, let Ϊ7α be the root subgroup corresponding
to a ([8] (1.1.3)). We assume aeψo. Put Δa = {ae ΔE\a\sea}. Δa is a
single orbit of GB1(E/F) in ^ . Let μ:Ga^ (Ua,U-a} be the universal
covering of the semisimple group generated by Ua and U_a. Then Gα is
a semisimple and simply connected group of F-rank one which is quasi-
split over F and split over E. The torus μ~\T) (resp. μ~\S)) is a
maximal torus (resp. a maximal .F-split torus) in Ga defined over E.
The orbit Δa is a base of the root system of Ga with respect to μ~\T).
From the classification of Dynkin diagrams, one has only the following
two types of Ga.

Type I. Ga

E is isomorphic to the direct product of SL2 indexed by
Δa. La is the field of definition of the simple factor of an index a and
one has Ga — RLa/F(SL2), where RLa/F is WeiΓs scalar restriction functor.

Type II. Put / = {(α, a') e Δa x Δa \ a + α' e ΦE}. Then Ga

E is isomorphic
to the direct product of SL3 indexed by /. For (a, a') e /, one has La =
La> and La is a separable quadratic extension of L2 = La+ar. Let Sί73 be
the special unitary group defined over L2 by the hermitian form on LI
with degree three and Witt index one. Then the simple factor of an
index (a, a') is L2-isomorphic to SU3. Further Ga is F-isomorphic to
RL2/F(SU3). Note that Ga is of Type II if and only if a is plural.

1.5. Assume Ga is of Type I. In this case, one has (Ua)E= HaεjaUa
and Ua is i^-isomorphic to RLa/F{Uz). We fix aeΔa and put L = La. If
xa is an L-epinglage of Uz, then xa — RL/F(Xct) is an ^-isomorphism of
RL/F(AddL) onto Ua. Such a couple (L, a?α) is called an epinglage of Ua.
The epinglage of U_a opposite to (L, xa) is defined to be (L, jRL/^(x_a)),
where x_a is the epinglage opposite to xa.

1.6. Assume Gα is of Type II. We use the notation of (1.4). We
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fix (α, af) 6 / and put L = LaJ L2 = La+a,. Recall that L is a separable
quadratic extension of L2. Since L is an unramified extension of F, L2

is uniquely determined by L and i*7. Let c be the non-trivial element
of Gal(L/L2). We choose an L-epinglage xa of Ϊ7~ and put xa, = ^x^Γ1,
%a+ar = IntCm"/1)©^, where m«/ is the element of NG(T) defined in (1.2.1).
Let x_a, x_a, and 2L(β+β,, be the epinglages opposite to xa9 xa* and £α+α>,
respectively. Let

fffCW = {(u, v) e L x L \ v + c(v) = ιw(%)} .

For (u, v), (u\ vf) e Hf(L2), the composition law is defined by

(u, v) (u'f v') — (u.+ u', v + v' + c(u)-ur) .

Then Hf(L2) is regarded as the group consisting of L2-rational points of
a unipotent algebraic group HQ defined over L2. Furthermore, there
exists an L2-isomorphism j a of Hf onto Ϊ7^,α') = U~ ί7^+α/ !/«/ such that

ja(u, v) = 2β(w) 2β + β '(-v) αβ'W%))

for any (u, v) e H0

L(L2). Since ?7α equals Λ L ^ #£,*'))> xα = RLί/F(L) gives
an F-isomorphism of i ί L = RL2,F(Hf) onto I7α. We call such a couple
(L, a?β) an epinglage of Ua. The epinglage of U_a opposite to (L, xa) is
defined the same way as in (1.5).

1.7. We fix a Chevalley—Steinberg system {xa}aeΦE of G. For any
aeΨ, we take a root a(a) eΦ^ whose restriction to S equals σ(α). By
(1.5) and (1.6), the epinglage xa{a) of I7~(β) induces the epinglage (Lα, α?α)
of Ϊ7β, where La — La{a). Here, one can choose a set {a(a)}aeΨ of roots such
that the epinglage (L_α, #_α) of U_a induced from ^α(_α) is that opposite
to (Lα, 05α) for every aeΨ. Then the family {(Lα, a;α)}αer of epinglages is
called a coherent system of G induced from the Chevalley—Steinberg
system {xa}ae0E. This will be used in Section 4.

1.8. We consider the reduced root system τ(Ψ) = {τ(a)\aeψ}. Let
Ψv be the coroot system attached to τ(Ψ). For τ(α) e τ(Ψ), denote by α v

the coroot corresponding to τ(α). α v is an element of X*(S). Let
<, >:X*(S)xX 5 i ί(S)->Z be the perfect pairing, that is, for any teF*,
v e X*(S) and ξ e X*(S), v(ξ(t)) = t<u>ξ>. A coroot α v is considered as a
linear functional on V by VM- <V, α v>. Then by the definition, C+ =
Γ\aeΨo(av)~1(R+), where R+ is the set of positive real numbers.

2. Summary of the unramified principal series. In this section,
we summarize known results on the unramified principal series of the
unramified group G. For the general theory of admissible representations
of p-adic groups, we refer the reader to Cartier [9].
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2.1. Let H be a F-subgroup of G. For admissible representations
πx and π2 of H(F), we denote by Ή.omH(πlf τr2) the space of H(F)~
homomorphisms from πx into τr2.

2.2. Let P be a F-parabolic subgroup of G with a Levi-subgroup
M and the unipotent radical JV. Let δP be the square root of the modulus
character of P(F). Let (π,Vπ) be an admissible representation of M(F).
Then π may be trivially extended to an admissible representation of
P(F) = M(F)N(F). The representation J(G, P; TΓ) of G(F) induced by π
is the right regular representation of G(F) on the space of all locally
constant functions φ:G(F)-*Vπ such that φ(pg) = SP{p)π{p)φ{g) for any
p e P(F) and g e G(F). The representation I(G, P; π) is an admissible
representation of G(F).

2.3. We use the same notation as in (2.2). Let f be a character
of N(F). Put

ZM(f) = {meM(F)|ψ<m n m~ι) = ψ(n) for any neN(F)} .

For an admissible representation (TΓ, Vπ) of G(i^), denote by Vf(P, G) the
subspace of Vπ spanned by the vectors of the form π(n)v — ψ(ri)v, n e N(F),
v e Vπ. The quotient space VJ Vf(P, G) is called the α/r-localization of
the space Vπ and denoted by Vψ(P, G π). Define the representation
(JΨ(P, G; π), VΨ(P, G; TΓ)) of ZM(ψ) by

J+(P9 G; π)(m)(v + VΪ{Py G)) = 8Λm){π(m)v + 7/(P, G))

for m e ^(ψ*) and v e Fπ. It is easily verified that J^(P, G; π) is well-
defined. In particular, if ψ is trivial, then Jψ(P, G; π) is called the Jacquet
representation (or Jacquet module) of π with respect to (P, M) and denoted
by J(P, G; TΓ). The representation J{P, G; π) of M(F) is admissible.

2.4. By (2.2) and (2.3), I(G, P; •) (resp. J(P, G; •)) defines a functor
from the category of admissible representations of M{F) (resp. G{F)) to
that of G(F) (resp. M(F)). Then the following facts are well-known.

(2.4.1) The functors J(G, P; •) and J(P, G; •) are exact.
(2.4.2) The functor J(P, G; •) is left adjoint to /(G, P; •)- That is,

for any admissible representation π (resp. σ) of G(F) (resp. M(F)), there
is a natural isomorphism

H o m ^ P , G; TΓ), σ) ^ Hom^π, /(G, P; σ))

(2.4.3) Let Pf be an another F-parabolic subgroup of G with a Levi-
subgroup Mr and the unipotent radical N'. We assume P ' c P , M ' c M
and N'IDN. Then one has
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J(G, P; ) » W P'ΠAT; •) = /(G, P'; •)
and

J(P'ΠM, ilί; )°e/(P, G; •) - J(P', G; • ) .

2.5. Next, we state Bernstein—Zelevinsky's Geometrical Lemma.
This lemma plays an important role in Sections 3 and 4. Let θx and θ2

be two subsets of Δ. Put Pi = Pθ., Mi = Mθ. and Ut = Uθ. for i = 1, 2.
For w 6 Wβ(S), let *w be a representative of w in NG(S)(F). Define

W(Mlf M2) = {we WG(S)\lnt(*w)(M1nB)aB and Int(*w-1)(M2OB)(zB} .

For we TΓ(Λflf M2), note that M^Inψw1)^) (resp. Int ί*^)^)ΠM 2 ) is
a Levi-subgroup of the standard F-parabolic subgroup Λf1Πlnt(*'w;"1)(P2)
(resp. Int(*w)(P1)ΠM2) of Mλ (resp. ,M2). Now, for an admissible repre-
sentation π of Mλ(F)t let ίXπ) = J(P2, G; I(G, Px; π)) be the Jacquet module
of /((?, Px; TΓ) with respect to (P2, Λf2). Then Bernstein and Zelevinsky
were proved the following lemma ([1]).

LEMMA (Geometrical Lemma). There exists a numeration wlf w2, ,
wk of elements of W(M19 M2) satisfying the following condition: for any
admissible representation π of MX(F), F(π) has a filtration 0 = i^cii^c:
• aFh = F{π) and a system of isomorphisms

et: FJF^ -> I(M2, Int(*wt)(P1) Π Mt; J^{Mλ n Int(*wrι)(P,), M±; π))

functorially depending on π, where JWi(M1 Π Int(*wι"
1)(P2), M^ π) is the

admissible representation of Int(*wί)(M1) Π M2(F) defined by J(M± Π
I n t ( * w r 1 ) ( P 2 ) , Λ f i ; ^ l t ί * 1 )

2.6. We recall fundamental results on unramified principal series
representations. We start with the definition of these representations.
Let To (resp. So) be the maximal compact subgroup of T(F) (resp. S(F)).
Since G is unramified, the natural injection S(F) ^ T{F) gives rise to an
isomorphism of S(F)/S0 onto T(F)T0. An element of Kom(T(F)/TQ, C*)
is called an unramified character of T(F). The relative Weyl group WG(S)
acts on Kom(T(F)/T0, C*) by Γ{t) = X{*w'^t^w)9 where X eRom(T(F)/T0,
C*), t e T(F) and w e WG(S). We say X is regular if Xw Φ X for every
element w Φ 1 of WG(iS). Denote by Xΐeg(T) the set of unramified regular
characters of T(F). For XeKom(T(F)/T0, C*), we consider the induced
representation J(G, J5; χ) of G(F). For simplicity, we put I(X) = J(G, J5; Z).
This is called a representation of unramified principal series.

2.7. The following results are well known (see [9]). Let Xe
Rom(T(F)/T0, Cη.

(2.7.1) J(Z) has a composition series.
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(2.7.2) The contragredient representation of I(X) is isomorphic to

/(r1).
(2.7.3) For any admissible representation π of G(F), one has

HomG(π , 1(1)) ^ HomΓ(J(£, G; π), X). (This is a special case of (2.4.2)).
(2.7.4) If X is regular, then J(B, G; 1(70) is T(F)-isomorphic to

(2.7.5) If X is regular, then HomG(/(Z), I(XW)) is of dimension one
for every w e WG(S).

2.8. From now on, we treat I(X) for XeXτeg(T). Let Jίί(%) be the
set of constituents of 1(70. By (2.7.1), JH(X) is finite. From (2.7.1),
(2.7.4) and the exactness of the functor J(B;G; -), it follows that the
multiplicity one theorem holds for I(X). (Generally, this fails if X is
non-regular ([16], [17])). Thus, for XeXreg(T) one can identify JH(X)
with the set of equivalence classes of constituents of /(%). The following
fact is a special case of a result of Bernstein and Zelevinsky [1, Theorem
(2.9) and Remark (2.10)].

(2.8.1) JH(X) = JH(XW) for every we WG(S).

2.9. LEMMA. Let XeXτeg(T) and π an irreducible admissible repre-
sentation of G{F). Then π is isomorphic to an irreducible subrepresen-
tation of I(X) if and only if J(B, G; π) contains X as a subrepresentation
of T(F). In particularf there is a unique irreducible subrepresentation
of I(X). We call it (ίthe irreducible subrepresentation" of /(%).

This is easily proved from (2.7.3) and (2.7.4).

