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Introduction. Let G be a connected reductive unramified group de-
fined over a non-archimedean local field F, T a maximal torus in G and
B a Borel subgroup of G containing T. We denote by G(F'), B(F), -,
the locally compact and totally disconnected groups of F-rational points
of G, B, ---, respectively. Let X, (T) be the set of regular unramified
characters of T(F) and I(X) = Ind(G(F'), B(F'); X) the admissible represen-
tation of G(F') induced by X € X.o(T). In this paper, we first give the
irreducible decomposition of I(X) and then construct an Eular factor at-
tached to some irreducible component of I(X). This study stems from
the problems mentioned in [2, Section 12]. For G = GL, or GSp,, the
same subject was treated by Jacquet, Godement, Shalika, Piatetski-Shapiro
and Rodier. In [22], Rodier investigated the case of split classical type
groups G and gave a construction of Euler factors associated to the
standard representation of the L-group G of G. Our result in the first
part is a generalization of these results of Rodier to the case of unramified
groups G. In the second part, we give a complete classification of ir-
reducible rational representations of “G and construct an Euler factor for
a pair (r, o(Dy)) of an (almost arbitrary) irreducible representation » of
LG and a certain constituent o(D,) of I(X) for X € X,..(T). Furthermore,
we give a precise relation between our Euler factors and those defined
by Langlands.

Now we give a summary of this paper. Let S be the maximal F-
split torus contained in 7T, X*(S) the character group of S and W,(S)
the relative Weyl group of G. For X e X, (T), the transform of X by
w e Wg(S) is denoted by X*. Let V=X*(S) ® R and C* the Weyl chamber
in V corresponding to B. First, for X € X,.(T), we define a subset H(X)
of the coroot system ¥V(G, S) of G with respect to S (see Section 2).
The set H(X) plays an important role in the irreducible decomposition of
IX). Since it is known that I(X) is irreducible if and only if H(X) is
empty, we are interested in the case where H(X) is not empty. Put



492 T. WATANABE

JH(X) = {constituents of I(X)}
and

C(X) = {connected components of V— U Ker(av)}.

aVYeH

For DeC(X), we choose an element we Wy(S) such that w*C*cD. Let
©o(D) be the unique irreducible subrepresentation of I(X*). Then it is
shown that o(D) depends only on D and is contained in JH(X). Hence
one has a map p: C(X) > JH(X). Our first main result is the following:

THEOREM. Let X € X,.o(T).

(1) The map p: C(X) — JH(X) 1is bijective.

(2) Let (H(X)) be the set of coroots which are represented by an
integral linear combination of elements of HX). Then (H(X)) is a root
system and H(X) is a basis of (HQ)). In particular, the elements of
H(X) are linearly independent. Thus, combining with (1), one sees that
the length of a composition series of I(X) is equal to 2! aqnd |H(X)| s
bounded by the semisimple F-rank of G.

(3) Let Dy =Ngverm (@)™ (R,) and ¢ a mon-degemerate character
of U(F), where U 1s the unipotent radical of B. Then, for DeC),
o(D) has a Whittaker model with respect to @ if and only if D = D;.

These are proved in Section 8. Let %757 (X, ) denote the Whittaker
model of po(D,). In the rest of this paper (from Section 4 to the end),
we will assume that the characteristic of F is equal to zero. In Section
4, we give an explicit form of the restriction to S(F) of a Whittaker
function fe 7 5# (X, ). This is used for calculations of the “zeta
integral” (see below). In order to define the “zeta integral”’, we need a
classification of finite dimensional irreducible rational representations of
the L-group G of G. Let “Z(*G) be the set of equivalence classes of
irreducible rational representations of *G. In Section 5, we give a
parametrization of elements of “2(*G). In terms of this parametrization,
we introduce the coweight &, of S, e(r) e N and ¢(r) € C for each r e Z(*G)
and define a subset .Z,(*G) of 2 (*G) (see (5.6)). Now, for fe Z 57X, @)
and r € Z(*G), the “zeta integral” is defined by

(#) A, v, )= _reo)s-omewnad,

where 6% is the modulus character of B(F). Note that (#) coincides with
the definition given by Jacquet—Langlands [18] when G = GL, and r is
the natural representation of *G = GL,(C). The second main result is
the following:
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THEOREM. (1) Let re 2,(*G). Then for any fe #3270, @), the
zeta, integral Z(s, r, f) is absolutely convergent for Re(s) > 0.

(2) Let P(r,X) be the set of polynomials P(X)eC[X] such that
P(gz)Z(s, r, f) is an entire function of s for every fe w37, @),
where qyp is the cardinality of the residual field of F. Then, for any
(r, X) € Z2.(*G) X X,oe(T), P(r, X) 18 a non-trivial principal ideal of C[X]
and has the gemerator P, ,(X)eC[X] with P, ,(0) = 1.

These are proved in Section 6. The generator P, ,(X) of P(r, X) is
uniquely determined by the pair (=, X) and is independent of the choice
of . The Euler factor attached to (r, X) is defined to be L(s, », X) =
P, ;(a7*)"".

Finally, for re 2,.(*G) and X € X..,(T), let L(s, r, Sp(X)) be the Euler
factor defined by Langlands (see [2]). In Section 7, we compare L(s, 7,
Sp(X)) with L(s, r, X). Then we have the following:

THEOREM. For any (r, X) € RB.(*G) X X.ee(T), Lle(r)(s—c(r)), r, 1) s
a factor of L(s, r, Sp(X))™ as a polynomial in qz°.

With more conditions on (7, X), one has L(e(r)(s — ¢(r)), r, X) =
L(s, r, Sp(X)), but pairs satisfying these extra conditions are few and
far between (see (7.3) and (7.4)).

ADDENDUM (December 22, 1987). I received from Professor F. Rodier
the following paper:

V. A. Ding, Décomposition de la série principale du sous-groupe des
points k-rationnels d’un groupe algébrique affine réductif quasidéployé sur
un coups k p-adique de caractéristique 0, Thése, Université Paris VII (1985).

Ding investigates the irreducible decompositions of principal series
representations Ind(G(F'), B(F'); X) for any connected reductive quasi-
split group G and any regular quasicharacter X. Therefore, when F
is of characteristic zero, our Theorems (3.2) and (3.3) are special cases
of Diing’s results. Further, by Chapter VI, Propositions 2 and 3 of
Ding’s paper, we know the irreducible constituents of I(X) which are
square integrable or tempered.
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NOTATION. Let F be a non-archimedean local field. Let G be a
connected reductive algebraic group defined over F. Throughout this
paper, we assume (G is unramified, that is, G is quasi-split over F and
split over an unramified extension of F. Let E be the minimal splitting
field of G. We fix the notation as follows:

| | (resp. | |z) = the normalized absolute value of F' (resp. E)

W, = a prime element of F

qr (resp. ¢,) = the cardinality of the residue field of F' (resp. E)

& = the maximal compact subring of F

» = the maximal ideal of &,

S = a maximal F-split torus in G defined over F

T = the centralizer of S in G, (which is a maximal torus of G defined
over F)

B = a Borel subgroup of G defined over F' containing T

U = the unipotent radical of B

X*(T) (resp. X*(S)) = the character group of T (resp. S)

X, (T) (resp. X,(S)) = the cocharacter group of T (resp. S)

V=X*SYX®R

@ = the relative root system of G with respect to S

@, = the set of positive roots of @ with respect to B

4 = the set of simple roots of @

C* = the Weyl chamber in V corresponding to B

G, =GxE

@, = the absolute root system of G with respect to T

4p = the set of simple roots of @, with respect to B

Ny (S) (resp. Ny(T)) = the normalizer of S (resp. T) in G

Wu(S) (resp. W,(T)) = the relative (resp. absolute) Weyl group of G.
For each subset §c 4, let

P, = the standard parabolic subgroup corresponding to 4,

M, = the Levi subgroup of P, containing T,
and

U, = the unipotent radical of P,.

We denote by G(F), B(F), - - -, the locally compact and totally disconnected
groups consisting of F-rational points of G, B,---. Let 6% be the modulus
character of P,(F). We write 6, instead of 65. For each subfield L of

E, let Add, = Spec(L([X]) be the one dimensional additive group defined
over L.

REMARK. In the first half of this paper (from Section 1 until Section
3), the characteristic of F is arbitrary. In the second half of this paper
(from Section 4 on), the characteristic of F' is assumed to be zero.
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1. The structure of G. Let F be a non-archimedean local field and
G a connected unramified reductive algebraic group defined over F. In
this section, we summarize known facts on the structure of G using the
terminology in [8].

1.1. A “root ray” of G with respect to S is an open half line with
starting point 0 in V containing at least one root relative to S. Let
¥ =¥(G, S) be the set of root rays of G with respect to S. For ae?,
let o(a) (resp. z(a)) be the non-divisible (resp. non-multipliable) root con-
tained in a. If o(a) # t(a), a is called “plural”. Let ¥, = {a € ¥|o(a) € 4}.
For a €¥, denote by —a the root ray containing the root —ag(a).

1.2. Now we assume G is split over F. Thus one has F = F and
T=S8. For acd, let U; be the root subgroup corresponding to a. For a
subfield F, of F, an F-isomorphism Add; — U; is called an “F'-épinglage”
of U;. For any F,-épinglage %, of U;, there exists a unique F,-épinglage
¥_, of U=, satisfying the following conditions:

1.2.1) m, =%,Q)%_,1)%,(1) € N«(T).

1.2.2) m_, =%_ )% Q0)%_,1) e No(T).

(1.2.3) There exists an F,-homomorphism {, of SL, into G such that
for any u € Addy,

1 10
rw=cf(, §)) = zw=cf(_) )

This #_, is called the épinglage opposite to %,.

A Chevalley F-system of G (with respect to T') is a family {%.}.co
of F-épinglages of Uy satisfying the following conditions:

(1.2.4) For any ac®, the épinglages %, and %_, are opposite to each
other.

(1.2.5) For a, B9, there exists e(a, 8) € {x1} such that %, ,(u)=
My Fs(e(a, B) - u)-m,* for any u € Addy, where w, is the element of Wy(T)
defined by a.

1.8. Returning to the general case, let G be quasi-split over F. For
a€Dy let I'y={veGal(E/F)|7(a) = a} and L, the invariant field of I",
in E. L, is called the field of definition of a. Also, let U; be the root
subgroup of G, corresponding to «. Note that U, is defined over L,.
Let %,: Add,, —U; be an L,-épinglage of U;. Then for 7€ Gal(E/F), one
has Y(L,) = Ly, and Yo%,ov™* is an L,,-épinglage of Uy,. Thus, one can
take a family {%,},c., of E-épinglages satisfying the following properties:

(1.8.1) %, Add,—U; is induced from an L,-épinglage for each a € 4;.

(1.8.2) Fpp = YoZov ™! for any a€ 4, and v € Gal(E/F).
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Furthermore, it is known that this family {%,},.,, is extended to a
Chevalley E-system {%.}..o, of G satisfying the following:

(1.8.3) If the restriction als of a€®; to S is non-divisible, then
%, Add; — Uy is induced from an L,-épinglage and one has %, = Yo¥,ov!
for any v € Gal(E/F).

(1.8.4) If afs is divisible, then there exist distinet roots g8 and g’ in
@, such that Bl = g'|s = (als)/2 and a = B+3’. The field L, is a separable
quadratic extension of L, and L, = L,. For any v € Gal(E/F), there exists
e(7) € {£1} such that voZ,o7 '(u) = % (e(V)u). When v € Gal(E/L,), one has
e(7) = —1 if and only if v induces the unique non-trivial automorphism
on L,.

{%}eco, is called a Chevalley—Steinberg system of G .

1.4. For a root ray ac¥, let U, be the root subgroup corresponding
to a ([8] (1.1.3)). We assume ac¥, Put 4,={acd;|alsea}. 4, is a
single orbit of Gal(E/F) in 4;. Let p:G*— (U, U_,) be the universal
covering of the semisimple group generated by U, and U_,. Then G* is
a semisimple and simply connected group of F-rank one which is quasi-
split over F' and split over E. The torus g *(T) (resp. ¢ *(S)) is a
maximal torus (resp. a maximal F-split torus) in G* defined over E.
The orbit 4, is a base of the root system of G* with respect to g *(T).
From the classification of Dynkin diagrams, one has only the following
two types of G°.

Type 1. ¢ is isomorphic to the direct product of SL, indexed by
4,. L, is the field of definition of the simple factor of an index « and
one has G* =~ R, ,»(SL,), where R, ,, is Weil’s scalar restriction functor.

Type II. Put I = {(a, a') €4, X 4.l + & € Dz}. Then G% is isomorphic
to the direct product of SL, indexed by I. For (a, a’) €I, one has L, =
L, and L, is a separable quadratic extension of L, = L,,.,. Let SU, be
the special unitary group defined over L, by the hermitian form on L3
with degree three and Witt index one. Then the simple factor of an
index (a, ') is L,-isomorphic to SU,. Further G* is F-isomorphic to
R, -(SU,). Note that G* is of Type II if and only if a is plural.

1.5. Assume G* is of Type I. In this case, one has (U,)z = [lac4,Us
and U, is F-isomorphic to R, (U;). We fix ae€4, and put L = L,. If
¥, is an L-épinglage of U, then x, = R,.(%,) is an F-isomorphism of
R,,-(Add;) onto U,. Such a couple (L, x,) is called an épinglage of U.,.
The épinglage of U_, opposite to (L, x,) is defined to be (L, R, (&_,),
where Z_, is the épinglage opposite to Z,.

1.6. Assume G* is of Type II. We use the notation of (1.4). We
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fix (o, @’)el and put L =L,, L, = L,,,. Recall that L is a separable
quadratic extension of L,. Since L is an unramified extension of F, L,
is uniquely determined by L and F. Let ¢ be the non-trivial element
of Gal(L/L,). We choose an L-épinglage %, of U; and put %, = ¢o&,oc™,
Zyror = Int(mz")o%,, where m, is the element of Ny (T) defined in (1.2.1).
Let %_,, Z_, and %_.,,,, be the épinglages opposite to Z,, %, and %,..,
respectively. Let

L) = {(u, v)e LXL|v + ¢(v) = u-c(u)} .
For (u, v), (W', v') € HX(L,), the composition law is defined by
(U, v)-(u', V)= +u, v+ + c(u)-u).
Then H{(L,) is regarded as the group consisting of L,rational points of

a unipotent algebraic group HE defined over L,. Furthermore, there
exists an L,-isomorphism j, of H{ onto Uy, ., = Uy Uy, Uz such that

Ja(t, V) = Bo(U)* Bpar(— )+ B (e(u))
for any (u, v) € H¥(L,). Since U, equals R, (Ug.)), %, = R r(J.) gives
an F-isomorphism of H”* = R, ,(H{) onto U,. We call such a couple

(L, x,) an épinglage of U,. The épinglage of U_, opposite to (L, x,) is
defined the same way as in (1.5).

1.7. We fix a Chevalley—Steinberg system {%.},.o, of G. For any
ac¥, we take a root a(a) e @, whose restriction to S equals o(a). By
(1.5) and (1.6), the épinglage %,, of U, induces the épinglage (L, x,)
of U,, where L, = L,,. Here, one can choose a set {a(a)},.r of roots such
that the épinglage (L_,, 2_,) of U_, induced from Z%,._, is that opposite
to (L, x,) for every a €¥. Then the family {(L,, 2.,)}..» of épinglages is
called a coherent system of G induced from the Chevalley—Steinberg
system {Z,)qco,. This will be used in Section 4.

1.8. We consider the reduced root system z(¥) = {r(a)|a €¥}. Let
¥V be the coroot system attached to z(¥). For z(a) € z(¥), denote by aV
the coroot corresponding to z(a). @' is an element of X,(S). Let
{(, >t X*(S)x X, (S) — Z be the perfect pairing, that is, for any te F'*,
pe X*(S) and ge X, (S), v(&) =t“®. A coroot av is considered as a
linear funectional on V by v+—<v, a¥). Then by the definition, C* =
Neer, (@V)'(R,), where R, is the set of positive real numbers.

2. Summary of the unramified principal series. In this section,
we summarize known results on the unramified principal series of the
unramified group G. For the general theory of admissible representations
of p-adic groups, we refer the reader to Cartier [9].
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2.1, Let H be a F-subgroup of G. For admissible representations
w, and =, of H(F'), we denote by Homy(z, 7, the space of H(F)-
homomorphisms from z, into =,.

2.2. Let P be a F-parabolic subgroup of G with a Levi-subgroup
M and the unipotent radical N. Let §, be the square root of the modulus
character of P(F'). Let (z,V,) be an admissible representation of M(F).
Then 7 may be trivially extended to an admissible representation of
P(F) = M(F)N(F'). The representation I(G, P; z) of G(F') induced by =
is the right regular representation of G(F') on the space of all locally
constant functions ¢: G(F)—V, such that ¢(pg) = 0(p)n(p)¢(g) for any
peP(F) and geG(F'). The representation I(G, P; ) is an admissible
representation of G(F').

2.3. We use the same notation as in (2.2). Let +» be a character
of N(F). Put

Zy(p) = {me M(F)|4(m-n-m™) = 4(n) for any ne N(F)}.

For an admissible representation (z,V,) of G(¥), denote by VZ(P, G) the
subspace of V, spanned by the vectors of the form n(n)v — (n)v, n € N(F),
ve V,. The quotient space V,/VY(P, G) is called the +-localization of
the space V, and denoted by Vu(P, G;x). Define the representation
Jy(P, G; 7), Vy(P, G; ) of Zy(y) by

Jy(P, G; m)(m)(w + VI (P, @) = §5 (m)(m(m)v + VI(P, @)

for me Zy(y) and ve V.. It is easily verified that J,(P, G;x) is well-
defined. In particular, if « is trivial, then Ju(P, G; ) is called the Jacquet
representation (or Jacquet module) of 7 with respect to (P, M) and denoted
by J(P, G; ). The representation J(P, G; ) of M(F) is admissible.

2.4. By (2.2) and (2.3), I(G, P; -) (resp. J(P, G; -)) defines a functor
from the category of admissible representations of M(F') (resp. G(F)) to
that of G(F') (resp. M(F')). Then the following facts are well-known.

(2.4.1) The functors I(G, P; -) and J(P, G; -) are exact.

(2.4.2) The functor J(P, G; -) is left adjoint to I(G, P;-). That is,
for any admissible representation = (resp. ¢) of G(F') (resp. M(F)), there
is a natural isomorphism

Hom, (J(P, G; %), 6) =~ Hom(x, I(G, P; o))

(2.4.3) Let P’ be an another F-parabolic subgroup of G with a Levi-
subgroup M’ and the unipotent radical N’. We assume P'cP, M'cM
and N'ON. Then one has
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I(G, P; -)-I(M, P'NM; -) = I(G, P’; +)
and
JWP'NM, M; -)oJ(P, G; ) = J(P', G; +) .

2.5. Next, we state Bernstein—Zelevinsky’s Geometrical Lemma.
This lemma plays an important role in Sections 8 and 4. Let 4, and 6,
be two subsets of 4. Put P, = Py, M, =M, and U, =U,, for ¢ =1, 2.
For we Wy(S), let *w be a representative of w in Ny(S)(F'). Define

WM, M,) = {we WyS)|Int(*w)(M,NB)CB and Int(*w*)(M,NB)CB}.

For we W(M,, M,), note that M, NInt(*w ")(M,) (resp. Int(*w)(M,)NM,) is
a Levi-subgroup of the standard F-parabolic subgroup M,NInt(*w )(P,)
(resp. Int(*w)(P)NM,) of M, (resp..M,. Now, for an admissible repre-
sentation © of M,(F'), let F(n) = J(P,, G; I(G, P,; r)) be the Jacquet module
of I(G, P; &) with respect to (P, M,). Then Bernstein and Zelevinsky
were proved the following lemma ([1]).

LEMMA (Geometrical Lemma). There exists a numeration w,, w,, ---,
w, of elements of W(M,, M,) satisfying the following condition: for any
admissible representation © of M,(F'), F(x) has a filtration 0 = F,CF,C
«o«CF, = F(r) and a system of tsomorphisms

¢;: Fy/Fy_y — IM,, Int(*w)(P,) N My; J*«(M, N Int(*wi*)(Py), M;; 7))

Sunctorially depending on w, where JY«(M,NInt(*w;*)(P,), M,;; ™) is the
admaissible representation of Int(*w,)(M,)NM,(F) defined by J(M,N
Int(*wi")(P,), M,; w)eInt(*w;™).

2.6. We recall fundamental results on unramified principal series
representations. We start with the definition of these representations.
Let T, (resp. S,) be the maximal compact subgroup of T(F') (resp. S(F)).
Since G is unramified, the natural injection S(F') <> T(F') gives rise to an
isomorphism of S(¥)/S, onto T(F)T,. An element of Hom(T(F')/T, C*)
is called an unramified character of T(F'). The relative Weyl group Wy(S)
acts on Hom(T(F")/T,, C*) by X*(t) = X(*w™-¢t- *w), where X € Hom(T(F")/T,,
C*), te T(F) and we WyS). We say X is regular if X” = X for every
element w # 1 of W,(S). Denote by X, (T) the set of unramified regular
characters of T(F'). For X eHom(T(F)/T, C*), we consider the induced
representation I(G, B; X) of G(F'). For simplicity, we put I(X) = I(G, B; X).
This is called a representation of unramified principal series.

2.7. The following results are well known (see [9]). Let Xe
Hom(T(F)/T,, C*).
(2.7.1) I(X) has a composition series.
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(2.7.2) The contragredient representation of I(X) is isomorphic to
o).

(2.7.3) For any admissible representation = of G(F'), one has
Homy(z, I(X)) =~ Hom(J(B, G; @), X). (This is a special case of (2.4.2)).

(2.7.4) If X is regular, then J(B, G; I(X)) is T(F')-isomorphic to
@weWG(S) Xw'

2.7.5) If X is regular, then Hom,(I(X), I(X*)) is of dimension one
for every we Wy(S).

2.8. From now on, we treat I(X) for X € X,..(T). Let JH(X) be the
set of constituents of I(X). By (2.7.1), JH(X) is finite. From (2.7.1),
(2.7.4) and the exactness of the functor J(B;G; -), it follows that the
multiplicity one theorem holds for I(X). (Generally, this fails if X is
non-regular ([16], [17])). Thus, for X € X...(T) one can identify JH(X)
with the set of equivalence classes of constituents of I(X). The following
fact is a special case of a result of Bernstein and Zelevinsky [1, Theorem
(2.9) and Remark (2.10)].

(2.8.1) JH(X) = JH(X*) for every we Wy(S).

2.9. LEMMA. Let X € X,o(T) and © an wrreducible admissible repre-
sentation of G(F'). Then m 1s isomorphic to an irreducible subrepresen-
tation of I(X) if and only if J(B, G; w) contains X as a subrepresentation
of T(F). In particular, there is a unique irreducible subrepresentation
of IX). We call it “the irreducible subrepresentation” of I(X).

This is easily proved from (2.7.3) and (2.7.4).

2.10. Finally, we state Casselman’s result on the irreducibility ecri-
terion of I(X) (see [9]). We use the same notation as in Section 1. For
a root ray a €¥, we choose a root o €@, such that a|y = g(a). Let d(a)
be the degree of L, over F. d(a) is independent of the choice of a.
For X € Hom(T(F')/T,, C*), denote by H(X) the subset of ¥V consisting aV
(a €¥) such that a is non-plural and Xea" = |-|#* or that a is plural and
XoaV = |-|& or |-|%*, where e(a) = (d(a)/2) + m(log(gs)™ —1 and 7 =
3.141.- ..

THEOREM (Casselman). Let X € X, (T). Then I(X) is irreducible if
and only if H(X) is empty.

When G is of F-rank one, this result was also proved by Williams
[28].

3. The irreducible decomposition of the unramified principal series.
In this section, we give the irreducible decomposition of the unramified



EULAR FACTORS 501

principal series representations I(X) of the unramified group G for regular
unramified characters X e X, (7). The idea of proof can be found in
Rodier [20] when G is split. Here we will use freely Rodier’s techniques.

3.1. Throughout this section we fix X € X,..(T'). Denote by C(X) the
set of connected components of V — U,verm Ker(a¥). For DeC(X), let
W(D) be the set of we Wy(S) such that w'CtcD. Also, let D, =
NaVernw (@) (R,) and W(X) = W(D,). For DeC(X) and we Wy(S), let
o(D, w) be the irreducible subrepresentation of I(X*). It follows from
(2.8.1) and Lemma (2.9) that o(D, w) is uniquely determined by w and
contained in JH(X). The remainder of this section will be devoted to
proving the following theorems.

3.2. THEOREM. Let X € X.oo(T).

(1) Let DeC(X). For any w,, w,€ W(D), p(D, w,) ts G(F)-isomorphic
to o(D, w,). That 1is, (the equivalence class of) o(D, w) depends only on
D. (Thus we denote it by p(D)).

(2) The correspondence o: C(X) — JH(X): D+— p(D) is bijective.