2.10. Finally, we state Casselman's result on the irreducibility cri-
terion of I(X) (see [9]). We use the same notation as in Section 1. For
a root ray aeψ, we choose a root a£ΦE such that a\s — o{a). Let d{a)
be the degree of La over F. d(a) is independent of the choice of a.
For XeΈlom(T(F)IT0, C*), denote by HQQ the subset of Ψv consisting α v

(aeψ) such that a is non-plural and X<>av = \-\Pa) or that a is plural and
χ o α

v = |. | j . ( β ) or | . | ^ \ where ε(α) = (d(α)/2) + π(\og(qF))-V^Λ and π =
3.141-••.

THEOREM (Casselman). Let XeXΐθg(T). Then I(X) is irreducible if
and only if H(X) is empty.

When G is of .P-rank one, this result was also proved by Williams
[28].

3. The irreducible decomposition of the unramified principal series.
In this section, we give the irreducible decomposition of the unramified
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principal series representations I(X) of the unramified group G for regular
unramified characters XeXτeg(T). The idea of proof can be found in
Rodier [20] when G is split. Here we will use freely Rodier's techniques.

3.1. Throughout this section we fix XeXΐeg(T). Denote by C(X) the
set of connected components of V — Uav6ff(Z) Ker(αv). For DeC(X), let
W(D) be the set of w e WG(S) such that w-'C+aD. Also, let Dχ =
n.v, f f (2,(α v )"W and W(X)=W(Dχ). For 2)eC(Z) and weWG(S), let
p(D, w) be the irreducible subrepresentation of I(XW). It follows from
(2.8.1) and Lemma (2.9) that p(D, w) is uniquely determined by w and
contained in JH(X). The remainder of this section will be devoted to
proving the following theorems.

3.2. THEOREM. Let XeXτeg(T).
(1) Let D e C(X). For any wlf w2 e W(D), ρ(D, w^) is G(F)-isomorphic

to p(D, w2). That is, (the equivalence class of) p(D, w) depends only on
D. (Thus we denote it by p(D)).

(2) The correspondence p:C(X)-^JH(X):D\-+p(D) is bijective.
(3) For every D e C(X), J(B, G; ρ(D)) is T(F)-isomorphic to

\&weW{D) X

3.3. THEOREM. Let XeXreg(T) and (H(X)) the set of coroots which
are represented by an integral linear combination of elements of H(X).
Then (H(X)) is a root system and H(X) is a basis of (H(X)). Thus com-
bining with Theorem (3.2) (2), one sees that the length of a composition
series of I(X) is equal to 2lHa)l and \H(X)\ is bounded by the semisimple
F-rank of G.

3.4. THEOREM. Let XeXτeg(T) and φ a non-degenerate character of
U(F) (see Section 4). Then, for DeC(X), ρ(D) has a Whittaker model
with respect to φ if and only if D = Dx.

Here we recall the notion of Whittaker model. For a non-degenerate
character φ of V(F), we construct the induced representation W(G, U; φ)
of G(F). The space of W(G, U; φ) consists of all locally constant functions
/: G(F)-*C such that f(ug) = φ(u)f(g) for all ueU(F), geG(F). G(F)
acts on this space by the right translation. Let π be an admissible re-
presentation of G(F). A G(F)-embedding of π into W(G, U; φ) is called
a Whittaker functional of π and its image is called a Whittaker model
of π (with respect to φ). It is known that if π is irreducible then π
has at most one Whittaker model ([21]). When π has a Whittaker model,
we call it "the Whittaker model" of π.

3.5. We define the notation. Let aeψ and w19 w2e WG(S). By the
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notation w^a) Φ w2(a) (resp. wι(a)~w2(a)), we means that the wall Ker(αv)
in V separates (resp. does not separate) two chambers w^C* and w^C*.
For a given subset H of Ψ (resp. Ψv), denote by —H the set {—a\aeH}
(resp. {—αv|αv e if}). We start with the following lemma.

3.6. LEMMA. Let aeΨQU( — Ψ0) and w the reflection in V with re-
spect to the wall Ker(αv). Let Abe a base of HomG(J(Z), I(XW)) {see (2.7.5)).

( 1 ) If αv β H(X) U (-H(Z)), then A is bijective.
(2) // αv 6 HOC) U (-#(%)), then one has

J(B, G; Ker(A)) ^ 0 r ' and J(£, G; Im(A)) ci 0 r ' .
w ' 6 h G ( S ) w'eTV^ίS)

w'(α)^α w'ία)'*«''«; (α)

( 3 ) Let φ be a non-degenerate character of U(F). If av e HOC)
and av(C+) < 0 or if av e —HQQ and αv(C+) > 0, then no constituents of
Ker(A) has a Whittaker model with respect to φ.

PROOF. We prove this Lemma in several steps. Clearly, it is enough
to verify the assertions for a e Ψo.

(Step 1) We remark the following facts. If G is of semisimple F-
rank one, then one has Ψv = {±α v}, WG(S) - {1, w) and J(B, G; I{1)) ~
X@XW ((2.7.4)). Thus the dimension of J(B, G; Ker(A)) is always less than
or equal to 1. Furthermore, by Lemma (2.9), if dim/(jB, G; Ker(A)) = 1,
then J(J5, G; Ker(A)) is isomorphic to X. When G is of semisimple F-rank
one, the assertions (1) and (2) in the Lemma are equivalent to

(3.6.1) If HOC) is empty, then Ker(A) - {0}
(3.6.2) If HOC) is non-empty, then Ker(A) Φ {0}.

By Theorem (2.10), the claim (3.6.1) is clearly true.
(Step 2) Assume G is a semisimple and simply connected group of

F-rank one and a is non-plural. In this case, G is isomorphic to RE/F(SL2)
(see (1.4)). Thus one has G(F) = SL2(E) and the isomorphism α v : F*->S(F).
As we mentioned earlier, S(F)/S0 is isomorphic to T(F)/T0. Hence α v

induces an isomorphism of ί7*/^3* onto T(F)/T0. For a complex number z,
we define the unramified character Xz by Xz°a

y — | | i . The correspondence
21—*XZ gives rise to an isomorphism of C/ZE onto Hom(T(F)/T0, C*), where
let ZE = 2π(\og(qE))~ιι/~:::ΪZ. By the definition, one has

'{αv} if z = l modZE

H(Xg) = {-αv} if z= -1 modZE.

, 0 otherwise

Thus the Lemma is a consequence of the following well known facts (see
[12], [13]). Let z vary over all C/ZE.

(3.6.3) I(XZ) is reducible if and only if z = ± 1 moάZE.
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(3.6.4) I(XJ) has a composition series of the form 0 = J 0 ciic:J 2 =
The representation Ix is a special represntation of G(F) with a Whittaker
model and IJIι is a one-dimensional representation of G(F) without a
Whittaker model.

(Step 3) Assume G is a semisimple and simply connected group of
jF-rank one and a is plural. In this case, one has G = RL2/F(SUB), where
L2 is the intermediate field between F and E such that E is the quadratic
unramified extension of L2 and SU3 is the special unitary group defined
over L2 by the hermitian form on Ez with degree three and Witt index
one ((1.4)). Thus, one has G(F) = SUS(L2) and the isomorphism α v : F* ->
S(F). (Note that α v is the coroot corresponding to r(α)). For zeC, we
define the unramified character Xz by %2°α

v = \ \β

E. By the same reason
as in (Step 2), the correspondence z\-+Xz gives rise to an isomorphism of
C/ZE onto Kom(T(F)/T0, C*). By the definition,

if ^ = 1 or (1/2) + π{\og(qE)yV^Λ moάZE

if z = - 1 or -((1/2) + 7r(log(^)ΓV/ zΊ) modZ* .

otherwise

Hence the Lemma is a consequence of the following facts. Let z vary
over all C/ZE.

(3.6.5) J(XJ is reducible if and only if z = ± 1 or ±((1/2) +

(3.6.6) For z = 1 or (1/2) + π(log(g^))-V-l, J(Z.) has a composition
series of the form 0 = I^d^cil^ — I(XZ) and Iλ is a special representation
of G(F).

(3.6.7) lγ has a Whittaker model, but I2\lγ does not have a Whittaker
model.

For (3.6.5) and (3.6.6), we refer the reader to Keys [15]. Here we
give a proof of (3.6.7). Let z = 1 or (1/2) + τr(log(^))-1i/ : rϊ. We con-
sider the contragredient representation !(%_,) of J(ZJ. Let 0 = /Jc/Jc
jj = /(%_,) be a composition series of J(Z_f). Since /x ^ /g/Jί, /2//1 is a
special representation of G(F). Let i ί be a hyperspecial maximal compact
subgroup of G(F). Then it is well known that J(Z_t) contains a unique
if-spherical constituent Sp(X_z) ([9]). Since Sp(X_z) is not a special re-
presentation (see Borel [2, p. 45, Remark]), it follows that Sp(X_z) is
Cr(F)-isomorphic to I[. Hence I[ contains a iί-invariant non-zero vector
φκ. Let Ω_z be the Whittaker map of /(%_,) constructed in [11]. Using
the explicit formula of the "unramified Whittaker function" computed by
Casselman and Shalika [11, Theorem 5.4], we obtain Ω_z(φκ) = 0. This
implies I[ = Ker(Ω_z). Therefore Iλ cz Γ2/I[ has a Wittaker model. Further,
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from [11, Corollary 1.8] or [21, Theorem 7], it is known that IJIλ does
not have a Whittaker model.

We note that, in the case of (Step 2) and (Step 3), the Lemma re-
mains true even if X is non-regular.

(Step 4) Assume G is a semisimple group of i^-rank one. Let
μ:G^-^G be the universal covering of G. T~ = μ~\T) (resp. S~ = μ~\S)9

B~ = μ~\B)) is a maximal torus (resp. maximal F-split torus, Borel sub-
group) of G~ defined over F. One may identify the relative root system
Φ(G~, S~) of G~ (with respect to S~) with Φ. By the same way as in
(Step 2) and (Step 3), each unramified character of T~(F) is denoted by
Xz for zeC. Let G+ be the subgroup of G(F) generated by U(F) and
U°(F), where U° is the unipotent radical of the opposite parabolic sub-
group of B. G+ is a normal closed subgroup of G(F). Moreover, it is
known from [4] that G+ satisfies the following properties.

(3.6.8) G(F) = T(F)G+.
(3.6.9) μ(G~(F)) = G+, that is, μ: G%F)/Ker μ{F) -> G+ is a topolo-

gical group isomorphism.
Note that Keτ μ(F) is finite and central in G~(F). Let T^ be the

maximal compact subgroup of T~(F). Since μ(Tϊ)aTQ and Ker μ(F)cΓ^,
we have an injection T~(F)IT^^T(F)/T0. Thus %°μ gives an unramified
character of T~(F). Clearly Xoμ = χz if and only if χoαv = | |J. In
particular, one has

(3.6.10) H{X) = H(%oμ).
Now, we denote by I(X)\β+ the restriction of I(X) to G+. On the other
hand, by (3.6.9), I(G~, B~; X<>μ) is considered as a representation of G+.
Then one has a G+-isomorphism

(3.6.11)
φ \—*φoμ

According to this isomorphism, A transfers to a base A~ of
J T ; Xoμ), I(G~, B~; Xw<>μ)). Clearly

(3.6.12) Ker(A) = {0} if and only if Ker(A~) = {0}.
Since the Lemma on G~, X°μ, and A~ has already proved in (Step 2) and
(Step 3), the Lemma on G, X and A is easily proved from (3.6.10), (3.6.11),
(3.6.12) and (Step 1).

We remark that in this case the Lemma remains true even if X is
non-regular. In fact, for every non-regular unramified character X, /(%)
is irreducible and H{X) is empty.

(Step 5) Assume G is of semisimple F-rank one. Let G' be the
derived group of G and C the central torus of G. Put T = ΓΓlG', S' =
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SΓ)G' and B' = BC\G'. We identify the relative root system Φ{G', S') of
G' (with respect to S') with Φ. Let X' (resp. X\c) be the restriction of
X to T'(F) (resp. C(F)). Note that χ' is not necessarily regular. Since
av(F)czS'(F), one has 5C°αv = χ'°αv. Therefore we obtain

(3.6.13) H(X) = H(X').
Let I(X)\c.σ' be the representation of C{F) G'{F) obtained by restriction
of I(X) to C{F) G'{F). Since G(F) = T{F) G\F), we have a C(F) G'(F)-
isomorphism

(3.6.14) I(X)\co' - %!c (8) /(G', B'; X') .