(8) For every DeC(), J(B,G;pD) 1is T(F)-isomorphic to
@wGW(D) Xw'

3.8. THEOREM. Let X € X,oe(T) and {H(X)) the set of coroots which
are represented by an integral limear combination of elements of H(X).
Then {H(X)) is a root system and H(X) is a basis of <H(X)). Thus com-
bining with Theorem (3.2) (2), one sees that the length of a composition
series of IQ) is equal to 2™ qnd |H(X)| is bounded by the semisimple
F-rank of G.

3.4. THEOREM. Let X€ X,..(T) and ¢ a non-degenerate character of
U(F) (see Section 4). Then, for DeCX), o(D) has a Whittaker model
with respect to @ if and only if D = D,.

Here we recall the notion of Whittaker model. For a non-degenerate
character ¢ of U(F'), we construct the induced representation W(G,U; o)
of G(F'). The space of W(G,U; ) consists of all locally constant functions
f: G(F)— C such that f(ug) = @(u)f(g) for all ue UWF), g GF'). G(F)
acts on this space by the right translation. Let = be an admissible re-
presentation of G(F'). A G(F')-embedding of = into W(G,U; @) is called
a Whittaker functional of 7= and its image is called a Whittaker model
of m (with respect to ¢). It is known that if x is irreducible then x
has at most one Whittaker model ([21]). When x has a Whittaker model,
we call it “the Whittaker model” of x.

3.5. We define the notation. Let a €¥? and w,, w,€ Wy(S). By the
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notation w,(a) # w,(a) (resp. w,(a)~w,(a)), we means that the wall Ker(a")
in V separates (resp. does not separate) two chambers w'C* and w;'C™.
For a given subset H of ¥ (resp. ¥V), denote by —H the set {—a|a € H}
(resp. {—aV|a¥ e H}). We start with the following lemma.

3.6. LEMMA. Let ac¥,U(—¥,) and w the reflection in V with re-
spect to the wall Ker(av). Let A be a base of Homg(I(X), I(X*)) (see (2.7.5)).

(1) If ave HX)U(—HQX)), then A 1is bijective.

(2) If a¥e HX)U(—HX)), then one has

J(B, G;Ker(4) = & ) 1 and J(B, G;Im(A)) = @(s) 1.
w;’e(lr;)ci(g g:(ea]i‘gw(a)

(83) Let @ be a mon-degenerate character of U(F). If ave H)
and av(C*) <0 or if a¥e —HX) and av(C*) > 0, then mo constituents of
Ker(A) has a Whittaker model with respect to ¢.

Proor. We prove this Lemma in several steps. Clearly, it is enough
to verify the assertions for a c¥,.

(Step 1) We remark the following facts. If G is of semisimple F-
rank one, then one has ¥V = {xa"}, Wi(S) = {1, w} and J(B, G; IX)) =
XP X ((2.7.4)). Thus the dimension of J(B, G; Ker(A4)) is always less than
or equal to 1. Furthermore, by Lemma (2.9), if dim J(B, G; Ker(4)) =1,
then J(B, G; Ker(A)) is isomorphic to X. When G is of semisimple F-rank
one, the assertions (1) and (2) in the Lemma are equivalent to

(3.6.1) If H(X) is empty, then Ker(4) = {0}

(3.6.2) If H(X) is non-empty, then Ker(A) == {0}.

By Theorem (2.10), the claim (38.6.1) is clearly true.

(Step 2) Assume G is a semisimple and simply connected group of
F-rank one and a is non-plural. In this case, G is isomorphic to R (SL,)
(see (1.4)). Thus one has G(F')=SL,(F) and the isomorphism av: F’* — S(F).
As we mentioned earlier, S(F)/S, is isomorphic to T(F)/T,. Hence aV
induces an isomorphism of F'*/~* onto T(F')/T,. For a complex number z,
we define the unramified character X, by X,ca¥ =|-|%2. The correspondence
z+— X, gives rise to an isomorphism of C/Z; onto Hom(T(F")/T,, C*), where
let Z, = 2r(log(qz))™ —1Z. By the definition, one has

{aV} if 2=1 mod Z;
HX,) ={{—a¥} if 2= —1 mod Z;.
%) otherwise

Thus the Lemma is a consequence of the following well known facts (see
[12], [13]). Let z vary over all C/Z,.
(3.6.3) I(X,) is reducible if and only if z= +1 mod Z,.
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(3.6.4) I(X,) has a composition series of the form 0 =I,cI,cI,= I(X).
The representation I, is a special represntation of G(F') with a Whittaker
model and I,/I, is a one-dimensional representation of G(F') without a
Whittaker model.

(Step 3) Assume G is a semisimple and simply connected group of
F-rank one and a is plural. In this case, one has G = R,,,(SU,), where
L, is the intermediate field between F' and E such that E is the quadratic
unramified extension of L, and SU, is the special unitary group defined
over L, by the hermitian form on E*® with degree three and Witt index
one ((1.4)). Thus, one has G(F) = SU,L,) and the isomorphism a": F'* —
S(F). (Note that av is the coroot corresponding to z(a)). For zeC, we
define the unramified character X, by X,ca¥ = |-|2. By the same reason
as in (Step 2), the correspondence z+ X, gives rise to an isomorphism of
C/Z, onto Hom(T(F')/T,, C*). By the definition,

{@¥} if z=1 or (1/2) + w(log(gs))™ —1 mod Z,
HX) = {{—a"} if z= —1 or —((1/2) + 7(log(gs) ™ —1) mod Z, .
@ otherwise

Hence the Lemma is a consequence of the following facts. Let z vary
over all C/Z;.

(8.6.5) I(X,) is reducible if and only if z= +1 or =+(1/2)+
7(log(qx)™ —=1) mod Z,.

(8.6.6) For z =1 or (1/2) + w(log(qz)™ —1, I(X,) has a composition
series of the form 0 = I,cI,cI, = I(X,) and I, is a special representation
of G(F).

(8.6.7) I, has a Whittaker model, but I,/I, does not have a Whittaker
model.

For (3.6.5) and (3.6.6), we refer the reader to Keys [156]. Here we
give a proof of (8.6.7). Let z=1 or (1/2) + n(log(qs) ™ —1. We con-
sider the contragredient representation I(X_,) of I(X,). Let 0= I;,CIliC
I, = I(X_,) be a composition series of I(X_,). Since I, = L/I;, I,/I; is a
special representation of G(F'). Let K be a hyperspecial maximal compact
subgroup of G(F'). Then it is well known that I(X_,) contains a unique
K-spherical constituent Sp(X_,) ([9]). Since Sp(X_,) is not a special re-
presentation (see Borel [2, p. 45, Remark]), it follows that Sp(X_,) is
G(F)-isomorphic to I;. Hence I; contains a K-invariant non-zero vector
px. Let 2_, be the Whittaker map of I(X_,) constructed in [11]. Using
the explicit formula of the “unramified Whittaker function” computed by
Casselman and Shalika [11, Theorem 5.4], we obtain 2_,(px) = 0. This
implies I = Ker(2_,). Therefore I, =~ I,/I} has a Wittaker model. Further,
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from [11, Corollary 1.8] or (21, Theorem 7], it is known that I,/I, does
not have a Whittaker model.

We note that, in the case of (Step 2) and (Step 3), the Lemma re-
mains true even if X is non-regular.

(Step 4) Assume G is a semisimple group of F-rank one. Let
t: G~ — G be the universal covering of G. T~ = p(T) (resp. S~ = %(S),
B~ = p¢7'(B)) is a maximal torus (resp. maximal F-split torus, Borel sub-
group) of G~ defined over F. One may identify the relative root system
?o(G~, S™) of G~ (with respect to S~) with @. By the same way as in
(Step 2) and (Step 3), each unramified character of T(F') is denoted by
X, for zeC. Let G* be the subgroup of G(F') generated by U(F') and
U°(F), where U° is the unipotent radical of the opposite parabolic sub-
group of B. Gt is a normal closed subgroup of G(F'). Moreover, it is
known from [4] that G* satisfies the following properties.

(8.6.8) G(F) = T(F)G*.

(8.6.9) w(G~(F)) = G*, that is, p: G~(F)/Ker u(F')—G* is a topolo-
gical group isomorphism.

Note that Ker p#(F') is finite and central in G~(F'). Let Ty be the
maximal compact subgroup of T~(F'). Since u(T;)C T, and Ker pu(F)C Ty,
we have an injection T~(F)/Ts = T(F)/T,. Thus Xop gives an unramified
character of T~(F). Clearly Xop= X, if and only if XecaV =|[-|3. In
particular, one has

(3.6.10) H(X) = H(Xop).

Now, we denote by I(X)|s+ the restriction of I(X) to G*. On the other
hand, by (8.6.9), I(G~, B~; Xop) is considered as a representation of G*.
Then one has a G*-isomorphism

(3.6.11) IX) = I(G~, B™; Xop) .
P> ot
According to this isomorphism, A transfers to a base A~ of Hom,.(I(G™,
B~; Xop), I(G~, B~; X¥op)). Clearly

(3.6.12) Ker(A4) = {0} if and only if Ker(4~) = {0}.

Since the Lemma on G~, Xoy, and A~ has already proved in (Step 2) and
(Step 3), the Lemma on G, X and A is easily proved from (3.6.10), (8.6.11),
(8.6.12) and (Step 1).

We remark that in this case the Lemma remains true even if X is
non-regular. In fact, for every non-regular unramified character X, I(X)
is irreducible and H(X) is empty.

(Step 5) Assume G is of semisimple F-rank one. Let G’ be the
derived group of G and C the central torus of G. Put 7" = TnG, S’ =
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SNG' and B’ = BNG'. We identify the relative root system ®(G’, S) of
G’ (with respect to S’) with @. Let X’ (resp. X|,) be the restriction of
X to T'(F') (resp. C(F')). Note that X’ is not necessarily regular. Since
aV(F)cS'(F), one has XoaV = X'caV. Therefore we obtain
(3.6.13) HX) = HX').

Let I(X)|;..» be the representation of C(F')-G'(F') obtained by restriction
of I(X) to C(F')-G'(F'). Since G(F') = T(F)-G'(F'), we have a C(F)-G'(F)-
isomorphism

(3.6.14) IN)eer —Ae @ I(G', B} X' .
¢+ Blarim

According to this isomorphism, A transfers to a base A’ of Hom.(I(G,
B'; X, I(G', B’; X'*)). Clearly

(8.6.15) Ker(A) = {0} if and only if Ker(4') = {0}.

The Lemma on G’, X' and A’ has already proved in (Step 4). Also we
recall that if X’ is non-regular then I(X') is irreducible and H(X') is empty.
Hence the Lemma on G, X and A is easily proved from (8.6.13), (3.6.14),
(3.6.15) and (Step 1).

(Step 6) We prove the Lemma for general G. For ¢ = {o(a)}, put
P=P, M=M, N=U, and 6, =0, M has semisimple F-rank one.
MNB is a Borel subgroup of M containing 7. The representation
I(P, B;X) of P(F) induced by X is the right regular representation of
P(F') on the space of all locally constant functions ¢: P(F') — C such that
#(bp) = 67 (b)0s(D)X(b)g(p) for all be B(F'), pe P(F). Note that N(F') acts
trivially by I(P, B; X). On the other hand, we have the representation
M, MNB; X) of M(F'). By the restriction map ¢ ¢|ym from I(P, B; X)
to IM, MNB;X), we obtain a P(F)-isomorphism from I(P, B;X) onto
IM, MNB; X) ® 1, where 1, denotes the trivial representation of N(F').
In particular, Hom(I(P, B; X), I(P, B; X*)) is isomorphic to Hom,(I(M,
MOB;X), (M, MN B; X*)). Let A’ be a base of Hom,(I(P, B; X), I(P, B; X*)).
Then, the G(F)-homomorphism A, of I(X) to I(X*) is defined to be

IX) = I(G, P; I(P, B; X)) — I(G, P; I(P, B; X*)) = I(X") .
g Alog

By (2.7.5), there exists a non-zero )\ €C such that A =x-4,. Clearly,
we may assume X\ = 1. Further, it is easy to check that if A’ is an
isomorphism then A is also an isomorphism. Since the Lemma on M, X
and A’ has already proved in (Step 5), if a¥¢ HX)U(—H(X)), then A’ is
an isomorphism and hence A is also an isomorphism. This proves the
assertion (1) in the Lemma.
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Now we assume a € HX)U(—H(X)). Then I(M, MN B; X) has a com-
position series of the form 0cKer(A)cI(M, MNB;X). One has Ker(A4) =
I(G, P; Ker(A") as G(F)-modules. In order to determine the Jacquet
module of Ker(A4), we apply the Geometrical Lemma to J(B, G; I(G, P;
Ker(A4")). Then there exist a numeration w,, w,, ---, w, of elements of
WM, T) and a filtration of J(B, G; I(G, P; Ker(4"))) of the form 0 = J,C
J,c.-cd, = J(B, G; I(G, P;Ker(A")) such that J,/J,_, is T(F')-isomorphic
to

KT, IntC*w,)(M)N T; J*s(M N Int(Fw;*)T), M; Ker(A")))
for +=1,2, .-, k. Here one has

KT, Int(*w)(M) N T; J*(M N Int(*wi*)(T), M; Ker(A")))
= I(T, T; J*T, M; Ker(A"))) = J*i{(T, M; Ker(A")) = X*t

because J(T, M; Ker(4')) is T(F')-isomorphic to X by (Step 5). Thus J,/J,_,
is T(F)-isomorphic to X*:. In particular, the filtration gives a composition
series of J(B, G; I(G, P; Ker(A"))). Since W(M, T) = {w' € W4S)|w'(a)~a},
one has
J(B, G; Ker(A)) = J(B, G; I(G, P; Ker(4"))) =~ w'eg?;(s) p S
w’(@)~a

Further, the exactness of the functor J(B, G; -) implies the assertion on
J(B, G; Im(4)).

Finally we prove the assertion (8) in the Lemma. Since g(a) is positive,
one has aV(C*)cR,. Thus we may assume a'e€ —H(X). Then, by (Step
5), Ker(A’) does not have a Whittaker model. By Casselman and Shalika
[11, Corollary 1.7] or Rodier [21, Theorem 7], if ¢ has no Whittaker
model, then neither does the representation of G induced by it. Hence,
no constituents of Ker(A4) have a Whittaker model. q.e.d.

3.7. COROLLARY. We fix aV ¥ and take w, w' € WyS) such that
Clw™'IC*H)NCl(w'*C*) = Ker(a), where for a subset D of V, CI(D) denotes
the closure of D in V. Let A be a base of Hom,(I(X*), I(X*")).

(1) If ave HX)U(—HX)), then A is bijective.

(2) If a¥e HX)U(—HQ)), then one has
JB,G;Ker(A) = @ X and JB,GImA)~ G 1.

w'’ e W ~(8) w”eWG(S)
w'’ (@) ~w(a) w’’ (a)~w’(a)

(3) Let @ be a non-degenerate character of UF). Ifa"e HX) and
av(w™C*) <0 or if a¥e —HX) and av(w™C*) > 0, then mo constituents
of Ker(A) have a Whittaker model with respect to .

Proor. Put B'=Int(*w™)(B) and C'=w™'C*. C’is the Weyl chamber
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corresponding to B’. Either o(a) or —o(a) is a simple root with respect
to B’. For every function ¢ on G(F'), we define the function ¢, on
G(F) by ¢.,(9)=¢(*wg) for g€ G(F'). ¢+ ¢, gives rise to G(F)-isomorphisms
IX*) S IG, B'; X) and I(X*) = I(G, B’; X*""). According to these isomor-
phisms, A transfers to a base A’ of Hom,(I(G, B'; X), I(G, B'; x*™")). It
is easily seen that Ker(A4) is G(F')-isomorphic to Ker(A4’) and J(B, G; Ker(A4))
is T(F)-isomorphic to J¥*(B’, G;Ker(4’)). Applying Lemma (3.6) to
I@G, B; X)), IG, B'; X*™"), a, C' and A’, we obtain the assertion. q.e.d.

3.8. PROPOSITION. For w, w' € W4(S), let A be a base of Hom (I(X*),
IX*")). Let

Y=Y w, w)
= {w"” € Wu(S)|w"(a)~w(a) and w'(a)+ w'(a) for some a¥ € H(X)} .
Then one has
J(B, G; Ker(A)) :w’@Y X" and J(B, G;ImA)= & 1.

w' e Wg(S)—Y

ProoF. This proposition is proved by the same way as in [20]. For
the sake of completeness, we give the proof. We take a minimal gallery
in V between two chambers w'C* and w'!C* of the form w™'C* = C,,
c,--,C,,, C,=w"C". The Proposition is verified by the induction on
n. For n =1, Corollary (8.7) implies the required assertion. Assume
n>1. We take w,_, € Wy(S) such that C,_, = w;2,C*. Let A,_, (resp.
A") be a base of Homg(I(X*), I(X*»-1)) (resp. Homy(I(X*»-1), I(X*"))). We
denote by J(A,_,) (resp. J(A4")) the T(F)-homomorphism of J(B, G; I(X*)) to
J(B, G; I(X*»-1)) (resp. J(B, G; I(X*»-)) to J(B, G; I(X*"))) induced from A,_,
(resp. A’). Since an irreducible component of J(B, G; I(X*)) is represented
by X*" for w"” € W4(S), we can consider subsets

Y, = {w" e We(S)|J(A,_)X*") = 0}
and
Y, = {w'’ e W(S)|J(A,_)(X*")#0 and J(A")eJ(A,_)X*") = 0}.
Then one has obviously
J(B, G; Ker(A'°A,_)) = Ker(J(A)oJ(A,_ )= B X*.

w’’eY UYy

Now we show Y,UY,=Y. First, let w’€Y,. By the induction hy-
pothesis, there exists a¥ € H(X) such that w'(a)~w(a) and w"(a) * w,_,(a).
Since the gallery {C,} is minimal, one has necessarily w”(a) # w'(a). Thus
w" is contained in Y. Next, let w” € Y,. There exists the coroot aV
such that Cl(C,_,)NCI(C,) = Ker(a"). Then, by Corollary (3.7), av is an
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element in H(X) U(— H(X)). Further, one has w" ~w,_,(a) and w”(a)2w'(a).
The minimality of the gallery {C;} implies w'"(a)# w(a). Thus w" is con-
tained in Y. On the other hand, let w”’ €Y. We can take a¥ e H(X) such
that w"”(a)~w(a) and w”(a) ~w'(a). Then there exist adjacent chambers
C,_, and C, in the gallery such that CI(C,_,)NCI(C,) = Ker(aV). From the
induction hypothesis, the minimally of the gallery and Corollary (3.7), it
follows that if ¢ <n then w"”" € Y, and if ¢ = n then w” € Y,. This finishes
the proof of YUY, =Y.

In the result, J(B, G; Ker(4’-A4,_,)) is T(F')-isomorphic to @, .y X1*".
Since Y does not contain the element w, such that w;'C* = —w™C",
A'0A,_, is non-trivial. Thus, Ker(4) coincides with Ker(4'-A4, ,). This
comletes the proof of the assertion on Ker(4). The assertion on Im(A) is
derived from the exactness of the functor I(B, G; -). g.e.d.

3.9. COROLLARY. Let w and w' be elements in Wy(S). Assume that
we have w(a)~w'(a) for any a¥ € HX). Then IX*) 1s G(F')-isomorphic to
I,

3.10. COROLLARY. For we WyS), let

Y(X; w) = {w” € Wu(S)|w"”(@)~w(a) for any a' € HNX)}.

Let © be the irreducible subrepresentation of I(X*). Then J(B, G;x) 1is
T(F)-isomorphic t0 Dy eyim X -

Proor. By Corollary (3.9), I(X*) is G(F)-isomorphic to I(X*") for every
w”eY(X; w). Thus = is also the irreducible subrepresentation of I(X*")
for every w” € Y(X; w). Then, by Lemma (2.9), we obtain

(8.10.1) B.rerum X" cJ(B, G; 7).

Let w, be the element in W,(S) such that w;i'C* = —w™C*. Let A bea
base of Hom (I(X*), I(X*)). Clearly, = is the irreducible subrepresentation
of Im(A). Furthermore, one has Y(X; w, w) = {w" € Wu(S)|w"(a) + w(a)
for some aV € H(X)}, that is Y(X; w) = W(S) — Y(X; w,, w). By Proposition
(3.8), one has

(8.10.2) J(B, G; r)cJ(B, G; Im(A)) = Burreram X* -

(3.10.1) and (3.10.2) complete the proof.

3.11. Proor oF THEOREM (8.2). Let we W(D). Then W(D) is equal
to Y(X; w). Thus the assertions (1) and (3) are consequences of Corollary
(3.9) and (8.10). The assertion (2) follows from (2.7.4) and the assertion
3). q.e.d.

3.12. PrROOF OF THEOREM (3.4). It is known from Casselman and
Shalika [11, Corollary 1.8] or Rodier [21, Theorem 7] that there exists
a unique constient of I(X) which has a Whittaker model with respect to
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@. Now, we take a connected component De C(X) which differs from
D,. Then there exists a coroot ave H(X) such that aV(D)cR_, where
R_ is the set of negative real numbers. We can take a chamber
w™'C*c D with the wall Ker(a¥). By the definition, o(D) is the irreducible
subrepresentation of I(X*). Let w’ be the reflection with respect to
Ker(av). If A is a base of Homg (I(X*), I(X*"*")), then Ker(A) is non-trivial
by Corollary (3.7) (2). In particular, po(D) is the irreducible subrepresen-
tation of Ker(4). From aY(w'C")CaV(D)cR_ and Corollary (38.7) (8), it
follows that no constituents of Ker(A) have a Whittaker model. q.e.d.

3.13. Proor oF THEOREM (3.3). (H(X)> is clearly a subsystem of
V. We show that H(X) is a basis of (H(X)). Obviously, the proof is
reduced to the case where the relative root system @ is irreducible. We
take an irreducible component 4z, of 4,. Let @, be the subsystem of
0, generated by 45, and I', = {v € Gal(E/F)|v(dg,) = 4z,}. Then @, has
the irreducible decomposition of the form

Dy = H 7(¢E,0) .

reGaI(c/F)/Po

It is easily seen that the proof is reduced to the case of @, =@,,. Thus
we assume @, is irreducible. Let Y be the automorphism group of 4,
induced from Gal(E/F). Then we have the following four types (see,
[8], [24D).

Type I. |3} =1. Then one has E = F and ¢, = Q.

Type II. |¥| =2 and ¥ has no plural root ray. In this case, E is
the quadratic unramified extension of F. For ae®, let L, be the field
of definition of « and a|s the restriction of « to S. If al; is a short
(resp. long) root, then one has L, = E (resp. L, = F).

Type III. |¥| =2 and ¥ has plural root rays. Then E is the quad-
ratic unramified extension of F. For a€®, if a|; is a non-divisible
(resp. divisible) root, then one has L, = E (resp. L, = F).

Type IV. |¥| =38. Then E is the cubic unramified extension of F.
For ac®,, if als is a short (resp. long) root, then one has L,=F
(resp. L, = F).

For a e ¥, by the definition, one has

1 if Type I, Tpye II and o(a) is long or
Type IV and o(a) is long

(3.13.1) d@)=1g ;s Type II and o¢(a) is short or Type III.
8 if Type IV and o(a) is short

Put ¢ = 1 + n(log(gs)) ™ —1. For each a" e (H(X)), by the definition of
H(QX), there exist p(a¥) € Z and ¢(a") €{0, 1} such that Xca" = [« [BaY1+at@Vre
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Since |3 = |-|%, p(a") and q(aV) is uniquely determined by aV. Further
we have the following:

3.14. LEMMA. (1) For any avelHQ)), pY)+ qav)e does mnot
vanish.

(2) Assume we have Type I, Type II or Type IV. Then one has
the following relations for any aV, b¥ e (H(L)):

qga¥) =0, pla” +b")=p@’)+ pd"), p(—a")=—pav).

(8) Assume we have Type III. Then one has the following relations
for any aV, b e (HX))>:
p(@¥) =0 mod2,
v b 2 14 Yy = q(b¥) =1
p@Y 4 bY) = {p(a )+ p0®Y) +2 if q(a.) q(®")
pav) + p(dY)  otherwise ,
g(a” +bv) = q(a’) + ¢(b¥) mod 2,
—p@¥)—2 if q@¥)=1
p(—av)={ . , q(—aY) =qla).
—p(a") of qa¥) =0 )= a@?
Proor. (1) For aVe<(H()), suppose p(a“) + q(a¥)e = 0. Then Xoa"
is trivial. Let w e W,(S) be the reflection in V with respect to Ker(aV).
Then, for any A€ X, (S), one has

XX ™on = Xo(w(\) — A) = XoqV) @ =1,

Thus X* equals X. This contradicts to the regularity of X.

(2) When we have Type I, Type II or Type IV, ¥ has no plural
root ray. Hence q(a") equals zero for any a¥ € (H(X)>. Other relations
are clear.

(8) It follows from (3.13.1) that p(a) is even. Other relations are
proved by simple calculations. q.e.d.