According to this isomorphism, A transfers to a base A! of HomG/(/(G',
B'; %'), /((?', £'; %'")). Clearly

(3.6.15) Ker(A) = {0} if and only if Ker(A') = {0}.
The Lemma on G', X' and A! has already proved in (Step 4). Also we
recall that if Xf is non-regular then /(%') is irreducible and HQC) is empty.
Hence the Lemma on G, X and A is easily proved from (3.6.13), (3.6.14),
(3.6.15) and (Step 1).

(Step 6) We prove the Lemma for general G. For θ = {σ(a)}, put
P — Pθ, M = Mθ, N = UΘ and δP = dθ. M has semisimple F-raήk one.
Mf]B is a Borel subgroup of M containing T. The representation
/(P, B; X) of P(F) induced by X is the right regular representation of
P(F) on the space of all locally constant functions φ: P{F) —> C such that
φ(bp) = δp\b)δB(]b)X(b)φ{p) for all beB(F), peP(F). Note that N(F) acts
trivially by I(P, B; X). On the other hand, we have the representation
I(M, MΠB; X) of M(F). By the restriction map ^i-*^*^, from /(P, B; X)
to I(M, MΠB X), we obtain a P(JF)-isomorphism from I(P,B;X) onto
/(Λf, ilί(Ί5; X) (x)l^, where 1^ denotes the trivial representation of N(F).
In particular, HomP(/(P, B; X), I(P, B; Xw)) is isomorphic to KomM(I(M,
MΠB; Z), I(M, MΠ B; T>)). Let A' be a base of HomP(/(P, B; X), /(P, P; χ )).
Then, the G(F)-homomorphism Ax of I(X) to J(ZW) is defined to be

KX) - /(G, P; 7(P, B; %)) - I(G, P; I(P9 B; %•)) ~ I(XW) .

φ\-» Af°φ

By (2.7.5), there exists a non-zero xeC such that A = χ-A1. Clearly,
we may assume λ, = 1. Further, it is easy to check that if A! is an
isomorphism then A is also an isomorphism. Since the Lemma on M, X
and A! has already proved in (Step 5), if α v g H(X){J(-H(X)), then A! is
an isomorphism and hence A is also an isomorphism. This proves the
assertion (1) in the Lemma.
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Now we assume α v e H(X) U (-#(%)). Then /(M, Mn J3; Z) has a com-
position series of the form OcKer(A')cJ(ilf, MΓΪB X). One has Ker(A) ^
I(G, P; Ker(A')) as G(F)-modules. In order to determine the Jacquet
module of Ker(A), we apply the Geometrical Lemma to J(B, G; I(G, P;
Ker(A'))). Then there exist a numeration w19 w2, — ,wk of elements of
W(M, T) and a filtration of J{B, G; 7(G, P; Ker(A'))) of the form 0 = J o c
J , c c Jfc = J(£, G; /(G, P; Ker(A'))) such that JJJ^ is Γ(F)-isomorphic
to

I{T, Int(*^)(ikί)n Γ; J^Mnlnt^wΓXT), M; Ker(A')))

for i = 1, 2, •••,/:. Here one has

I(Γ, Int(*^)(M)Π Γ; J^(^nInt(*^Γ)(T), M; Ker(A')))

- J(T, Γ; J <(T, M; Ker(A'))) ~ JWί(Γ, M; Ker(A')) ~ %Wί

because J(T, M; Ker(A')) is T(.P)-isomorphic to λ by (Step 5). Thus JJJt^
is Γ(F)-isomorphic to Xw\ In particular, the filtration gives a composition
series of J(B, G; /(G, P; Ker(A'))). Since W(M, T) - {wf e Wβ(S)\w'{a)~a},
one has

, G; Ker(A)) ^ J(5, G; /(G, P; Ker(A'))) ^ Θ V' .

Further, the exactness of the functor J(B, G; •) implies the assertion on
/(£, G; Im(A)).

Finally we prove the assertion (3) in the Lemma. Since σ(a) is positive,
one has av(C+)czR+. Thus we may assume α v e —H(X). Then, by (Step
5), Ker(A') does not have a Whittaker model. By Casselman and Shalika
[11, Corollary 1.7] or Rodier [21, Theorem 7], if σ has no Whittaker
model, then neither does the representation of G induced by it. Hence,
no constituents of Ker(A) have a Whittaker model. q.e.d.

3.7. COROLLARY. We fix av e Ψv and take w, w' e Wβ(S) such that
Cl(^-1C+)nCl('M;'-1C+) - Ker(αv), where for a subset D of V, C1(D) denotes
the closure of D in V. Let A be a base of HomG(I(Xw), I(XW')).

( 1 ) If awi H(X) U (~H(X))y then A is bijective.
(2) If ave H(X) U (-ff(Z))f then one has

J(B, G; Ker(A)) ^ 0 Xw" and J(B, G; Im(A)) ~ © T" .
w"eWG(S) w"eWG{S)
w"(α)~w;(α) w" {a)~~w'ia)

(3) Lei φ be a non-degenerate character of U(F). IfaveH(X)and
O/CMΓ'C4-) <0 or if av e ~H(X) and αv(^~1C+) > 0, then no constituents
of Ker(A) have a Whittaker model with respect to φ.

PROOF. Put B'-=\Ί\t(*w~ι){B) and C^w^C*. C is the Weyl chamber
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corresponding to B\ Either σ{a) or — σ(a) is a simple root with respect
to B'. For every function φ on G(F), we define the function φw on
G{F) by φw(g)=φ(*wg) for g e G(F). φ\-*φw gives rise to G(F)-isomorphisms

I{Γ) >̂ J(G, J3'; χ) and J(χw') >̂ /(G, £'; %w~lw'). According to these isomor-
phisms, A transfers to a base A! of Homβ(J(G, £'; %), /(G, Bf\ Xw~lw')). It
is easily seen that Ker(A) is G(F)-isomorphic to Ker(A') and J(B, G; Ker(A))
is T(F)-isomorphic to JW(B', G; Ker(A')). Applying Lemma (3.6) to
I(G, B'; %), I(G, B'\ Xw~lw'), α, C and A', we obtain the assertion, q.e.d.

3.8. PROPOSITION. For w, w' e WG{S), let A be a base of HomG(/(%w),
IW)). Let

Y = YQL; w, w')

= {w" e WG(S)\w"(a)~w(a) and wn{a)i^w\a) for some av eH(X)} .

Then one has

J(B, G; Ker(A)) a φ Vs" and J(B, G; Im(A)) ^ φ χ " .

PROOF. This proposition is proved by the same way as in [20]. For
the sake of completeness, we give the proof* We take a minimal gallery
in V between two chambers w^C* and w'~xC+ of the form w~ιC+ = C09

Ci, , Cn_19 Cn = wf~lC+. The Proposition is verified by the induction on
n. For n = 1, Corollary (3.7) implies the required assertion. Assume
n > 1. We take wn_x e ΐfG(S) such that Cn_! = w'-^. Let An_! (resp.
A') be a base of H o m ^ r ) , J(Z*-0) (resp. HomG(/(%w-0, /(%"')))• We
denote by J(An_!) (resp. J{A')) the Γ(ί7)-homomorphism of /(β, G; J(χ )) to
J(β, G; / ( r - 0 ) (resp. J(B, G; J ( r - 0 ) to J(B, G; J(χw/))) induced from An_x

(resp. A'). Since an irreducible component of J(B, G; I(XW)) is represented
by Xw" for w" e WG(S), we can consider subsets

y2 = {wff e WG(S)\J(An^)0C"') = 0}

and

γ2 = {W" 6 Wβ(S) I JίA^tt"") Φ 0 and J{A')oJ{An_Mw") = 0} .

Then one has obviously

J{B, G; KerίAΌA,.,)) ^ Ker(J(A')o/(A^)) ^ φ χ " .
" 6 F U F

Now we show Y1U Y2 - Y. First, let w" e Yt. By the induction hy-
pothesis, there exists α v e H(X) such that w"(a)~w(a) and w"(a) rh wn_x{a).
Since the gallery {CJ is minimal, one has necessarily w"(α) φ w'(a). Thus
w" is contained in Y. Next, let w" 6 F2. There exists the coroot α v

such that Cl(Cn_1)nCl(Cll) = Ker(αv). Then, by Corollary (3.7), α v is an
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element in H(X) \J(-H(X)). Further, one has wn^wn_ι(a) and w"(a)φw'(β).
The minimality of the gallery {CJ implies wn(a)^w{a). Thus w" is con-
tained in Y. On the other hand, let w" e Y. We can take α v 6 H(X) such
that w"(a)~w(a) and w"(a)Φw'(a). Then there exist adjacent chambers
CU and C, in the gallery such that 01(0^) f] €1(0,) = Ker(αv). From the
induction hypothesis, the minimally of the gallery and Corollary (3.7), it
follows that if i < n then w" e Yx and if i = n then w" e Y2. This finishes
the proof of Y1UYι = Y.

In the result, J(B, G; KertAΌA^)) is TCF)-isomorphic to @w»eYW".
Since Y does not contain the element w0 such that w^C+ = — w~ιC+,
A'oAn_γ is non-trivial. Thus, Ker(A) coincides with Ker(A'°An_!). This
comletes the proof of the assertion on Ker(A). The assertion on Im(A) is
derived from the exactness of the functor I(B, G; •)• q.e.d.

3.9. COROLLARY. Let w and w' be elements in WG(S). Assume that
we have w(a)~w'(a) for any αv eH(X). Then I(XW) is G(F)-ίsomorphic to
I(Γ').

3.10. COROLLARY. For we WG(S), let

Y(X; w) = {w" e WG{S)\w"(a)~w(a) for any av e H(X)} .

Let π be the irreducible subrepresentation of I(XW). Then J(B, G π) is
T(F)-isomorphic to 0wner(Z;M;) X

w'\

PROOF. By Corollary (3.9), I(XW) is G(ί>isomorphic to I(XW") for every
w" e Y(X; w). Thus π is also the irreducible subrepresentation of I(XW")
for every w" € Y(X; w). Then, by Lemma (2.9), we obtain

(3.10.1) 0.». r ( Z ; i ί ) Xw'czJ(B, G; π).
Let w0 be the element in WG(S) such that w^ιC+ = —w^C*. Let A be a
base of KomG(I(Xw°), I(XW)). Clearly, π is the irreducible subrepresentation
of Im(A). Furthermore, one has Y(X; wQ, w) = [w" e WG{S)\w"{a) ^ w(a)
for some α v e H(X)}, that is Γ(Z; w) = WG(S) - Y(X; w0, w). By Proposition
(3.8), one has

(3.10.2) J(B, G; π)czJ(B, G; Im(A)) = φw»β r ( Z ί w ) F " .
(3.10.1) and (3.10.2) complete the proof.

3.11. PROOF OF THEOREM (3.2). Let w e W(D). Then W(D) is equal
to Y(X; w). Thus the assertions (1) and (3) are consequences of Corollary
(3.9) and (3.10). The assertion (2) follows from (2.7.4) and the assertion
(3). q.e.d.

3.12. PROOF OF THEOREM (3.4). It is known from Casselman and
Shalika [11, Corollary 1.8] or Rodier [21, Theorem 7] that there exists
a unique constient of I(X) which has a Whittaker model with respect to
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φ. Now, we take a connected component DeC(X) which differs from
Dx. Then there exists a coroot aveH(X) such that αv(Z?)c/2_, where
Λ_ is the set of negative real numbers. We can take a chamber
w"1C+czD with the wall Ker(αv). By the definition, p{D) is the irreducible
subrepresentation of I(XW). Let wf be the reflection with respect to
Ker(αv). If A is a base of Hom^/OΓ),7(%w)), then Ker(A) is non-trivial
by Corollary (3.7) (2). In particular, p(D) is the irreducible subrepresen-
tation of KerCA). From aw{w-1C+)aay(D)(zR_ and Corollary (3.7) (3), it
follows that no constituents of Ker(A) have a Whittaker model. q.e.d.

3.13. PROOF OF THEOREM (3.3). (H(X)} is clearly a subsystem of
Ψv. We show that H(X) is a basis of (H(X)). Obviously, the proof is
reduced to the case where the relative root system Φ is irreducible. We
take an irreducible component ΔEiQ of ΔE. Let ΦEt0 be the subsystem of
ΦE generated by ΔE>0 and Γ o = {7 e Ga\(E/F) \ Ύ(ΔEf0) = ΔEt0}. Then ΦE has

the irreducible decomposition of the form

ΦE= II 7(0,,.)
f e Gal UAF)/Γ0

It is easily seen that the proof is reduced to the case of ΦE = ΦEQ. Thus
we assume ΦE is irreducible. Let Σ be the automorphism group of ΔE

induced from Gal(i?/F). Then we have the following four types (see,
[8], [24]).