3.15. We continue the proof of Theorem (3.3). Let 2 be the closed
cone in C generated by & and 1, that is, 2 = {& + ye|z = 0 and y = 0}.
For ave(HX)), av is called Q2-positive if p(a“) + qlaV)ee 2. We denote
by (H(X)), the set of all 2-positive elements in (H(X)). Also, an element
aV in (H(X), is called 2-simple if it is not decomposed to the sum of
two Q-positive elements. It follows from Lemma (3.14) that (H(X)).
satisfies the following properties (see, Bourbaki [5, Chapitre VIJ).

(3.15.1) <H(X)). is closed.

(8.156.2) <HX)) = <HX){ II(—<H@) ).

Then, by Bourbaki [5, Chapitre VI, Section 1, Corollaire 1 to Proposition
19 and Corollaire 1 to Proposition 20], the set 2(X) of all 2-simple elements
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in (H(X)), is a basis of (H(X))>. Therefore, to verify that H(X) is a
basis of (H(X)), it is enough to show that H(X) is contained in 2(X),
(then, automatically, one has H(X) = 2(X) by Bourbaki [5, Chapitre VI
Section 1, Corollaire 4 to Proposition 20]). First we obtain the following:

3.16. LEMMA. Assume we have Type 1, Type II or Type III. Then
H(X) is contained in Q2(X).

PrROOF. H(X) is clearly contained in (H(X)>,. Thus it suffices to
prove that each element of H(X) is 2-simple. We show it in every type.

Type I. For aVe H(X), one has p(aV) =d(a) =1. Thus av is £-
simple.

Type II. In this case, ¥V is a root system of type B,, C, or F.,.
Let ave HX). When g(a) is long, one has p(aV) = d(a) = 1. Thus aV is
Q-simple. We assume o(a) is short. Suppose that aV is not 2-simple.
Then one can take Q2-positive elements a) and ay such that av = a) + a).
By (8.13.1) and Lemma (3.14) (2), one has 2= p(a") = p(ay) + p(ay). Since
p(ay) > 0 and p(ay) > 0, both p(ay) and p(ay) equals 1. Hence both ay
and ay are contained in H(X) and both ¢(a,) and o¢(a,) are long, in other
words, both @) and ay are short. Then, by the properties of root systems
of type B,, C, and F,, one knows a; — ay € (H(X)). However one has
play — a)) = p(ay) — play) = 0. This contradicts to Lemma (3.14) (1).
Hence aV is 2-simple.

Type III. In this case, ¥V is the B,-type root system. We recall
that p(a¥) is even for every ave(H(X)). Let a¥Ye H(X). Then p(a)
equals either 0 or 2. First we assume p(aV) = 2. Suppose that aV is
not 2-simple. Then there exist 2-simple roots ay, ay € (H(X)). such that
a¥=a+a’., By Lemma (3.14) (3), one has p(ay) =p(ay) =0 and q(ay) =
g(ay) = 1. Thus both a) and a; are contained in H(X) and both a, and
a, are plural, in other words, both ay and a; are short. Then by the
properties of the B,-type root system, ay — @, is contained in {(H(X)).
However one has

pla’ — a)) = p(a’) + p(—ay) +2 =0
and
glay — ay) = q(ay) + 9¢(—ay) mod2 =0 mod 2.
This contradicts to Lemma (3.14) (1). Therefore aV is 2-simple. Second,

when p(aV) equals 0, one has ¢(a¥) =1. This implies that aVv is 0-
simple. q.e.d.

Next, for Type IV, we obtain the following:
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3.17. LEMMA. Assume we have Type IV. If H(X) is mot contained

wm 2(X), then one has {HX)Y =¥V and H(X) is a set of simple roots of
(A

PrROOF. ¥V is the G,-type root system. Under the assumption, we
can take a coroot aVe H(X) which is not 2-simple. Then o(a) is neces-
sarily a short root. There exist Q2-positive roots ay, ay € (<H(X)), such
that a¥ =aY + ay. By (8.13.1) and Lemma (3.14) (2), we obtain 3 =
p(aY) = p(aY) + p(ay). One may put p(ay) =1 and p(ay) = 2. Thus a
is contained in H(X) and o(a,) is long. Obviously, ¢V, ay and ay are
distinect each other and contained in (H(X))>,. Furthermore, the length
of aV is different from that of @’. Then (H(X))> coincides necessarily
with ¥V by the properties of the G,-type root system.

Now, we show H(X) = {aV, aY}. Suppose that there exists b¥ e H(X)
such that bVé¢{aY, ay}). If bv is short, then bV — a) is contained in ¥V
because ay is short. However, one has p(Y — a)) = p(bY) — p(ay) = 0.
This contradicts to Lemma (3.14) (1). Thus bY must be long. If bV —aV
is contained in ¥V, then we have also a contradiction by p(b" — a¥) = 0.
Thus bY — aV is not contained in ¥V. Nevertheless, by the properties of
the G,-type root system, we can take the short root ¢vVe¥?V such that
bY — a¥ = 8¢" in X,(S). Then one has p(¢c¥) = 0. This is a contradiction.
Consequently, H(X) equals {aV, ay}. Since aV is long, a; is short and
H(X) generates ¥V, H(X) is a basis of ¥V. This completes the proof of
the Lemma and hence Theorem (3.3).

4. Explicit form of Whittaker functions. In this section, we give
an explicit form of Whittaker functions restricted to S(F'). Here, we
consider only the Whittaker model attached to the constituent o(D,) of
I(X) for X € X,o,(T). This result is used for calculations of zeta integrals
in Section 6.

From now on, we assume the characteristic of F is equal to zero.

4.1. First we consider the group U” consisting of all (unitary) char-
acters of U(F'). We fix a Chevalley—Steinberg system {%,},.,, of G ((1.3))
and take a coherent system {(L,, .)},cr of G induced from {Z.}sco, ((1.7)).
For ae¥, let U,,, (resp. U,,.) be the root subgroup of G corresponding
to the root o(a) (resp. 20(a)). When a is non-plural, we put U,,,, = {1}.
Let N, =U,,(F)/Uyyo)(F') for a € ¥. Then the coherent system {(L,, ,)}cer
induces the isomorphisms z,: L,,i»Na (see, (1.5), (1.6)). Since the derived
group U'(F) of U(F) has the form []sco, sUs(F'), the quotient group
UF)/U'(F) is equal to [[,cy, N,. Thus, we obtain an isomorphism
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2= 2: II L SUF)U'F).

ae¥, ae?y

By this isomorphism, U” is isomorphic to the Pontrjagin dual J[, L) of
II.L.,. For e U, + is called a non-degenerate character if +roz, is
non-trivial for any ae€¥, T(F) acts on U" by +*(u) = 4(t-u-t™) for
e Ur teT(F) and u e U(F).

Next, we construct an isomorphism of [[.cr,L. to U". We fix a
non-trivial character ¢, of F. For each ac¥?, let v, = ¥ otr,  be a
non-trivial character of L, where tr, , is the trace of L, over F.
Further, for each a€¥,, we define the homomorphism p, from U(F') to
L, by the composition of three homomorphisms, the natural homomorphism
UF)-UFR)UWF), z2:UF)]U'(F)— Il. L, and the projection [], L, — L,.
Then @ = [l.cy, (¥u°p,) is a non-degenerate character of U(F). Notice
that @ depends on the coherent system {(L,, #,)}.cr,, Using this character,
we define the isomorphism A, of [l.,.r, L. onto U" by

Ae((r))(u) = ¢(a_gozu(n-pa(u)))

for (7,) € [laer, Loy uw€ U(F). Let U be the image of [[.cv, FF by g
that is,

U ={p (] z(re- () |7, € F for any ae¥}.

Uz is a closed subgroup of U” and depends on the coherent system
{(La @o)}aew,, The following property is easily seen.

(4.1.1) Ujp is S(F)-invariant.

Let U} = {p*|se S(F)}. By (4.1.1), U} is a subset of U3. Note that one
has @* = \x((0(a)(8))acr,) for seS(F).

Let Cy(U”) (resp. Cy(U%)) denote the set of all locally constant
functions on U” (resp. U%) with compact support. We fix a regular
unramified character X € X...(T). Let o(D,) be the constituent of I(X)
with a Whittaker model (Theorem (3.4)) and denote by # 57X, #) the
Whittaker model of o(D,) with respect to @. The following two theorems
are main results in this section.

4.2. THEOREM. For each fe 57X, @), there exists a family
{6, € C3(U%)|we W)} such that

fls) = we%m $(P*)05(8)X"(8)
for any s€ S(F), where W(X) is the subset of W(S) defined in (3.1).

4.3. THEOREM. For every we W(X) and ¢<€Cy(U"), there exists a
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Whittaker function fe % 57X, p) such that f(s) = ¢(p*)ox(s)X*(s) for any
se S(F).

When G is a split group, these theorems were proved by Rodier in
[22].

For the proof, we need a few lemmas. If necessary, changing X to
X* by w e W(X), one may assume o(D,) is the irreducible subrepresentation

of I(X). Put = = p(D,) and let V, be the representation space of 7 realized
in I(X).

4.4. LEMMA. Let 0 be a subset of 4. Then the Jacquet representa-
tion J(Py, G; IX)) of I(X) with respect to (Py M,) is My(F')-isomorphic to
@weww,ua) I(M,, M,N B; X*).

ProOF. This is proved in four steps.

(Step 1) Applying the Geometrical Lemma to J(P,, G: I(X)), one has
a numeration w,, w, :+-, w, of elements of W(T, M,) and a filtration
0=J,cJ,c..--cd, = J(P,, G; I(X)) such that J,/J, , is M,(F')-isomorphic
to I(M,, M\y,NB; X*t) for 1 £4 < k. Further, the Frobenius reciprocity
law implies the isomorphism

Homﬂo(J(Poy G; I0), J./d,-,) = HomT(we;.é(s) X, XU .
Hence, Hom, (J(P,, G; I(X)), J,/J,_,) is of dimension one. Let A, be a base
of Hom, (J(P,, G; I(X)), J,/J,_,) for 1 <4 < k.

(Step 2) We show J,_,cKer(A4, for1<i<k. Fori=1, it is trivial.
Assume 7 = 2. Suppose A,(J,_,) is non-trivial. Then, since A,J,_,) con-
tains the irreducible subrepresentation of I(M, M,N B; X*¢), the Jacquet
module J(M,N B, My; A,(J,_,)) must contain the T(F)-irreducible component
X*¢. On the other hand, if we apply the functor J(M,N B, M,; -) to the
exact sequence J,_, — A,(J,_,) — 1, then we obtain the exact sequence

JWM,NB, My; J,_,) > (Mo B; Mo; A(J.) — 1,
i

i—1
xXevi
=1 weWy(s)
where W,(S) denotes the relative Weyl group of M, with respect to S.
By [1, Lemma 2.11], each coset of W,(S)\ W4(S) contains the one and only
one element of W(T,M,). It follows from this fact that J(M,N B, M,; J;_,)
does not contain X*:. This is a contradiction.

(Step 3) We show J, & Ker(A,) for 1 <4 < k. Suppose Ker(4,) con-
tains J;. Then J(M,N B, M,; Ker(A4,)) contains the T(F')-subrepresentation
Duewys) X°. However, if we apply the functor J(M,NB, My; -) to the
exact sequence
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1—Ker(A,) — J(Py, G; I(X)) > Im(A) —1,
)
I(M,, MyN B; X*%)
then we obtain the exact sequence
1—J(M,N B, M,; Ker(4,)) — EB(S) X —J(M,NB, M,;; Im(4,))—1.
weWg
{
P e
weWq(s)
This implies a contradiction.
(Step 4) By (Step 2) and (Step 3), the composition of the injection
R;: J,)J,_, = J(P,, G; IX))]J,_, and A, is non-trivial for 1 < ¢+ < k. Thus
A;°R, gives a base of Hom, ,(I(M,, M,N B; X*), I(M,, M,N B; X*%)) for 1=
1 = k. In particular, A, is surjective and Ker(4,|;,) equals J, ,. Hence,
the homomorphism
k k
iEIlei: J(Py, G; I(X))Hg(Ji/Ji_l) =~ & I(My M;NB;X")

weWw(T,Mpq)
gives a M,y(F)-isomorphism. q.e.d.

4.5. COROLLARY. J(P,, G;x) 18 M,(F')-isomorphic to a subrepresen-
tation of @weW(me(T,Mg) I(M,, M,N B; X*).

This is a result of Lemma (4.4), Theorem (3.2) (83) and the Frobenius
reciprocity law.