Type I. \Σ\ = 1. Then one has E = F and ΦE = Φ.
Type II. \Σ\ = 2 and Ψ has no plural root ray. In this case, E is

the quadratic unramified extension of F. For aeΦE, let La be the field
of definition of a and a\s the restriction of a to S. If a\s is a short
(resp. long) root, then one has La = E (resp. La = ί7).

Type III. \Σ\ — 2 and ?Γ has plural root rays. Then E is the quad-
ratic unramified extension of F. For aeΦE, if α| s is a non-divisible
(resp. divisible) root, then one has La = E (resp. La = ί7).

Type IV. |JF| = 3. Then E is the cubic unramified extension of F.
For a 6 Φ ,̂ if α| s is a short (resp. long) root, then one has La = E
(resp. La = F).

For aeΨ, by the definition, one has

(3.13.1) d(a) =

1 if Type I, Tpye II and σ(a) is long or
Type IV and σ(a) is long

2 if Type II and σ(a) is short or Type III.

3 if Type IV and σ{a) is short

Put 6 = 1 + πQog(qF)Y1V — 1. For each α v e (H(X)), by the definition of
H(X), there exist p(α v )eZ and g(αv)e{0, 1} such that Xoav = |P(αv)+g(αv)e
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Since -\2β = | F, p(av) and q(av) is uniquely determined by α v . Further
we have the following:

3.14. LEMMA. (1) For any ave(H(X)), p(av) + q{a?)e does not
vanish.

(2) Assume we have Type I, Type II or Type IV. Then one has
the following relations for any αv, bv e <ΐf(Z)>:

<Z(αv) - 0 , p(α v + 6V) = p(αv) + p(6v) , p ( - α v ) - - p ( α v ) .

(3 ) Assume we have Type III. Then one has the following relations
for any αv, bvs(H(X)):

p(αv) = 0 mod 2 ,

+ p(6v) + 2 ί/

(p(av) + p(6v) otherwise ,

q(av + 6V) Ξ q(a

v) + q(bv) mod 2 ,

ί-ϊ>(αv)-2 ί/ 9(αv) =

PROOF. (1) For α v e <£Γ(Z)>, suppose p{ay) + q(av)ε = 0. Then
is trivial. Let WG WO(S) be the reflection in V with respect to Ker(αv).
Then, for any λ eI # (S) , one has

( Z " ° χ - i ) o λ = Zo(w(x,) - λ) - (Zoα v)-< r ( a )^> = 1 .

Thus T equals Z. This contradicts to the regularity of Z.
(2) When we have Type I, Type II or Type IV, Ψ has no plural

root ray. Hence q(ay) equals zero for any ave(H(X)). Other relations
are clear.

(3) It follows from (3.13.1) that p(αv) is even. Other relations are
proved by simple calculations. q.e.d.

3.15. We continue the proof of Theorem (3.3). Let Ω be the closed
cone in C generated by ε and 1, that is, Ω = {x + yε\x ^ 0 and y ^ 0}.
For αve<iί(Z)>, α v is called β-positive if p(av) + q(av)εeΩ. We denote
by (H(X))+ the set of all ώ-positive elements in (H(X)). Also, an element
α v in (H(X)}+ is called 42-simple if it is not decomposed to the sum of
two £?-positive elements. It follows from Lemma (3.14) that (H(X))+

satisfies the following properties (see, Bourbaki [5, Chapitre VI]).
(3.15.1) <#(Z)>+ is closed.
(3.15.2) <H(χ)> = <ff(Z)>+Π(-<TO>+).

Then, by Bourbaki [5, Chapitre VI, Section 1, Corollaire 1 to Proposition
19 and Corollaire 1 to Proposition 20], the set Ω(X) of all J2-simple elements
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in <#(%)>+ is a basis of <#(%)>. Therefore, to verify that H(X) is a
basis of <i/(%)>, it is enough to show that HQί) is contained in Ω(X),
(then, automatically, one has H(X) = Ω(X) by Bourbaki [5, Chapitre VI
Section 1, Corollaire 4 to Proposition 20]). First we obtain the following:

3.16. LEMMA. Assume we have Type I, Type II or Type III. Then
H(X) is contained in Ω{X).

PROOF. H(X) is clearly contained in <iί(%)>+. Thus it suffices to
prove that each element of H(X) is i2-simple. We show it in every type.

Type I. For α v 6 H(X), one has p(αv) = d(a) = 1. Thus α v is Ω-
simple.

Type II. In this case, Ψw is a root system of type Bn, Cn or F4.
Let α v e H(X). When σ(a) is long, one has p(αv) = d(α) = 1. Thus α v is
42-simple. We assume σ(a) is short. Suppose that α v is not i2-simple.
Then one can take i2-positive elements dί and α2

v such that α v = aί + α2

v.
By (3.13.1) and Lemma (3.14) (2), one has 2 = p(αv) = p(αx

v) + p(α2

v). Since
p(«iv) > 0 and p(άϊ) > 0, both p(ctf) and 2>(α2

v) equals 1. Hence both αx

v

and a* are contained in H{X) and both σ(αx) and σ(α2) are long, in other
words, both aί and α2

v are short. Then, by the properties of root systems
of type Bn, Cn and FA, one knows αx

v — α2

v e (H(X)). However one has
p(a? - α2

v) = p(αx

v) - p(aϊ) = 0. This contradicts to Lemma (3.14) (1).
Hence α v is i2-simple.

Type III. In this case, ?FV is the #n-type root system. We recall
that p(α v) is even for every α v e <#(%)>. Let aveH(X). Then p(α v)
equals either 0 or 2. First we assume p(av) = 2. Suppose that α v is
not ^-simple. Then there exist 42-simple roots α^, α2

v e (H(X))+ such that

α

v = α i

v + α2

v. By Lemma (3.14) (3), one has p(αx

v) = p(α2

v) = 0 and q(a?) =
q(β¥) = 1. Thus both a? and α2

v are contained in H(X) and both αx and
az are plural, in other words, both αx

v and α2

v are short. Then by the
properties of the βw-type root system, αx

v — α2

v is contained in <£Γ(Z)>.
However one has

P(αχv - α2

v) - p(aϊ) + p(~α2

v) + 2 - 0

and

g(α2

v - α2

v) Ξ g(α2

v) + g(-α2

v) mod 2 Ξ O mod 2 .

This contradicts to Lemma (3.14) (1). Therefore α v is i2-simple. Second,
when p{ay) equals 0, one has q(ay) = 1. This implies that α v is Ω-
simple. q.e.d.

Next, for Type IV* we obtain the following;
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3.17. LEMMA. Assume we have Type IV. If H(X) is not contained
in Ω(X), then one has (H(X)} — Ψw and H(X) is a set of simple roots of

PROOF. ΨV is the G2-type root system. Under the assumption, we
can take a coroot α v 6 H(X) which is not 42-simple. Then σ(a) is neces-
sarily a short root. There exist β-positive roots aί, α2

v e <i/(%)>+ such
that α v = a? + α2

v. By (3.13.1) and Lemma (3.14) (2), we obtain 3 =
p(av) = p(aί) + p{aί). One may put p(aί) = 1 and p{aί) = 2. Thus aί
is contained in H(X) and σ(a^) is long. Obviously, α v , a? and α2

v are
distinct each other and contained in (H(X)}+. Furthermore, the length
of α v is different from that of aί. Then (H(X)) coincides necessarily
with F v by the properties of the G2-type root system.

Now, we show H(X) = {αv, aί}. Suppose that there exists bw e H(X)
such that bv $ {αv, aί}. If 6V is short, then &v - aί is contained in Ψv

because aί is short. However, one has p(bv — aί) = p(bv) — p(aί) = 0.
This contradicts to Lemma (3.14) (1). Thus bv must be long. If 6V - α v

is contained in Ψv, then we have also a contradiction by p(6v — α v) = 0.
Thus bv — α v is not contained in Ψy. Nevertheless, by the properties of
the G2-type root system, we can take the short root c v 6 Ψv such that
bv — α v = 3cv in X*(S). Then one has p(cv) = 0. This is a contradiction.
Consequently, H(X) equals {αv, aί}. Since α v is long, aί is short and
H{X) generates Ψv, H(Z) is a basis of Ψv. This completes the proof of
the Lemma and hence Theorem (3.3).

4. Explicit form of Whittaker functions. In this section, we give
an explicit form of Whittaker functions restricted to S(F). Here, we
consider only the Whittaker model attached to the constituent p(Dx) of
I(X) for XeXτeg(T). This result is used for calculations of zeta integrals
in Section 6.

From now on, we assume the characteristic of F is equal to zero.

4.1. First we consider the group UA consisting of all (unitary) char-
acters of U(F). We fix a Chevalley—Steinberg system {xa}a*ΦE of G ((1.3))
and take a coherent system {(Lα, xa)}aBΨ of G induced from {#α}αeφ£ ((1.7)).
For aeψ, let Ua{a) (resp. Z72β(α)) be the root subgroup of G corresponding
to the root σ(a) (resp. 2σ(α)). When a is non-plural, we put U2σ(a) = {1}.
Let Na = Uσ{a)(F)/U2σ{a)(F) for aeψ. Then the coherent system {(Lα, xa)}aBψ

induces the isomorphisms za: La^ Na (see, (1.5), (1.6)). Since the derived

group U'(F) of U(F) has the form HβeΦ+-dUβ(F)y the quotient group

U(F)IU'(F) is equal to Παeτ0Nα Thus, we obtain an isomorphism
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aeΨ0 ae¥0

By this isomorphism, UA is isomorphic to the Pontrjagin dual ΐlaL
A of

ΐ[aLa. For ψeUA, ψ is called a non-degenerate character if ψoza is
non-trivial for any aeψo. T(F) acts on UA by ψ*(u) = ψit u t"1) for
ψ eUA, te T{F) and u e U(F).

Next, we construct an isomorphism of ΐ[aeΨ0La to UA. We fix a
non-trivial character ψ> of F. For each α e ?F0, let ^ β = ψF°trLa/F be a
non-trivial character of Lα, where trL α / F is the trace of La over F.
Further, for each a 6 ΨQ9 we define the homomorphism pa from C/CJP) to
La by the composition of three homomorphisms, the natural homomorphism
U{F) -> *7(F)/ff'(F), z-1: U(F)/U'(F) -> Πα L. and the projection Πα La -> Lα.
Then 9) = Jlaeψ0(ψa°Pa) is a non-degenerate character of U(F). Notice
that φ depends on the coherent system {(Lα, α?α)}αe?r0 Using this character,
we define the isomorphism λ^ of Jlaeψ0La onto UA by

XF((ra))(u) = φ(U za(ra-pa(u)))
aeΨ0

for (ra)eJlaew0La, ueU(F). Let U$ be the image of ILe^i*7 by xF9

that is,

m = {9 (Π ».(r. p.( ))) Ira 6 F for any ae¥0} .
a

UF is a closed subgroup of UA and depends on the coherent system
{(Lα, xa)}aeψ0' The following property is easily seen.

(4.1.1) UF is S^-invariant.
Let C/0

A = {<p°\seS(F)}. By (4.1.1), i70

Λ is a subset of U£. Note that one
has φ° = λ,((σ(α)(8))ββro) for s6S(F).

Let C0°°(ί7
A) (resp. C~(UF)) denote the set of all locally constant

functions on UA (resp. l/ί) with compact support. We fix a regular
unramified character XeXτeg(T). Let p(Dz) be the constituent of I(X)
with a Whittaker model (Theorem (3.4)) and denote by 3^rX%, φ) the
Whittaker model of p(Dx) with respect to φ. The following two theorems
are main results in this section.

4.2. THEOREM. For each fe W~β^(X, φ), there exists a family
{φweCϊ(U$)\we W(X)} such that

/(«)= Σ Φ.{φ8)Us)T{s)
WSW(X)

for any seS(F), where W(X) is the subset of WG(S) defined in (3.1).

4.3. THEOREM. For every weW(X) and φeC~(UA), there exists a
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Whittaker function fe 2 ^ r ( % , φ) such that f(s) = φ(φ*)dB(s)Xw(s) for any
seS(F).