4.6. We recall the results in [19]. We consider the quotient space
Vi =V,/Span{r(w)v — v|lve V., v € U(F)}.

U(F') acts on Vi by =. Since the action of U'(F') on V?# is trivial, (=, V?¥)
gives rise to a representation of U(F)/U’'(F). Then, by [19, Theorem 2
and Proposition 2], there exists the locally free sheaf & of the complex
vector space over U satisfying the following:

(4.6.1) Denote by I',(#, U") the vector space consisting of sections
of & over U” with compact support. For 4re U and yeI' (=, U"), let
Z (4) be the stalk of & at ¢ and y(y) the image of y to # (y). Then
there exists the isomorphism #* from V% onto I',(&, U") such that

D)) (y) = y(w)- 7))
for every we UWF'), v*e Vi and € U".
(4.6.2) Let 7:V,— I (%, U") be the composition of the natural homo-
morphism V,—V# and 7*. Then, for each + € U", the homomorphism
v )(y) from V, to F () is surjective and its kernel is equal to



516 T. WATANABE

V¥(B, G) (see (2.3)). Thus & (¢) is U(F)/U'(F)-isomorphic to the -
localization V,(B, G; n) of =.
The following assertion is equivalent to the uniqueness of a Whittaker
model (c.f. [11], [21]).

(4.6.3) & (y) = C for any non-degenerate character € U".
Furthermore, the following is an easy consequence of (4.6.2).

(4.6.4) For se S(F), e U" and ve V,, n(v)(++*) vanishes if and only
if n(z(s)v)(¢+) vanishes.
Using (4.6.3), for each ve V,, we define the C-valued function f, on
G(F') by

(4.6.5) f(9) = n(=(g)v)(p), g€ G(F).
Then one has Z 27X, ) = {f,|ve V]

4.7. For e U", let
4A(p) = {o(a)|a € ¥, and oz, is non-trivial}

and Z(y) the stabilizer of « in S(F). Then one has

(4.7.1)  Zs(¥) = (Npearw Ker(B))(F).
Since Zg(+r) acts on Vy(B, G; n) according to z, the isomorphism & (¢) =
Vu(B, G; &) of (4.6.2) induces the action of Zg(y) on & (¢). This action
is also denoted by n. From the definition (2.3), it follows that the
representation (z, Z (¥)) of Zy(y) is equivalent to the representation
(05 @ Jy(B, G; ), Vy(B, G; x)).

We denote the subset W(X) N W(T, M,y,) of W,(S) by W(X, ), that
is, WX, ¥) = {we W) [w'(4(y)Co,}.

4.8. LEMMA. The representation (m, F (¥)) s Zs(yr)-isomorphic to
a subrepresentation of Duewa,p) 05° X" | 24w+

PROOF. Put P = Pyyy, M = Myy,. It is easy to see that & (y) is
Zs(+r)-isomorphic to

BBIZS('W‘) ®J'V’|[[rnM)(MmB) M; J(P, G; 72:)) ’

where +|yny is the restriction of « to UF)NM(F). Then, it follows
from Corollary (4.5) that .& () is Zg(+r)-isomorphic to a subrepresentation
of

{05l 250m Ty 0y, M N B, M; I(M, M B; X*))} .

weW () NW(T,M)

By the definition of 4(v), +¥|wnsm gives a non-degenerate character of
UF)NM(F). Then, it is known by [11, Corollary (1.7)] that Jy,,,,(MN
B, M; I(M, MN B; X*)) is Zg(v)-isomorphic to X*|;,y. Here, notice that
Zs(+) is central in M(F). q.e.d.
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4.9. LEMMA. Denote by CI(U}) the closure of Uy in Up. Let + be
an element in CI(UP) and & an element of the set {65 X"|we W, )}
Let v be an element in V, such that n(v)(¥) is an eigenvector of Zs()
with the eigen character &, ). Then there exists a compact neighbourhood
A of ¥ in Up such that the map s+ &(8)"n(r(s)v)(®) is constant on -
{se S(F)|p* e ).

ProOF. We verify this lemma in four steps.
(Step 1) Since both 7 and & are smooth, there exists an open compact
subgroup € of S(F') such that z(s)v = v and &(s) = 1 for any s€€. Put

Zs(¥), = {se Zs(y) |la(s)l =1 for any acd}.

Here we can prove that the quotient Zi(y),/(€N Zs(+),) is a finitely
generated monoid (Appendix). Thus there exists a finite subset S Z;(4),
such that Zy(v), is generated by (€N Z;(y),)US. For each s, since
n(z(s)v)(y) is equal to &(s)p(v)(y), there exists a compact neighbourhood
A, of 4 in Up such that n(z(s)v) = &(s)n(v) on A,. Let A’ be the inter-
section of A, s€S.

(Step 2) For simplicity, let 4 ={a,, @+, a,} and () ={qr1,* * *) An}e
By the isomorphism )\, defined in (4.1), we assume that «+r corresponds to
(t)isisn € Bici<e . From (4.7.1), it follows

t;=0 and a;(Zs(y),)Cp for 1 <1<k

t,#=0 and a(Zs(y)) =1fork+1=i=n.

For a positive integer p, define the neighbourhood B, of 4 in Uy by
r.eF for 11k

riet(l+ ) for k+1<i<n)

We take a positive integer p, such that B,c¥’ if p = p,. Let p be an
integer greater than p, and ¢* be an element in U;NMB,. Now we show
{p*|ls €8’ Zy(y),}CB,. Since ¢* = np((i(8))1<i5q) for s € S(F'), @ is contained
in B, if and only if a,(s) is contained in % or ¢,(1 + <) according to
1<i<kor k+1=<i¢=<n. In particular, one has a,(s')e &F for 1<tk
and a,8)et;1 + ) for k+1=<1=mn. Then, by (4.9.1), a,(s'Zs(),) is
contained in &% or t,(1 + 2) according to 1<i1<kork+1=t=mn.

(Step 8) We show there exist integers »”’ = p’ = p, and an element
@' € UpNB, such that Uy B, is contained in {p*|ses’-C-Zs(y),}. First
one can take coweights {8, 8, * -+, B.}CX,(S) such that

lay, By =0 if i#J
{a,, By =m; > 0.

(4.9.1) {

B, = {7\:17(("2'))

(4.9.2)
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Since € is open in S(F'), there exists a positive integer ¢ such that
Bl + A)cE for 1 < ¢ < n. Then one has

{P*ls € €} = {\p((@i(8))12420) [s € €}

(11 8:r9) uceen)
= {s((r))|r;e@ + Ffm for 1 <1< n}.
Thus if we take an integer ¢ such that 1 4+ <78 is contained in
Ni-, A + &)™, then one has
4.9.3) {p’|seC&}o{np((r))|riel + FF for 1 <1 < m}.
Further, since B,(7» — {0}) is contained in Z(v), for 1 < 1 < k, one has
rie7 —{0}for 115k
ro=1fork+1=i<n l ’
where let ¢ = max(m,, m,, ---, m,). Now, we take an integer p’ greater

than max(p,, ¢, ¢") and ¢ € U} NB,. We also take an integer p” such
that 2" ca,(s’)- %" for 1<i1<k. Then, by (4.9.3) and (4.9.4), one has

{p'lse s’ € Zs(y),} = (Nr((ai(s’* 8, 82))isisa) 8, € €, 8, € Zs(),}
e, (s A" —{0) for1<i=k
Shutrop|rE 0t~ v=] }
rea)Q+FH)fork+15isn
r.e 7" — {0} for 115k }
)
{M((ri» rietl+F ) fork+1=<i1=n
= Ué\ n%ﬂu .
(Step 4) Let B,, B,. and ¢*' be the same as in (Step 3). From
{p*" 8" € 8'Zg(4)} =B, U’ (Step 2), it follows
(4.9.5) &)™ n(m(s)v) — n(v) = 0 on {p*"|s" € s'Zs(4)}
for any se@€U®S. By (4.6.4) and the fact that Z(y), is generated by
(€N Zs(4),) U, it is known that (4.9.5) holds for every se€.Zy(y),. In
particular, one has

riel + 78 forlgjgn}

(4.9.4) {p*|se Zg(y),}D {M((n))

&) n(z(S)v)(@*) — (v)(@*) = 0
for any se€ €. Zy(+),. Further (4.6.4) implies
() (s’ 8)v — (s )w)(p) =0
for any se €. Zy(y),, that is,
&) p(r(s)v)(@) = &(s") 7 n(w(s')v)
for any ses’-€-Zy(vy),. Hence, it follows from (Step 3) that the map
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st £&(8)"  n(n(s)v)(p) is constant on {se€ S(F)|p* e B, }. q.e.d.

4.10. PrOOF oF THEOREM (4.2). Let fe 57X, #) be a Whittaker
function. By (4.6.5), f has the form

(4.10.1) f(9) = fu(9) = n(m(@)v)(®), 9€G(F)
for some ve V,. Let U, be the support of n(v) in U*. Notice that U,
is open-compact. Furthermore, (4.6.4) implies that for se S(F),

(4.10.2) f,(s) =0 if and only if ¢*¢1,.
Thus, if U}NNQ, is empty, then f, vanishes on S(F'). Assume UpNU, is
not empty. We take an element + in the closure CI(U}NU,) of UjNN,
in U3. From Lemma (4.8), it follows that 7(v)(y») has the decomposition
of the form n(W)(¥) = Duewa v ¥Y(w), where y(w) is either zero or an
eigenvector in & (y) with the eigencharacter 65 -X"|; ). Put W, (X, ¥) =
{we W, +)|y(w) = 0}. It is known by (4.6.2) that for each y(w) there
exists a vector v(w)e V, such that y(w) = p(v(w))(y). Thus one has
NV)Y) = Buewr,yy P@(w))(y). Applying Lemma (4.9) to each eigenvector
n(w(w))(+), one can take an open compact neighbourhood A(y, w) of
in U% such that

05X°(s)" n(m(s)v(w))(p) = constant

on {se S(F)|p* €A, w)}. We denote this constant by c(y, w) for each
we W,(X, ¥) and put c(y, w) = 0 for any we W(X) — W,(X, +). Hence, if
we put AW) = Nyew, a3 Ay, w), then one has

(4.10.3) N(r()V)(P) = Dwewm (¥, w)-55X"(s)
on {s€S(F)|p* € U(y)}. Since Cl(UFNN,) is compact in Up, there exist a
finite subset {y, 4y, - -+, ¥} of CI(U;NU,) such that

U nu,)c ,Ql%l(«/ri) :

Let €, = A(y) — Uk, () for 1 <1< k—1 and €, = A(y,). These subsets
are open compact and disjoint each other. For each we W(X), we define

the function ¢, € Cy(U%) by
ey, w) if €N, 115k
0 otherwise .

$u(¥) =

Then, by (4.10.1), (4.10.2) and (4.10.3), one has clearly
F@ = 3 o) 5:06)

for any se S(F). q.e.d.

4.11. Proor oF THEOREM (4.3). For a given ¢cCy(U"), it is suf-
ficient to prove that there exists a Whittaker function fe Z#22(X, @)
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such that f(s) = ¢(p°)-d5(s)X(s) for any s€ S(F'). Let w' be the element
of Wu(S) such that w'C* = —C*. Then = is G(F')-isomorphic to the
irreducible quotient representation of I(X*'), that is, one has a G(F)-
homomorphism A from I(X*) onto V,. A gives rise to an isomorphism
A, of VB, G; IX*")) to & (p)=V,B, G;x) since both of them have
dimension one. Thus, if we denote by 7, the natural homomorphism
from I(X*) onto V (B, G; I(X*")), then one has 7(A®W))(®) = A,(n,(y)) for
any ye€I(X*). Hence, if we put f,(9) = A,(n,IX*)(g)(y))) for ye IX*)
and g € G(F'), then one has 727, ) = {f,|lyI(X*)}. Now, we con-
sider the subspace

Y = {y € I((*") |supp(y) < BF)- w'- BFY)) .

It is known by [11, Corollary (1.8)] that there exists a non-zero constant
C such that

o) = |y ) puydu

for any y€ Y. Thus one has
@1L1) £(s) = C-3,X(s)- SU(F)y(w’-u)-gw’(u)“du

for any y€ Y and se S(F'). Let du’ be the Haar measure of U'(F) ob-
tained by the restriction of du. For ye Y, define

Y'(u) = S yw' -u-udu' .
U'(F)

Then y+ %' is a linear map from Y onto the space Cy(U(F)/U'(F')) of all
locally constant functions on U(F)/U’'(F') with compact support. Further,
let ' +—y'" be the Fourier transform of CP(U(F)/U'(F)) onto CZ(U").
For a given ¢ € C3(U"), we can take an element y € Y such that ¢=C.y"".
Then, by (4.11.1), one has

fu(8) = C-8,0(8)- 4" (@*) = 85X(5) $(*)
for any se S(F). q.e.d.

4.12. REMARK. The assumption on the characteristic of F was used
only in the proof of Lemma (4.9). Thus the other lemmas remain true
without this assumption.

5. Parametrization of irreducible representations of “G. In order
to construct Euler factors, we must study finite dimensional represen-
tations of the L-group “G of G. In this section, we give a complete

parametrization of equivalence classes of finite dimensional irreducible
representations of ‘G.
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5.1. Since the minimal splitting field E of G is an unramified extension
of F, the Galois group I" = Gal(E/F) is cyclic. Let ¢ be a Frobenius
element of I’, hence ¢ is a generator of I'. Let (X*(T), 45 X.(T), 4%)
be the based root datum attached to (G, B, T). Here, we define the
action of I" on X*(T) and X, (T) by

8(t) = YETHD) , <& W = (& W

for verI', £e X*(T), »eX,(T), where <, ), denotes the natural pairing
X*(T)x X, (T)—Z. The dual system (X,(T), 4% X*(T), 4;) determines
uniquely (up to isomorphisms) the connected reductive algebraic group *G°,
the maximal torus *“7° and the Borel subgroup “B° defined over C. Since
the Galois group I” acts on *G° (see [2]), we can define the semi-direct
product G = *G°x I". Usually, this is called the “finite Galois form” of
the L-group. For veI and g €*G’ we denote by "g the transform of g
by 7. By the definition, one has
(5.1.1) \(t) = A(T)
for every xe€ X*(*T°) and te*T".

5.2. By representation of “G, we mean a morphism »:*G— GL,(C)
of complex algebraic groups. Let Z(*G°) (resp. “#Z(*G)) be the set of
all equivalence classes of finite dimensional irreducible representations of
IG® (resp. “G). Let A be the set of dominant weights in X*(*7T°). Notice
that 4 is I-invariant. By the classical theory of Cartan and Weyl,
(G is parametrized by 4, that is, there is a bijection R~: 4 — 2 (*GY).
When R()\) is a representative of an equivalence class R~(\) for ne 4, )
is the highest weight of R(\). For R(\) and veI', we define the re-
presentation "R(\) of *G° by "R(\)(9) = R(\)("9). Then it follows from
(56.1.1) that 7\, is the highest weight of "R(\). Let A4/I" be the set of
T-orbits in 4 and [\] = {"\|Y€ I} for e 4. For an orbit [\] € 4/I", write
by e([\]) the cardinality of [A»]. Then we can take representatives R(\)
of equivalence classes R~ (\) satisfying the following relation:

(5.2.1) R(°\) = ""R(\) for any ne€4, k=0,1, ---, e(\]) — 1.

The representation space of R("\), Y €I is denoted by Vi;. Hereafter,
we fix a set of such representatives {(R\\), Vi)hies

5.3. We fix an orbit [N]Jed/I’. Put e=-e([\]) and p = p(\)) =
min{p’ € N|**"R(\) = R(\)}. Clearly, both integers e and p are divisors
of the order |I'| of I" and depend only on the orbit [A]. Now we consider
the space Hom, (R(\), “R(\)). Since “R(\) is *G’-isomorphic to R(\), it
follows from the Schur’s lemma that Hom,,(R(\), “R(\)) is of dimension
one. Further, since “R(\) has the representation space Vi;, Hom, (R(\),
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*R(\)) may be considered as a subspace of End(Vy;). Thus, one can take
the power of the elements of Hom, (R(\), “R(\)). Then, it is easily seen
that each element @ of Hom, (R(\), “R(\)) satisfies the following:

(6.8.1) Qr is a scalar operator on V.

(5.8.2) Q" is not a scalar operator for any 1 < k < »p.

(5.8.3) If the order of @ is finite, then p divides it.
Let Vj; be the common highest weight space of R(\) and “R(\). As a
result of above properties, there exists a unique element Q,€ Hom,(R(\),
*R(\)) such that

(5.8.4) Qolyfn = the identity map of V{;.
Then the order of @, is exactly p. @, is called “the primitive element”
of [A]. Define the subset A; of Hom, (R(\), “R(\)) by

Ay = {Lfrie@lk=1,2, -+, |T|[e},
where (,, = exp(2n1 —1e/|I'|). Since one has
Hom,,(R('\), “R("\)) = Hom,,(R(\), “R(\)) = CQ,
as a subspace of End(Vy;) for every veI', A;; depends only on the orbit

N

5.4. We construct irreducible representations of *G. First, for
[Nl e 4/T" and Q€ Ay, we define the representation (R(\, @), Vi) of *G°x
(@) by

R\, @)(g xa**™) = R(\)(9)- @,

where (g*"?) denotes the cyclic group generated by ¢°, It is easy to
verify that this is well-defined and irreducible. For Q,, Q, < A, R(\, Q,)
is *G°x {o*™)-isomorphic to R(\, @,) if and only if Q, = @Q,. Next we
consider the representation r(\, Q) of *G induced by R(\, Q). By standard
arguments of the representation theory, we obtain the following:

(5.4.1) The restriction of r(n, @) to “G°x{g’™) is *G°x {g*™)-
isomorphic to @@ R(**\, Q).

(5.4.2) r(\, Q) is irreducible.
In particular, (5.4.1) implies that r(\, Q) is “G-isomorphic to »("», Q) for
any vel'. Hence r(\, Q) depends only on the orbit [A] and Q€ A;.
Thus we denote it by »([\], Q). Furthermore, one has

(65.4.83) r((n] Q) = r(n], Q) if and only if [A,] = [A,] and @, = Q..
Let »~([»], @ be the equivalence class containing 7([A], @). Then, by
(5.4.2) and (5.4.3), we obtain an injection

W:mg/r Ay — 2(0G), (W], @—r~(\], @) .

We prove the following:
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5.5. PROPOSITION. The map r~ is bijective.

Proor. It is enough to prove that for each irreducible representation
r of *G there exist the orbit [\]€ 4/I" and Qe A; such that r is G-
isomorphic to r([\], Q).

(Step 1) Let (r, X) be an irreducible representation of “G- and (+', X)
the restriction of r to “G°. Since each representation of *G° is completely
reducible, ' decomposes to the direct sum of irreducible representations
of G, that is,

' =mr, @mr, D - Om.r,
X=X"PXEP--- PXEm’

where (7, X,) 1 < 1 < e are irreducible represetations of “G° which are not
equivalent each other and m, is the multiplicity of », for 1 <1 <e It
follows from the irreducibility of » that ¢ is less than or equal to |I|.
One may assume 1 <m, < m, <--+- < m,.

(Step 2) We show that (+', X) has the decomposition of the form

(6.5.2) (', X) =@, XEND W, reHXFN D - B, r(e™)XE)

where m = m,. First, we show that X,, »(e™)X,, ---, r(c™*™)X, are *G'-
modules which are not isomorphic each other. Suppose that r(¢7®X, is
IG'-isomorphic to (¢ *)X, for some 0 <k <k <e—1. Then X, is G-
isomorphic to r(¢* *)X, and hence X®™ coinsides with r(¢**)X®". The
subspace X" P ricHXE"PH .- Pric*¥™)XS™ is a proper *G-invariant
subspace of X. This contradicts to the irreducibility of ». Next, since
(', X) contains exactly e inequivalent irreducible representations of IG°,
these are completely exhausted by {(+/, 7(c™)X)|0=<7=<e—1}. Thus
r(o™*)X, is “G*-isomorphic to X, and r(c~°)X®" equals X®". Then, the
subspace XE"Pri e HXE"P - - Pric*™)XE™ is LG-invariant, hence this
equals X.

(Step 8) Compairing (5.5.1) with (5.5.2), one has m =m, =m,=--. =
m, and (e "X, = X,,, for 0 <17 < e —1 after a change of numeration. By
r(@)r(e™%) = r(c™*)*r,(g) on X, for any g €*G’, (r,., X,.,) is “G’-isomorphic
to (“r, X,). In the result, ' has the irreducible decomposition of the
form

(6.5.8) (1, X) =(r, X)*™D(r, X)*"B--- (" 'r, X"
Further, by r(c™)X&™ = X&", (r, X®™) gives rise to a representation of
I3 x{g*y. We denote it by (R,Y). From the Frobenius reciprocity law
and (5.5.8), it follows that r is “G-isomorphic to the representation
Ind(*G, *G°x {o*); R) induced from (R,Y). The *G-irreducibility of » im-
plies the *G°x {¢*)-irreducibility of R.

(5.5.1)
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(Step 4) We show that if (R,Y) = (r, X&™) is “G"x {¢*)-irreducible,
then one has m = 1. We must investigate the {¢°)-action on Y. It is
known by the irreducibility of R that Y has the decomposition of the
form

Y=XORe™NX,D:-- OR(e™™ )X, .

Since “r, is ’G%-isomorphic to r, there exists a G’-isomorphism
A: (“r, X)— (r, X,). Then A gives a “G’-isomorphism from (“*r, X,) to
(r, X,) for any je€ Z. On the other hand, R(c7%) gives a *G‘-isomorphism
from (““r, X,) to (Rl R(e™*)X,) for 0 < j<m —1. Thus we obtain
the “G’-isomorphism

EB AioR(0%):(R| g0, EB R(o7#)X,) = (m-ry, XF) .

For v = (%, &, *++, p_y) € XF™, ke Z and g €*G’, we define the action of
m-r(gxo*) on v by

m-1(g X 0™*) W) = (1A @n_s), " DA @nrs1), -+, 1A X i)

where indices of z are taken by modulo m. By this action, (m-r, X&)
is considered as a representation of *G°x (¢*) and @ A/°-R(c’*) gives
rise to a ZG°x {o*)-isomorphism of (R,Y) to (m-r,- X&"). If m is greather
than one, then the subspace {(x, z, ---, )|z € X,} of X" is IG°x{o*)-
invariant. Thus, if (R,Y) is irreducible, then m is necessarilly equal to
one.

(Step 5) One has Y = X, by (Step 4). Let )\ be the highest weight of
(r, X,). Then there exists a ZG’-isomorphism A’ of (r, X)) to (R(\), V).
If we put @ = A’°R(¢°)cA’™", then it is easy to show that @ is contained
in Agy and (R,Y) is “G°x {¢*)-isomorphic to R(n, @). Therefore, by (Step
3), one has » = r([\], @). g.e.d.

5.6. Finally, we define the notation. For r=r~([\], {ri/ewn* Qo) € 2 (*G),
define e(r) = e([\]), c(r) = 2xk(|I"|-log(g:)" —1 and ¢, = S\, Where
Q, is the primitive element of [\]. &, is an element in the set X*(*T°)"
consisting of I'-invariant elements in X*(*T°). By the definition, X*(*T°"
equals X,(S). Thus &, is contained in X,(S). Further, we put

Z(*G) = {re 2(*G)|{a, &) = 0 for any a € 4}
and Z.(*G) = 2(*G) — B,(*G).
6. Construction of Euler factors. In this section, we define local

zeta integrals and construct Euler factors. When G is a split classical
type group and r is the standard representation of G, our definition of
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the zeta integral coincides with that given by Rodier [22].

6.1. We use the same notation as in Sections 4 and 5. Let CP(F)
be the set of all locally constant functions on F with compact support.
Let @ be the non-degenerate character of U(F') defined in (4.1). For
L€ X.oo(T), let 27 (X, ) be the Whittaker model of the constituent
o(Dy) of I(X) with respect to . For re Z(*G), fe #57 X, o) and
s€C, we define the zeta integral by

6.1.1) Zs, r, f) = SF'f (&,(1)[t]%- 05" (&.(2))dt,
where dt is the Haar measure on F'* such that S
the convergence of this integral.

6.2. PROPOSITION. Let f be in 57X, @) and r in B.(*G). Then
the integral of (6.1.1) is absolutely convergent for Re(s) > 0.

PrOOF. Put £ =¢,. By Theorem (4.2), f has the form
flo) = 3 9u(P")35X°(9)

on S(F'), where ¢, are elements in Cy(U%). Thus the integral is equal to

IRV ECONT

weW(x

.dt=1. First, we prove
gF

Here, using the isomorphism A\z: @.cv, F — U%, one has
P = kp((,:(a(a),é})ae%) ’

hence
(6.2.1) ¢w<¢é(t)) — ¢w°>\lﬁ’((t<a(a),e>)aeu’o)°
Let h, be the function on F' defined by the right hand side of (6.2.1).
Notice that <{c(a), £ is non-negative integer for each a € ¥, By the as-
sumption on », {(g(a), & is positive for at least one root ray a €¥,. Thus
h, is contained in C{(F') for every we W(X). Therefore, the integral
(LS e thde
F* weW())

is absolutely convergent for Re(s) > 0. q.e.d.