When G is a split group, these theorems were proved by Rodier in
[22].

For the proof, we need a few lemmas. If necessary, changing X to
Xw by w e W(X), one may assume p(Dx) is the irreducible subrepresentation
of /(%). Put π = ρ(Dχ) and let F π be the representation space of π realized
in I(X).

4.4. LEMMA. Let θ be a subset of Δ. Then the Jacquet representa-
tion J(PΘ, G; I(X)) of I(X) with respect to (Pθ, Mθ) is Mθ(F)-isomorphic to

PROOF. This is proved in four steps.
(Step 1) Applying the Geometrical Lemma to J(PΘ, G: /(%)), one has

a numeration w19 w2, -- ,wk of elements of W(T, Mθ) and a filtration
0 = J o c J,cz c Jk = J(Pβf G; J(Z)) such that JJJ^ is M^(F)-isomorphic
to I(MΘ, Mθ Π B; XWί) for 1 ^ i ^ k. Further, the Frobenius reciprocity
law implies the isomorphism

* G; /(*)), JJJ^) - Hom,(

Hence, Hom^^^P^, G; I{X)), JJJ^ is of dimension one. Let A4 be a base
of Hom^(J(P,, G; I{X)\ JJJ^) for 1 ^ i S k.

(Step 2) We show J ^ c K e r C ^ ) for 1 ^ i ^ k. For ΐ = 1, it is trivial.
Assume i ^ 2. Suppose A^J^ is non-trivial. Then, since A^J^ con-
tains the irreducible subrepresentation of /(M*, M^ΠJB; %Wί)> the Jacquet
module J(MΘ Π B, Mθ; A^J^)) must contain the Γ(F)-irreducible component
XWi. On the other hand, if we apply the functor J(MΘΓ\B, Mθ; •) to the
exact sequence J^—>A<(J<_1)—>1, then we obtain the exact sequence

J(MΘ n B, Mθ) Jt_t) -> J(M, n B; Mθ; A^J^)) — 1 ,
ill

Θ © r ^
3=1 WBWβ(S)

where WΘ(S) denotes the relative Weyl group of Mθ with respect to S.
By [1, Lemma 2.11], each coset of WΘ(S)\WG(S) contains the one and only
one element of W(T,MΘ). It follows from this fact that J(MΘΓ\B, Mθ; Jt-ι)
does not contain XWί. This is a contradiction.

(Step 3) We show Jt ςt Ker(A<) for 1 S i ^ k. Suppose Ker(Ai) con-
tains J{. Then J(M9 Π B, Mθ; Ker(AJ) contains the Γ(F)-subrepresentation
®wBwθιs)^'Wi' However, if we apply the functor J(MΘ Π B, Mθ; •) to the
exact sequence
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Ker(A f) -> J(Pβ, G;

I(M,,M
then we obtain the exact sequence

1 -> J(MβΓΊ5, Λf,; Ker(A,))-» φ Γ - J(AΓ,nB, Mβ; Im(At)) -> 1 .
e W l S )

This implies a contradiction.
(Step 4) By (Step 2) and (Step 3), the composition of the injection

Ri'.JJJi-^JiPθtG IiX))/^ and Ai is non-trivial for 1 ^ i ^ fc. Thus
A Ĵfc, gives a base of Hom (̂/(ifcf,, MΘΓ\B; Xwή, I(MΘ, Mθf)B; Xwή) for 1 ^
i ^ k. In particular, Â  is surjective and Ker(AJj.) equals J"<-1# Hence,
the homomorphism

0 A,: J(PΘ, G; /(%)) -> © (JJJ^) ^ 0 7(ΛΓΛ M, Π B; Xw)
i=l i=l weW(T,Mθ)

gives a ikf̂ (î )-isomorphism. q e.d

4.5. COROLLARY. J(PΘ, G; π) is Mθ{F)-isomorphic to a subrepresen-
tatίon of (Bwewa)r)wiτ,Mθ) I(MΘ, MθΓίB; Xw).

This is a result of Lemma (4.4), Theorem (3.2) (3) and the Frobenius
reciprocity law.

4.6. We recall the results in [19]. We consider the quotient space

VI == F f f/Span{τr(^> - v\ve Vπ, u'e U'(F)} .

U(F) acts on VI by π. Since the action of U\F) on VI is trivial, (TΓ, VI)
gives rise to a representation of U(F)/U'(F). Then, by [19, Theorem 2
and Proposition 2], there exists the locally free sheaf ^ of the complex
vector space over UA satisfying the following:

(4.6.1) Denote by Γe(^~, UA) the vector space consisting of sections
of ^~ over UA with compact support. For ψeUA and y e Γc(^l UA), let
^(ψ) be the stalk of &~ at ψ and y(ψ) the image of y to ^{ψ). Then
there exists the isomorphism rf from F* onto Γe{^~, UA) such that

for every we Ϊ7(JF), v*e F* and ψeUA.
(4.6.2) Let η: Vκ -> Γc{^, UA) be the composition of the natural homo-

morphism Fff—>Ff and 97*. Then, for each ψe UA, the homomorphism
from Fff to ^{ψ) is surjective and its kernel is equal to
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Vf(B, G) (see (2.3)). Thus ^r(ψ) is i7(F)/J7'(i7)-isoinorphic to the ψ-
localization V+(B, G; π) of π.
The following assertion is equivalent to the uniqueness of a Whittaker
model (c.f. [11], [21]).

(4.6.3) ^{f) ~ C for any non-degenerate character ψe UA.
Furthermore, the following is an easy consequence of (4.6.2).

(4.6.4) For seS(F), ψeUA and ^e Vπ, η{y)(f8) vanishes if and only
if yj(π(s)v)(ψ) vanishes.
Using (4.6.3), for each veVπ, we define the C-valued function fv on
G{F) by

(4.6.5) Λ(<7) = η(π(g)v){φ), g e G(F).
Then one has ^ ^ T ( Z , φ) = {fv\ve Vπ).

4.7. For ψe UΛ, let

d(ψ) = {σ(a)\aeψo and ψoχa is non-trivial}

and Zs(ψ) the stabilizer of ψ in S(F). Then one has
(4.7.1) ZsM = (n,β**) Ker(/3))(F).

Since Zs(ψ) acts on Vψ(B, G; π) according to π9 the isomorphism ^~(ψ) ^
Vψ(B, G; 7r) of (4.6.2) induces the action of Zs{f) on J^if). This action
is also denoted by π. From the definition (2.3), it follows that the
representation (π, ̂ ~(ψ)) of Zs{$) is equivalent to the representation
QB®J+{B,G\π\ V+{B,G\π)).

We denote the subset TΓ(Z)Π t^(Γ, MJ(^,) of TΓG(S) by W(X, φ), that
is, W(X, ψ) = {we W{X)\w~\A{ψ))czΦ+}.

4.8. LEMMA. The representation (π, ^~(ψ)) is Zs(ψ)-isomorphic to
a subrepresentation of @WeWiχ,γ) δB'X

w\zsιψ)

PROOF. Put P = PΔ[ψ), M = AfJ(̂ ,. It is easy to see that ^ ( ψ ) is
Zs(τ/r)-isomorphic to

δB\Zs{t)®J^wf]M)(MnB, M; J(P, G; π)) ,

where ψ\{UViM) is the restriction of ψ to U(F)f]M(F). Then, it follows
from Corollary (4.5) that ^"(ψ) is Zs(^)-isomorphic to a subrepresentation
of

Θ {8B\MSt+)®J+hunM)(MΓί B, M; I(M, Mn B; Xw))} .

By the definition of Δ{ψ), ψ\{Uf]M) gives a non-degenerate character of
U(F)ΠM(F). Then, it is known by [11, Corollary (1.7)] that JΨUunM)(Mf]
B,M;I(M,MΠB;XW)) is Zs(^)-isomorphic to r ^ . Here, notice that
Zs(ψ) is central in M(F). q.e.d.
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4.9. LEMMA. Denote by C1([/O

Λ) the closure of Z70

Λ in UF. Let ψ be
an element in C1(C/O

Λ) and ξ an element of the set {δB-Xw\w e W(X, ψ)}.
Let v be an element in Vπ such that η(v)(ψ) is an eigenvector of Zs(ψ)
with the eigen character ζ\zsφ) Then there exists a compact neighbourhood
Sϊ of ψ in UF such that the map s±-> ξ(s)~ι-Ύ]{π(s)v){φ) is constant on

PROOF. We verify this lemma in four steps.
(Step 1) Since both π and ξ are smooth, there exists an open compact

subgroup © of S(F) such that π(s)v = v and ξ(s) = 1 for any s e S . Put

Zs{ir\ = {s e Zs(ψ) I \a(s)\F ^ 1 for any a e A) .

Here we can prove that the quotient ^ ( 1 ) 1 / ( 6 0 ^ ) 1 ) is a finitely
generated monoid (Appendix). Thus there exists a finite subset <S>aZs{ψ)1

such that Z8(ψ\ is generated by (Kn Zs{ψ)^) U@. For each se@, since
y)(π(β)v)(ψ) is equal to ξ{s)η{v){ψ)> there exists a compact neighbourhood
% of α/r in Ϊ7^ such that η(π(β)v) = ζ(s)η{v) on 81,. Let Sί' be the inter-
section of Sl8, s6@.

(Step 2) For simplicity, let z/ = {αx, α2, , an) and J( f ) = {αA+1, , an}.
By the isomorphism χF defined in (4.1), we assume that ψ* corresponds to

f. From (4.7.1), it follows

9 D (** = ° a n d « A W i ) c ^ for 1 ̂  ί ^ fc
( ί , ^ 0 a n d a t ( Z s ( ψ \ ) = l ί o r k + l ^ i ^ n .

For a positive integer p, define the neighbourhood 23P of ψ in C/̂  by

r, e 3?F ΐor 1 <: i ^ fc
33, =3,

rt 6 ίΛ(l + ^ | ) for k + 1

We take a positive integer p0 such that SS^cSt' if p ^ p0. Let p be an
integer greater than p0 and ψ8' be an element in UoΓ\$bp. Now we show
{φ81 s 6 s%(^)i}ca3p. Since φ8 = X^α/a))^*•») for s e S(F), φ* is contained
in S3p if and only if α<(s) is contained in ^ ? or ί,(l + &*ξ) according to
l<^i<^kork + lf^itίn. In particular, one has at{β') e ^ | for 1 ^ ΐ ^ A:
and aSβ') e ί<(l + ^ | ) for fc + 1 <; i ^ w. Then, by (4.9.1), ai(srZs(ψ\) is
contained in ^ F or ί t(l + ^f) according to 1 ^ i ^ k or k + 1 ^ i ^ n.

(Step 3) We show there exist integers p " ^ p ' ^ p0 and an element
9>8' e ί70

Λ Π S3P/ such that U£ Π S3P- is contained in {φ8 \ s e s' S ^ ( ^ ) J . First
one can take coweights {ft, ft, •••, ftJcX^S) such that

<α« A> = 0 if i ^ i
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Since (£ is open in S(F), there exists a positive integer q such that
A(l + ^ ) c g for 1 ^ i ^ n. Then one has

=>{λ,((α«(Π/9,(rί)))lS<Si,)

= {λi?((ri))|ri 6 (1 + ^JO1**

r J 6 l +

for 1 ^ t

for 1

Thus if we take an integer q' such that 1 +
n?=1 (1 + ^ l ) " ' , then one has

is contained in

(4.9.3) {φ81 s e <£}=>{λ,((r,)) | r, e 1 + ^ ' for 1 ^ i ^ w} .

Further, since βi{jΰ>

F — {0}) is contained in Zs(ψ)x for 1 ^ i ^ fc, one has

r4 6 ̂  " - {0} for 1 ^ i ^ fc)

r, = 1 for k + 1 ^ ΐ ^ Λ J '

where let q" = max(mw m2, , mn). Now, we take an integer p ' greater
than max(p0, ^', ί") and φ*' e i70

ΛΠS5p'. We also take an integer p " such
that ^ " c ^ s ' ) ' ^ ' for l ^ i ^ f c . Then, by (4.9.3) and (4.9.4), one has

(4.9.4)

' I s e s' J = {λ,((α l(β' βx s2))1 S i SJI βx 6 C, s2 6

r t e als'y&f - {0} for 1 ^ i ^ A;

r< e α ŝO α + ^ί) for fc + 1 ^ ί ^ Λ

r, 6 ̂ # " - {0} for 1 ^ i ^ A;

r, e ti(l + ^ | " ) for k + 1 ^ i ^

(Step 4) Let 33 ,̂ S3j," and 9?'' be the same as in (Step 3). From
{φ'"\s"es'Zs(ψ)}c:ί8p,cm' (Step 2), it follows

(4.9.5) £(β)-ι'?(π(β)v) - ?(«) = 0 on {<?"\s" 6 s%(^)}
for any se&U®. By (4.6.4) and the fact that Zs(ψ\ is generated by
(SΠ^sW^U®, it is known that (4.9.5) holds for every se&'Zs(ψ\. In
particular, one has

'') = 0

for any s 6 S Zs(ψ>χ. Further (4.6.4) implies

ί'(ί(s)"17r(s' s)v - π(s')v)(φ) = 0

for any se<S, Zs(ψ\, that is,

for any s Hence, it follows from (Step 3) that the map
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8t-*ξ(8)~1i7}(π(fi)v)(<p) is constant on {seS(F)\φ* e$8p»}. q.e.d.

4.10. PROOF OF THEOREM (4.2). Let fe 3^T(%, φ) be a Whittaker
function. By (4.6.5), / has the form

(4.10.1) /(fir) = fv(g) = η{π{g)v){φ), g e G{F)
for some ve Vπ. Let Uυ be the support of η{v) in UA. Notice that Uv

is open-compact. Furthermore, (4.6.4) implies that for seS(F),
(4.10.2) fυ(s) = 0 if and only if φ* $ Uυ.

Thus, if UAΓ\UV is empty, then fυ vanishes on S(F). Assume UAf]Uv is
not empty. We take an element ψ in the closure Cl(U£Γ\Uv) of U£f)Uv

in Up. From Lemma (4.8), it follows that 7j(v)(ψ) has the decomposition
of the form η(v)(ψ) = (Bwewa,ψ> y(w)f where y(w) is either zero or an
eigenvector in ̂ ~(ψ) with the eigencharacter δϋ Γi^uh Put Wv(%, ^) =
{we TΓ(Z, ψ)|l/(w) ^ 0}. It is known by (4.6.2) that for each y(w) there
exists a vector v(w) e Vπ such that τ/(w) = y(v(w))(ψ). Thus one has
Ύ]{v)(ψ) = 0w 6 T F ( Z,t) η{y{w)){ψ). Applying Lemma (4.9) to each eigenvector
y]{v(w)){ψ)y one can take an open compact neighbourhood Sί(^, w) of ψ
in Z7̂  such that

dBX
w(s)~1'7](π(s)v(w))(φ) = constant

on {s € S(JP) I ^8 e 9ί(^, w)}. We denote this constant by c(ψ, w) for each
w 6 TΓ^Z, ψ) and put c(φ, w) = 0 for any w e W(Z) - W,(Z, ^ ) . Hence, if
we put 9ί(α/r) = Γ\weWva,ψ) Sί(^ w), then one has

(4.10.3) V(π(s)v)(φ) = Σ.ewω c(ψ, w) δBX
w(s)

on {seS(F)\φ8eW(ψ)}. Since C\(U£nUυ) is compact in ί7^, there exist a
finite subset {ψ19 ψ2, •••, ψk} of Cl(?7oAniX,) such that

Let ©< = δί(f J - uUi+i WΨs) for 1 ̂  ί ^ A - l and ^ = SΆ(f k). These subsets
are open compact and disjoint each other. For each w 6 W(X), we define
the function φweC~(U$) by

(c(φi9 w) if o/r e^nΐ t , ; , 1 ̂  i ^ fc

(0 otherwise .

Then, by (4.10.1), (4.10.2) and (4.10.3), one has clearly

for any s e S(F). q.e.d.

4.11. PROOF OF THEOREM (4.3). For a given φeC™(UA), it is suf-
ficient to prove that there exists a Whittaker function / 6 Ύ/^SίfiX, φ)
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such that f(s) = φ(φ8) δB(s)X(s) for any seS(F). Let w' be the element
of WG(S) such that w'C+ = - C + . Then π is G(F)-isomorphic to the
irreducible quotient representation of I(XW'), that is, one has a G(F)-
homomorphism A from I(XW') onto Fπ. A gives rise to an isomorphism
Aφ of Vφ(B, G; I(T')) to ^r(φ) ~ 7^(5, G; π) since both of them have
dimension one. Thus, if we denote by τjφ the natural homomorphism
from I(XW') onto 7/5, G; /(Z"'))> then one has η(A(y))(φ) = Aφ(ηφ(y)) for
any y e I(XW'). Hence, if we put fy(g) = Aφ(yφ(IQCw')(g)(y))) for yeI(Xw')
and geG(F), then one has W~3ifqL, φ) = {fy\y e I(XW')} Now, we con-
sider the subspace

y = {yeKχ

It is known by [11, Corollary (1.8)] that there exists a non-zero constant
C such that

AΨ(ηΨ(y)) = C ϊ »(n;' w) φ(u)~ιdu
JU[F)

for any ί/e7, Thus one has

( 4 . 1 1 . 1 ) fy(s) = C δ B X ( s ) λ ( ) p \ Y
JU(F)

for any ysY and seS(F). Let du' be the Haar measure of U\F) ob-
tained by the restriction of du. For y e Y, define

y\u) = I y(w'-u-u')du' .

Then yv-*y' is a linear map from F onto the space C"(U(F)/U\F)) of all
locally constant functions on U(F)/U'(F) with compact support. Further,
let y'\-y'h be the Fourier transform of Cϊ(U(F)/U'(F)) onto CS°(ί7Λ).
For a given ^ e C"(ί7Λ), we can take an element y eY such that φ — C-y'A.
Then, by (4.11.1), one has

ΛW = CδBX(s)-y'A(φ°) = ^Z(sH(φ8)

for any seS(F). q.e.d.

4.12. REMARK. The assumption on the characteristic of F was used
only in the proof of Lemma (4.9). Thus the other lemmas remain true
without this assumption.

5. Parametrization of irreducible representations of LG. In order
to construct Euler factors, we must study finite dimensional represen-
tations of the L-group LG of G. In this section, we give a complete
parametrization of equivalence classes of finite dimensional irreducible
representations of LG.
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5.1. Since the minimal splitting field E of G is an unramified extension
of F, the Galois group Γ = Ga,\(E/F) is cyclic. Let σ be a Frobenius
element of Γ, hence σ is a generator of Γ. Let (X*{T), JE9 X*(T), Δ\)
be the based root datum attached to (G, 2?, T). Here, we define the
action of Γ on X*(T) and JSΓ#(Γ) by

C\ / — ' \C\' \v))) i \ C> ^/T — \C> fo/T

for 7 e Γ , ξeX*(T), λ e Ι ^ ( T ) , where < , ) τ denotes the natural pairing
X*(T)xX+(T)-+Z. The dual system (X*(T), Aw

Ei X*(T), AE) determines
uniquely (up to isomorphisms) the connected reductive algebraic group LG°,
the maximal torus LT° and the Borel subgroup LB° defined over C. Since
the Galois group Γ acts on LG° (see [2]), we can define the semi-direct
product LG = LG°xΓ. Usually, this is called the "finite Galois form" of
the L-group. For 7eΓ and geLG°, we denote by rg the transform of g
by 7. By the definition, one has

(5.1.1) rχ(ί) = Mrt)
for every x e X*(LΓ°) and t e LT°.

5.2. By representation of LG, we mean a morphism r: LG —> GLn(C)
of complex algebraic groups. Let &(LG0) (resp. ^( L G)) be the set of
all equivalence classes of finite dimensional irreducible representations of
LG° (resp. LG). Let A be the set of dominant weights in X*(LΓ0). Notice
that A is Γ-invariant. By the classical theory of Cartan and Weyl,
&(LG°) is parametrized by A, that is, there is a bisection R^\ A-^&(LG°).
When R(χ) is a representative of an equivalence class R~(x) for xeA, x
is the highest weight of R(x). For R(x) and 7eΓ, we define the re-
presentation rR(χ) of LG° by rR(x)(g) = R(x)(rg). Then it follows from
(5.1.1) that 'λ is the highest weight of rR(x). Let Λ/Γ be the set of
Γ-orbits in A and [x] = {rχ\7 e Γ} ίor x e A. For an orbit [λ] 6 A/Γ, write
by e([x]) the cardinality of [λ]. Then we can take representatives jβ(λ)
of equivalence classes iΓ(λ) satisfying the following relation:

(5.2.1) R(σ\) - °kR(x) for any λ e Λ, A; = 0, 1, , e([χ]) - 1.
The representation space of R(rx), 7 6 f is denoted by Vίλl. Hereafter,
we fix a set of such representatives {(R(x),Vu-])}λeΛ.

5.3. We fix an orbit [x]eA/Γ. Put e = e([λ]) and p = p([λ]) =
mm{p' eN\σP''eR(x) = R(x)}. Clearly, both integers e and p are divisors
of the order \Γ\ of Γ and depend only on the orbit [λ]. Now we consider
the space HomLβ0(R(\), °eR(x)). Since °eR(χ) is LG°-isomorphic to R(χ), it
follows from the Schur's lemma that KomLGθ(R(χ), °eR(x)) is of dimension
one. Further, since °eR(x) has the representation space F m , ΈίomLGθ(R(χ),
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°eR(χ)) may be considered as a subspace of End(F m ) . Thus, one can take
the power of the elements of HomL(?0(i2(λ), °eR(x)). Then, it is easily seen
that each element Q of Ή.omLGθ(R(x), °eR(x)) satisfies the following:

(5.3.1) Qp is a scalar operator on V^.
(5.3.2) Qk is not a scalar operator for any 1 <; k < p.
(5.3.3) If the order of Q is finite, then p divides it.

Let V*λl be the common highest weight space of R(x) and °eR(x). As a
result of above properties, there exists a unique element Q06HomLβ0(i2(λ),
°eR(χ)) such that

(5.3.4) Qolrln — "the identity map of V^.
Then the order of Qo is exactly p. Qo is called "the primitive element"
of [λ]. Define the subset Am of KomLGθ(R(χ), °eR(x)) by

where ζ ) Γ | / β = exp(27π/ — le/\Γ\). Since one has

RomLG0(R(rχ), °eR(*x)) = HomL(?0(i2(λ), σei?(λ)) = CQ0

as a subspace of End( F m ) for every 7 6 Γ, A [ ; ] depends only on the orbit

W.
5.4. We construct irreducible representations of LG. First, for

[χ]eΛ/Γ and QeA [ ; ] , we define the representation (22(λ, Q), T î]) of LG°x
(σeiίXV) by

Λ(λ, Q)(flr xi €r*-(M>) = R(x)(g)*Qk,

where <σe(U])) denotes the cyclic group generated by σe{ίλV. It is easy to
verify that this is well-defined and irreducible. For Qlf Q2e Aίn, R(χf Qλ)
is LG°x<ί7e([;ι:i)>-isomorphic to R(x, Q2) if and only if Q1 = Q%. Next we
consider the representation r(λ, Q) of LG induced by R(χ, Q). By standard
arguments of the representation theory, we obtain the following:

(5.4.1) The restriction of r(λ, Q) to LG°κ{σpΛm) is LG°x <σe(W)>-
isomorphic to φig 3*" 1 R(σ\ Q).

(5.4.2) r(λ, Q) is irreducible.
In particular, (5.4.1) implies that r(λ, Q) is LG-isomorphic to r( rλ, Q) for
any 7 e Γ. Hence r(λ, Q) depends only on the orbit [λ] and Q e Aίλl.
Thus we denote it by r([λ], Q). Furthermore, one has

(5.4.3) r([λj, QJ ^ r([λ2], Q2) if and only if [λj - [λ2] and Qx = Q2.
Let r^([λ], Q) be the equivalence class containing r([λ], Q). Then, by
(5.4.2) and (5.4.3), we obtain an injection

r ~ : w Π r A U ] - ^ ( * G ) , ([λ], Q)ι-r-([λ], Q) .

We prove the following:
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5.5. PROPOSITION. The map r~ is bijective.

PROOF. It is enough to prove that for each irreducible representation
r of LG there exist the orbit [x]eΛ/Γ and QeAm such that r is LG-
isomorphic to r([λ], Q).

(Step 1) Let (r, X) be an irreducible representation of LG and (r\ X)
the restriction of r to LG°. Since each representation of LG° is completely
reducible, r' decomposes to the direct sum of irreducible representations
of LG\ that is,

r' == m^i 0 m2r2 φ ©m/ β

where (ri9 Xt) 1 ^ i ^ e are irreducible represetations of LG° which are not
equivalent each other and m{ is the multiplicity of r{ for 1 ^ i ^ e. It
follows from the irreducibility of r that e is less than or equal to \Γ\.
One may assume 1 ^ m1 ^ m2 ^ ^ me.

(Step 2) We show that (r', X) has the decomposition of the form

(5.5.2) (r'f X) = (r', X« ) 0 (/, r(<χ-W») © 0(r', r((j-e+1)XiΘm)

where m = wx. First, we show that X^ rίσ"1)^!, •••, r(σ ~β+1)Xχ are LG°-
modules which are not isomorphic each other. Suppose that r{σ~k)Xι is
LG°-isomorphic to r{σ~kf)X1 for some O ^ A ; < & ' ^ e - l . Then Xx is LG°-
isomorphic to r(σk~k')Xι and hence X^m coinsides with r{σk^k')X^m. The
subspace X?m 0 τ{σ'ι)X?m 0 0 r(σk-k'+1)X?m is a proper LG-invariant
subspace of X. This contradicts to the irreducibility of r. Next, since
(r', X) contains exactly e inequivalent irreducible representations of LG°,
these are completely exhausted by {(r', riσ^XJ \ 0 <; i ^ e — 1}. Thus
r((7-e)X! is LG°-isomorphic to X, and r(<re)XiφTO equals Zx®". Then, the
subspace I ^ φ φ - W ^ φ r ^ 1 ) ! ^ is LG-invariant, hence this
equals X.

(Step 3) Compairing (5.5.1) with (5.5.2), one has m = mί = m2 = =
rae and r{σ~i)X1 — Xi+1 for 0 <Ξ; i ^ β — 1 after a change of numeration. By
r(g)r(σ^) = riσ'Yr^g) on Xλ for any £ 6 ZG°, (rί+1, Z<+1) is LG°-isomorphic
to (">!, Xx). In the result, r' has the irreducible decomposition of the
form

(5.5.3) (r', X) == (rw X,)®- 0 ( r l f X,)^ © © {^ru Xx)* .
Further, by r(a~e)X?m = X^m, (r, X?m) gives rise to a representation of
LG°x<σβ>. We denote it by (R,Γ). From the Frobenius reciprocity law
and (5.5.3), it follows that r is ^G-isomorphic to the representation
Ind(xG, xG°xi<<7β>;R) induced from (R,Y). The LG-irreducibility of r im-
plies the ZG° xi <(7e>-irreducibility of K.
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(Step 4) We show that if (R,Γ) = (r, X?m) is LG° x <σβ>-irreducible,
then one has m = 1. We must investigate the <σβ>-action on Y. It is
known by the irreducibility of R that Y has the decomposition of the
form

Y = X, Θ R(<re)Xi Θ θ R(<r ( m-1 ) e)^i.

Since σVx is LG°-isomorphic to rlf there exists a LG°-isomorphism
A: (">„ X,) -» (rw Xx). Then A5' gives a LG°-isomorphism from (σier19 Xx) to
(rx, XJ for any j e Z. On the other hand, ~R(σ~je) gives a ^-isomorphism
from C'Vi, X%) to (R|L(?0, R(σ"iβ)^i) for 0 ^ j ^ m - 1. Thus we obtain
the zG°-isomorphism

i=o u y=o

For v = (x0, xlf •••, xm_j)eXpm

f keZ and geLG\ we define the action of
"**) on v by

where indices of x are taken by modulo m. By this action, (m-r^
is considered as a representation of LG° xi <α e> and φpo1 A'ΌJl(σjβ) gives
rise to a LG°xi <σβ>-isomorphism of (R, Y) to (m-r^X^m). If m is greather
than one, then the subspace {{x, x, , x)\xeX1) of X^m is LG°xi<σβ>-
invariant. Thus, if (R,F) is irreducible, then m is necessarilly equal to
one.

(Step 5) One has Y = X1 by (Step 4). Let λ be the highest weight of
(rlt Xy). Then there exists a LG°-isomorphism A! of (rlf XJ to (R(x),Vίn).
If we put Q = A'oJl(ae)oA'~\ then it is easy to show that Q is contained
in A m and (R,Γ) is LG° x <σβ>-isomorphic to R(\, Q). Therefore, by (Step
3), one has r ^ r([λ], Q). q.e.d.

5.6. Finally, we define the notation. For r=r~([λ], ζίπ/.(w> Qo) 6 ^ ( L G ) ,
define e(r) = e([λ]), c(r) = 27rfc(|Γ| log(^))~1i/ΊΓϊ and ςr = Σ ^ e m λ ' , where
<30 is the primitive element of [λ]. ξr is an element in the set X*(LT°)Γ

consisting of Γ-invariant elements in X*(LT°). By the definition, X*{LT°)r

equals X*(S). Thus ζr is contained in X+(S). Further, we put

έ%0(
LG) = {r e &(LG) \ <α, ξr) = 0 for any aeA)

and ^+(LG)

6. Construction of Euler factors. In this section, we define local
zeta integrals and construct Euler factors. When G is a split classical
type group and r is the standard representation of LG, our definition of



EULER FACTORS 525

the zeta integral coincides with that given by Rodier [22].

6.1. We use the same notation as in Sections 4 and 5. Let C™(F)
be the set of all locally constant functions on F with compact support.
Let φ be the non-degenerate character of U(F) defined in (4.1). For
%eXrθg(Γ), let ^ ^ r ( Z , φ) be the Whittaker model of the constituent
ρ(Dχ) of I(X) with respect to φ. For r e &(LG), f e W~<^(X, φ) and
seC, we define the zeta integral by

(6.1.1) Z(8, r, f) = ( fm))\t\8

F δ-B\ξr{t))dt,
JF*

where dt is the Haar measure on F* such that I dt = l. First, we prove
J&*F

the convergence of this integral.
6.2. PROPOSITION. Let f be in 5^T(%, φ) and r in &+(LG). Then

the integral of (6.1.1) is absolutely convergent for Re(s) > 0.

PROOF. Put ξ = ξr. By Theorem (4.2), / has the form

/(f lθ= Σ Φw(φ9)-SBX
w(g)

weW(χ)

on S(F), where ψw are elements in C™(UF). Thus the integral is equal to

{ Σ φw{<Pm)
F* wsw(χ)

Here, using the isomorphism XF: φaeΨ0F-^U^f one has

Ψm = XF((t<σM>ξ\ev0) ,

hence
(6.2.1) φw{φ^) = φwoXF((t<σia)>ξ\erQ).

Let hw be the function on F defined by the right hand side of (6.2.1).
Notice that <0 (α), ξ) is non-negative integer for each a θ Wo. By the as-
sumption on r, <σ(α), ξ) is positive for at least one root ray a e Ψo. Thus
hw is contained in C?(F) for every w e W(X). Therefore, the integral

ί { Σ K(tmξ(t))} \t\Fdt
JF* weW(χ)

is absolutely convergent for Re(s) > 0. q.e.d.

6.3. REMARK. If r is in &Q{LG)> then ξr(t) is contained in Zs{φ) for
any teF*. Thus the integral has the form

{ Σ Φw(φ)Xw(ξΛt))}'\t\Fdt.
F* weW(χ)

Generally, this integral is not convergent for any seC.

6.4. Next we construct an Euler factor L{s,r,X) as the "greatest
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common divisor" of {Z(s, r, f)\fe W^(X, φ)}. Usually, a function L(s)
on Cis called an Euler factor if L(s) has the form L(s) — P(qF

8)~\ where
P(X) is a polynomial in C[X] with constant term 1. For (r, X) e £P+(LG) x
Xrθg(Γ), let P(r,X) be the set of polynomials P(X)eC[X] such that
P(qF°)Z{s, r, /) is an entire function of s for every / e Wβ^lx, φ). Clearly,
P{r, X) is an ideal of C[X], Further we obtain the following:

6.5. THEOREM. For any (r,X)e&+(LG)xXτeg(T), P(r,X) is a non-
trivial principal ideal of C[X] and has the generator PrX(X)eC[X] with

PrΛO) = 1.

PROOF. We fix (r, X) e &+(LG) x Xteg(T) and put ξ = ςr. Let k =
min{(σ(a), ξ) > 0; α 6 ¥„} be the positive integer. For h e C"(F), we define
the function hk e Cf(F) by hk(t) = h(tk). For h 6 C?(F) and w 6 W(X), put

Zκ(s,r,h)= \ h{t)r{ξ{t))-\t\'Fdt.

Then, by Theorem (4.2), one has

(6.5.1) {Z(s, r,f)\fe W%f{l, φ)\

c { Σ cwZw{s, r, K) \cweC,hwe

On the other hand, by Theorem (4.3), one has

(6.5.2) { Σ cwZw(s,r,K)\cweC,KeCo(F)}

For an unramiίied character μ of F*, define Pμ(X) = 1 — μ(vfF)X. Then
it is well known that each PχWoξ(X) has the following properties:

(6.5.3) PχWoξ(qF8)Zw(sf r, h) is an entire function of s for all h e C£(F).

(6.5.4) When h0 is the characteristic function of έ7F, then

Pχw°t(qF°)Zw(s, r , ho) = 1.

Now we define an equivalence relation ~ r of W(X) by w ~rw
f if and only

if χwoξ = %wΌξ. Let W(X)/~r be the set of equivalence classes with respect
to this relation and [ffî X)], a set of representatives of W(X)/~r. Let

(6.5.5) Pr>x(X) = πweίwmrP
χWoξ(X)-

It follows from (6.5.1) and (6.5.3) that Pr,χ(X) is contained in P(ry X).
Thus P(r, X) is non-trivial. We show PrJ generates P(r, X). If P(X) is
in P(r, X), then P(qp8)Zw(sf r, h0) is an entire function of s for every
w G WOO by (6.5.2). Hence (6.5.4) implies that P{X) is divided by PχWoξ(X)
for every we W(X), that is, P(X) is contained in PrtZ(X)-C[X]. q.e.d.

6.6. By Theorem (6.5), we define the Euler factor L(s, r, X) by
L(s, r, X) = Pr^qy)'1. This is independent of the choice of the non-
degenerate character φ of U{F).
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7. Comparison of L(s, r, Sp(X)) and L(s, r, Z). In this section, we
give a relation between our Euler factors L(s, r, X) and Langlands' Euler
factors L(s, r, Sp(X)) for (r, X)e^+(LG)xXτeg(T).

7.1. We recall the Langlands' Euler factor L(s, r, Sp(X)). Let if be
a hyperspecial maximal compact subgroup of G(F). Let (ZG° x σ)s.8JInt(LG°)
be the set of semisimple conjugacy classes of LG. An admissible re-
presentation (π, Vπ) of G(F) is called If-spherical if Vπ has a non-zero
if-invariant vector. Let ^ ( G , K) be the set of all equivalence classes
of irreducible Z-spherical representations of G(F). It is well known
that for every unramified character X e Ή.om(T(F)/T0, C*), I(X) contains a
unique if-spherical constituent Sp(X). Further, for Z, X' e Hom(T(F)/T0, C*),
Sρ(X) is G(F)-isomorphic to Sp(X') if and only if X' equals Zw for some
w 6 WG(S). Thus one has an injection

(7.1.1) Hom(Γ(F)/Γ0, C*)/Wβ(S) -> ̂ ( G , ΛΓ): [%] H> Sp-(%),
where [Z] denotes the WG(S)-orbit of Z and Sp~(X) denotes the equivalence
class containing Sp(X). The Satake isomorphism implies that this map is
bijective. On the other hand, Langlands constructed a bisection

(7.1.2) v\ Hom(Γ(F)/Γ0, C*)/ WG(S) -> (LG° x σ)s.s./Int(LG°)
(see Borel [2]). Using these bijection, the Euler factor L(s, r, Sp(X)) at-
tached to (r, Sp~(Z)) e &(LG)x £?(G, K) is defined to be

L(β, r, Sp(Z)) = det(l - r(s

where firχXσ is an element in the conjugacy class

7.2. THEOREM. For any (r, X)e^+(LG)xXτeg(T), L(e(r)(s - c(r)), r,
Z)"1 is a factor of L(s, r, Sp(Z))"1 as a polynomial of qy, where e{r) and
c(r) are numbers defined in (5.6).

PROOF. We use the same notation as in section 5. We fix (r, X) e
^ + ( L 6 ) x I r e g ( I ) and put ξ = ξr, e = e(r), c = c(r), ζ = exp(2πi/^ϊe/|Γ|).
By Proposition (5.5), r is represented by r~([λ], Q) for some [λ] e A/Γ
and QeA m . Further Q has the form ζk-Q0, where Qo is the primitive
element of [λ]. We also denote by r the irreducible representation
f(IXI, Q) which was constructed in (5.4). Let n be the degree of the
irreducible representation CR(λ),Fm) of LG° and lfix = λ, hi9" fhn the
collection of all weights of iϋ(λ). Let vi be an eigenvector corresponding
to the weight ht for 1 <; i ^ n. We recall that the representation space
of r consists of all functions φ: LG —>Fm such that

for any gf xi α"ie 6 LG° x <σe> and 5r e LG. Thus the representation space of
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r has a basis {viJ\0 ^ j ^ e — 1, 1 ̂  i ^ n} such that

if j Φ m

Under this basis, r(σ) is represented by the matrix of the form

(7.2.1) r(σ) =

1°
0
•

0

\Q

1.

0

0

0

0

1.
o
o

• 0|
• 0

In

• oj
Moreover, by [2, Lemma (6.5)], the semisimple conjugacy class v([X\) has
a representative gxxiσ in LT°xσ. Thus r(#χ) is represented by a diagonal
matrix of the form

(7.2.2) r(gx) = diag(A, Ά , , "''A),
where let σ iA = diagpXfo), , βiΛn(flfχ)) for 0 ̂  i ^ e - 1. From (7.2.1)
and (7.2.2), it follows that L(s, r, Sp(X)) is equal to

(7.2.3) det(l - A-σA αi"1A Q0 ζfc gϊM)"1.
Next let WG(S)x be the Wβ(S)-orbit of λ. One may assume T7(?(S)λ =
{h19 h2, , Λd}. Let V*χi be the eigenspace of ht for 1 ̂  i ^ d. Clearly,
F [ ; ] has a direct sum decomposition of the form

(7.2.4) Vul = ®t^V^®V^.
Now, it is known by [2, Lemma (6.2)] that each element w e WG(S) has
a representative *w e NLG0(

LT°) which is fixed under <j, where NLG0(
LT°) is

the normalizer of LT° in LG°. From this fact, it follows that each

K e WG(S)x is α β-invariant. In particular, Vfo is Q0-invariant for l<^ί<Ld.
Hence the restriction of Qo to (&LiVtn is the diagonal matrix diag^, 62,
• , bd). For 1 ̂  i ^ d, we take w, 6 WG(S) such that ^ = χwκ Then
one has

\i Δι»D) It\Aι)\ Wi)v£o — v*0^\λ//\ Wχ)y •^*'\r^)\ ™i) ' [X\ — * [λ]

for 1 ̂  ί ^ d. By the definition of Qo and (7.2.5), one has bt = b2 — =
bd = 1. Thus Qo has the form

lθ Qί

Combining (7.2.3) and (7.2.6), one has

(7.2.6) Qo =

L{8, r, SpOL)) = Π {1 - (Λ« + αλ<

= Π {i -
1 = 1

+ σ λ + •



EULER FACTORS 529

where P(s) = det(l — jB Qί ζ * - ^ ' ) " 1 and B is a diagonal matrix of the
form

diag((g σJhd+1)(9χ), , ( 2 σJhn)(gχ)) .

On the other hand, by the proof of Theorem (6.5), L(e(s — c), r, X) is
equal to

π a - %or(^)^β ( 8-c )r.
[ f ( ) ]

Therefore, in order to finish the proof, we must show the following:
(7.2.7) A map [ W(X)]r -> WG(S)x: w H-> χw is infective,
(7.2.8) Xoη(vrF) = η(gx) for any η e X*(S) = X*(LΓ°)Γ.

(7.2.7) is obvious from the definition of the equivalence relation ~r and
(7*2.8) is easily shown from the construction of the bisections of (7.1.1)
and (7.1.2) (cf. [2, Chapter III]). q.e.d.

7.3. COROLLARY. Let r = r~([λ], Q) be in &+(LG) and X in Xreg(T).
Assume that the pair (r, X) satisfies the following:

(7.3.1) WG(S)x coincides with the collection of all weights of i?(λ).
(7.3.2) [W(X)]r = WG(S).

Then L(e(r)(s - c(r)), r, X) equals L(s, r, Sp(X)).

7.4. REMARK. For the condition (7.3.1), we refer the reader to
Bourbaki [6]. There are few irreducible representations satisfying this
condition. For examples of the pair (r, X) satisfying the conditions (7.3.1)
and (7.3.2), see Rodier [22]. Finally, we note that the constituent p(Dx)
does not necessarily coincide with Sp(X).

8. Examples. Let F be a non-archimedean local field of character-
istic zero.

8.1. Let E be the unramified extension of F with degree four. First
we consider the case of G = RE/F(SL2). We take a Borel subgroup B, a
maximal torus T and a maximal F-split torus S as follows:

* b

tJ teE*,beE\ ,

T(F) =

S(F) =

t

't
r

t
— l

teE

teF
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Let WG(S) = {1, w) and Ψv = {±α v }, where α v(ί) = diag(t, Γ1) for ί e f * .
For zeC, an unramified character μz (resp. Zs) of F * (resp. S(F)) is
defined by μz(t) = | t | i (resp. Z f(αv(t)) = I«W f o r J e F * . Then S H » Z , gives
rise to an isomorphism from C/2τr(log(g2r))~1v/— 1Z onto Hom(S(F)/S0, C*).
Since Z™ = Z_z, it is enough to consider the set { X J s e i y , where ΣF

is the region {zeC\Re(z) ^ 0, 0 ^ Im(z) < 2τr(log(gί.))"1}. Put z0 =
πQogiq^YV^Λ. Then, one has Xrθg(T)/TFβ(S) = {Xz\zeΣF- {0, z0}} and

/ Q 1 1N (H(XZ) = 0 , TF(5O = WG(S) if zeΣF- {4}
( } i i ( Z ) - i a v i W(X) = {1)

Let Γ = <σ> be the Galois group of E over F. LG° is isomorphic to
PSL2(C)xPSL2(C)xPSL2(C)xPSL2(C) and the action of Γ on LG° is given

by σ(glf g2, Sf3, Λ ) = (Λ, Λ, ^2, ff8). Let S = | ( 6 -i) |&eC*]y{±l 2 } be a maximal

torus of PSL2(C). Then X*(LT°) is identified with X*(X)^. Let λ be the

dominant weight in X*(%) defined by λ ( ( 6

 6 - x ) ) = b\ Since X * ( ϊ ) = Zλ,

the set of dominant weights of X*(LT°) is identified with (Z + λ) 6 \ where
Z + is the set of non-negative integers. We consider three domiant weights
λx = (λ, 0, 0, 0), λ2 = (λ, λ, λ, 0) and λ3 = (λ, 0, λ, 0). Let r, = r([λj, Qo) be
the irreducible representations of LG constructed in (5.4), where Qo is
the primitive element of [λj for 1 ^ i ^ 3. Notice that one has A^ =
{1} for i = 1, 2 and A[ia] = {±Q0} For an unramified character μz of F * ,
define LF(s, μz) = (1 — ^(tsr^)^ 8 )" 1 , Then, by simple calculation, we obtain
the following:

L(s, rlf Sp(Xz)) = LF(4:S, ft)Li,(4s, μz)LF(4s, μ~x) ,

L(s, r2, Sp(Xz)) = {^(48, j«0)}7{LF(4s, μz)LF(ks, μj1)}6

x {L2,(4s, ^ ) L F ( 4 s , j«72)}3{Li,(4s, μl)LF(As, μϊ3)}

L(s, r3, Sp(Xz)) = L^(2s, μo)LF(2s, μz)LF(2s, μ^1)

xL F (4s , μQ)LF(4:S, μz)LF(4:S, μj1)

for any zeΣF. On the other hand, by (8.1.1), we obtain

flr,(4β, μ.)LF(48, μT1) if « € ^ - {0, 4, z0} ,
C ri» J ~ 1^(48, ft) if z = 4

- c(r2)), r2, Zs)

_ jL^(4s, j«D^(4s, μ~η if z e ί f - {4, ^ 0 / 3 ; 0 ^ i ^ 5} ,

~ (L^(4s, rt) if z e {4, JX/3; i = 1, 2, 4, 5}

(LF(2s, μz)LF(2s, μj1) if zeΣF- {0, 4, s0} .
L(e(r3)(s - c(n)), r8f Z.) =

lL,(2β,A) if 2 =
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8.2. Let E be the unramified quadratic extension of F and Γ —
{1, σ) the Galois group of E over F. Next, we treat the unitary group
with order three and Witt index one, that is,

G(F) =
1\)

geGL,(E)\g\ r('9) =

We take a Borel subgroup B, a maximal torus T and a maximal F-split
torus S as follows:

t,δeE*,δ σ(δ) = 1
x,yeE, -x-σ{x) = y + σ(y)

t,δeE*,δ σ(δ) =

nt x
B(F)= 0 δ

(\θ 0

T(F) =

S(F) =

Let W0(S) = {1, w} and Ψv = {±αv}, where av(t) = diag(ί, 1, trι) for t e F*.
For zeC, let lz be the unramified character of S(F) defined by Z,(αv(<)) =
|ί|ί for teF*. Then, by the same reason as in (8.1), Xtee(T)/Wβ(S) is
equal to {Xz\zeΣF — {0, z0}}. Further one has

(H{lz) = 0 , WQL.) = TΓβ(S) if z € ̂  - {2, 1 + z0)

W . ) = {αv}, TTO = {1} if ^ 6 {2,1 + «„}

Now σ acts on iG° = GL3(C) by

(8.2.1)

\l / \l

for ff 6 LG\ Let λ, λ' be dominant weights of LT° defined by λ(diag(δ!, 62,
63)) = ί>! and λ'(diag(6lf b2, δ3)) = bfi2. We consider two dominant weights
λ, = λ and λ2 = λ + λ'. Let r4 = r([λi], Qo) be the irreducible representa-
tions of LG for i = 1,2. Then one has

L(s, ru Sp(lz)) = LF(2s, μo)LF(2s, μz)LF(2s, μj1) ,

Us, r2, Sp(X,)) = LF(2s, μa)LF(s, μz)LF(s, μ^)LF(2s, jα,)L,(2β, jMΓ1)

for any z 6 i^. On the other hand, by (8.2.1), one has
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JL,(2β, μz)LF(2s, μ?) if s 6 ΣF - {0, 2, z0, 1 + z0} ,

(LF(s,μz) if se{2, l + z0}

(r2)), r2, χ.)

, μz)LF(s, μ:1) if s e £ , - {0, 2, s0, 1 + z0} .

if se{2,1 + sJ

Appendix. For a subset θaΔ, let

Ŝ  = {s 6 S(F) I α(s) = 1 for any a e 0}

and

S,fl = {s 6 iŜ  I |α(8)|F ^ 1 for any α e J } .

We show if © is an open compact subgroup of S(F) then SθtJ(&Γ\Sθil) is
a finitely generated monoid. Let So be the maximal compact subgroup
of S(F). Since ©ΠS0 has the finite index in SOf it is enough to prove
the claim for <£ = So. Let Δ - θ = {αIf α2, , αfc} and v: Sθ-+ZΘk the
homomorphism defined by v(s) = (—log^dα^s)^))!^^* for seS(F). Then
Ker(v) contains So Π Ŝ  and Ker(/y)/(S0 Π S#) is finitely generated as monoid.
Let {/3i, /32, , βk) be coweights such that

(a, βd) = 0 for α e ί

= 0 if i Φ j

,< < f &> = m, > 0

for any 1 ^ i, j ^ k. Since βi(0>

F)c:Sθtl, we know

where Z + is the set of non-negative integers. Hence there is an exact
sequence of monoids as follows:

v(Sθ J -> v(S^ J/ 0

From this exact sequence, it follows that v(Stffl) is finitely generated,
Furthermore, by the exact sequence

l -> κβr(t;)/(So n sθ) -> s,pl/(S0 n s,) -> ̂ (S,,,) -> 1 ,

Se,J(S0Γ)S9) is also finitely generated.
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