6.3. REMARK. If r is in Z,(*G), then &,(t) is contained in Zy(p) for
any t€ F*. Thus the integral has the form

[LLS s@re @) st

Generally, this integral is not convergent for any seC.
6.4. Next we construct an Euler factor L(s, r, X) as the “greatest
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common divisor” of {Z(s, r, f)|fe # 27X, #)}. Usually, a function L(s)
on Cis called an Euler factor if L(s) has the form L(s) = P(q7*)™*, where
P(X) is a polynomial in C[X] with constant term 1. For (r, X) € #2,(*G) x
X:es(T), let P(r,X) be the set of polynomials P(X)eC[X] such that
P(q7°)Z(s, r, f) is an entire function of s for every fe %7 57 (X, ). Clearly,
P(r, X) is an ideal of C[X]. Further we obtain the fallowing:

6.5. THEOREM. For any (r, X) € 2.(*G) X X,ee(T), P(r, X) is a non-
trivial principal ideal of C[X] and has the generator P,,(X)e C[X] with
P,,0)=1.

Proor. We fix (1, X) e 2. (*G) X X,x(T) and put £=¢,. Let k=
min{{a(a), &) > 0; a € ¥} be the positive integer. For ke Cy(F'), we define
the function h*e CP(F') by h*(t) = h(t*). For heCy(F) and we W(X), put

Zuls, 7 0) = | RO thdt

Then, by Theorem (4.2), one has
(6.5.1) {Z(s, r, /)| fe w2 o)}
{2 CuZuls, 1 k)¢, €C, h,€C(F)} .

wew (%

On the other hand, by Theorem (4.3), one has

(6.5.2) { g‘,( )ch,,,(s, r, h%)|c, €C, h, € C3(F)}

‘ (s, 7, £ f e W ) .

For an unramified character ¢ of F*, define P{(X)=1— p(w;)X. Then
it is well known that each P***(X) has the following properties:

(6.5.3) P*%(q7*)Z,(s, r, h) is an entire function of s for all » € C5’(F').

(6.5.4) When h, is the characteristic function of 7, then
P™¢(q5*) Z(s, 7, he) = 1.
Now we define an equivalence relation ~, of W(X) by w ~,w’ if and only
if Xvog = X¥og. Let W(X)/~, be the set of equivalence classes with respect
to this relation and [W(X)], a set of representatives of W(X)/~,. Let

(6.5.5) P, (X) = Iuewmi, P*(X).
It follows from (6.5.1) and (6.5.3) that P, ,(X) is contained in P(r, X).
Thus P(r, X) is non-trivial. We show P, , generates P(r, X). If P(X) is
in P(r,X), then P(qz*)Z,(s, 7, h,) is an entire function of s for every
we W) by (6.5.2). Hence (6.5.4) implies that P(X) is divided by P***(X)
for every we W(X), that is, P(X) is contained in P, ,(X)-C[X]. g.e.d.

6.6. By Theorem (6.5), we define the Euler factor L(s, r, X) by
L(s, r, X) = P, (g7")"*. This is independent of the choice of the non-
degenerate character ¢ of U(F').
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7. Comparison of L(s, r, Sp(X)) and L(s, r, X). In this section, we
give a relation between our Euler factors L(s, r, X) and Langlands’ Euler
factors L(s, r, Sp(X)) for (r, X) € 2,(*G) X X,oe(T).

7.1. We recall the Langlands’ Euler factor L(s, , Sp(X)). Let K be
a hyperspecial maximal compact subgroup of G(F'). Let (*G°X0g),../Int(*G°)
be the set of semisimple conjugacy classes of “G. An admissible re-
presentation (w,V,) of G(F') is called K-spherical if V, has a non-zero
K-invariant vector. Let $/(G, K) be the set of all equivalence classes
of irreducible K-spherical representations of G(F'). It is well known
that for every unramified character X € Hom(T(#")/T,, C*), I(X) contains a
unique K-spherical constituent Sp(X). Further, for X, X' € Hom(T(F")/T,,C*),
Sp(X) is G(F')-isomorphic to Sp(X’) if and only if X' equals X* for some
we Wg(S). Thus one has an injection

(7.1.1) Hom(T(F)/T,, C*)] Wu(S) — F(G, K): [X] — Sp~(X),
where [X] denotes the Wy(S)-orbit of X and Sp~(X) denotes the equivalence
class containing Sp(X). The Satake isomorphism implies that this map is
bijective. On the other hand, Langlands constructed a bijection

(7.1.2) v: Hom(T(F)/T,, C*)] Wa(S) — (*G° X 0);.../Int(*G°)
(see Borel [2]). Using these bijection, the Euler factor L(s, r, Sp(X)) at-
tached to (7, Sp~(X)) € 2(*G) x (G, K) is defined to be

L(s, r, Sp(X)) = det(l — r(g2 > 0)g5" )",

where g, X o is an element in the conjugacy class v([X]).

7.2. THEOREM. For any (r, X) € #.(*G) X X.es(T), Lle(r)(s — ¢(1)), 7,
)7 is a factor of L(s, r, Sp(X))™ as a polynomial of qz°, where e(r) and
c(r) are numbers defined in (5.6).

PrROOF. We use the same notation as in section 5. We fix (=, X) e
P (*G) X X,e(X) and put & =&, e = e(r), ¢ = c(r), { = exp2nV —1e¢/|[]).
By Proposition (5.5), r is represented by 7r~([\], @ for some [r]e A/
and Q€ Ay, Further Q has the form (*-Q, where @, is the primitive
element of [A]. We also denote by r the irreducible representation
r([7], @ which was constructed in (5.4). Let n be the degree of the
irreducible representation (RB(\), Vi) of *G* and h, =\, h, -+, h, the
collection of all weights of R(\). Let v, be an eigenvector corresponding
to the weight &, for 1 £ 1 < n. We recall that the representation space
of r consists of all functions ¢: “G — Vi such that

#((9' X 67)g) = R(\)(9)Q¥(4(9))
for any ¢’ xg*€*G°x<{c*) and ge“G. Thus the representation space of
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7 has a basis {v"1|0<j<e—1, 1 <= n} such that
) v, if 7=m

,vi,’ my — .

@I=10 it j=m

Under this basis, r(¢) is represented by the matrix of the form

0 1, 0 0---0
0 0 1, 0---0
(7.2.1) rio)=1|: : t . .
0 0 1,
Q0  .eeen. 0
Moreover, by [2, Lemma (6.5)], the semisimple conjugacy class y([X]) has
a representative g, X ¢ in “T°x¢. Thus 7(g,) is represented by a diagonal
matrix of the form

(7.2.2) 7r(gy) = diag(4, °4, ---, “'4),
where let “A = diag("’h,(gy), +*+, “h.(9;) for 0 < j < e —1. From (7.2.1)
and (7.2.2), it follows that L(s, r, Sp(X)) is equal to

(7.2.8) det(1 — A-%A -+ " T'A- Q- L*-q7*) 7
Next let Wg(S)A be the Wy(S)-orbit of . One may assume Wy(S)\ =
{hy, hyy + -+, hg}. Let Vi be the eigenspace of h, for 1 <1< d. Clearly,
Vin has a direct sum decomposition of the form

(7.2.4) Via=@LVHudVa
Now, it is known by [2, Lemma (6.2)] that each element we Wg(S) has
a representative *w € N, ,(*T°) which is fixed under ¢, where N, (*T") is
the normalizer of *7T° in *G°. From this fact, it follows that each
h,€ W4(S)\ is g*-invariant. In particular, V§; is Q,-invariant for 1 <1 <d.
Hence the restriction of Q, to @, V{; is the diagonal matrix diag(b,, b,
eve,b). For 1=t d, we take w, e Wy(S) such that h, = A*i. Then
one has

(7.2.5) RM\)(*w)Q = QRO (*w,), RO\ (Fw)) Vin = Vi
for 1 <1=<d. By the definition of @, and (7.2.5), one has b, = b, =+... =
b, =1. Thus @, has the form

1, o ,
(7.2.6) &=( o) =@y,

Combining (7.2.3) and (7.2.6), one has
d
L(s, r, Sp()) = T {1 — (o + "y +- -+ + “7h)(92) - L qF} X P(S)

=L = O+ n oo+ 770" (g0 g5} X Pls)

i=1
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= 1T {1 — £"(g2)- 5" *)" X P(s) ,

i=1
where P(s) = det(1 — B-@;-C*-q7*)™* and B is a diagonal matrix of the
form

ding((S "hors )0, -+, (5 7ha)(00) -

On the other hand, by the proof of Theorem (6.5), L(e(s —¢), 7, X) is
equal to
(1 — xoéw(wF)q;c(n—c))—l .

welW ()],

Therefore, in order to finish the proof, we must show the following:
(7.2.7 A map [W)], = Wu(S)A: w—A\" is injective,
(71.2.8) Xop(wy) = n(g,) for any ne X, (S) = X*(*T°)".
(7.2.7) is obvious from the definition of the equivalence relation ~, and
(7.2.8) is easily shown from the construction of the bijections of (7.1. 1)
and (7.1.2) (c.f. [2, Chapter III]). q.e.d.

7.3. COROLLARY. Let r =7r~([\], @) be in R2.,(*G) and X in X, (T).
Assume that the pair (r, X) satisfies the following:

(7.8.1) Wu(S)\ coincides with the collection of all weights of R(\).

(7.8.2) [W()], = Wu(S).

Then L(e(r)(s — ¢(r)), r, X) equals L(s, r, Sp(X)).

7.4. REMARK. For the condition (7.3.1), we refer the reader to
Bourbaki [6]. There are few irreducible representations satisfying this
condition. For examples of the pair (», X) satisfying the conditions (7.3.1)
and (7.3.2), see Rodier [22]. Finally, we note that the constituent o(D;)
does not necessarily coincide with Sp(X).

8. Examples. Let F be a non-archimedean local field of character-
istic zero.

8.1. Let E be the unramified extension of F' with degree four. First
we consider the case of G = Ry(SL,). We take a Borel subgroup B, a
maximal torus T and a maximal F-split torus S as follows:

B(F) = {(f) i“) teE’*,beE} ,

T(F) = {(t rl) teE*} ,
|

S(F) = (t tﬂ) teF*}.
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Let Wi(S) = {1, w} and ¥V = {£a"}, where aV(t) = diag(t, t™) for te F*.
For zeC, an unramified character g, (resp. X,) of F'* (resp. S(F)) is
defined by g, (t) = |t|7 (resp. X, (av(t)) = [t|F) for te F*. Then z+—X, gives
rise to an isomorphism from C/2z(log(qs))™V —1Z onto Hom(S(F')/S,, C*).
Since X¥ = X_,, it is enough to consider the set {X,|z€3;}, where 3,
is the region {zeC|Re(z) =0, 0= Im(2) < 2z(log(gr)""}. Put z, =
7(log(qy)) ™ —1. Then, one has X..(T)/Wu(S) = {X,|2€ s — {0, 2}} and
HQ) = @, W) =Wx(S) if ze X, — {4}

HX) = {a"}, WQX,) = {1} .

Let I' = (o) be the Galois group of E over F. IG° is isomorphic to
PSL,(C)x PSL,(C) x PSL,(C) x PSL,(C) and the action of I" on G’ is given
by (9, 9o 95 9:)=(94 9 9 9u).  Let $={(b b_l>|be c* }/ {#1,} be a maximal
torus of PSL,(C). Then X*(*T° is identified with X*(Z)%. Let ) be the
dominant weight in X*(¥) defined by x((b b“)) = b% Since X*(X) = 2,
the set of dominant weights of X*(*T°) is identified with (Z )\)%¥, where
Z, is the set of non-negative integers. We consider three domiant weights
M=0,000),x%=0NN\0and =, 0,2 0). Let r,=r({\], Q) be
the irreducible representations of G constructed in (5.4), where Q, is
the primitive element of [A,] for 1 < = 3. Notice that one has A ; =
{1} for ¢+ =1, 2 and Ay = {+Q,} For an unramified character p, of F*,
define Lg(s, #t,) = 1 — p(wz)q7")"", Then, by simple calculation, we obtain
the following:

L(s, 7\, Sp(X.)) = Lyp(4s, tto)Lr(4s, tt.)Lyr(4s, 115%) ,
L(s, 1o, Sp(X.)) = {Lp(4s, )} {L#(48, pt.)Ls(4s, p"))°
X {Lp(4s, ) Lp(4s, 1")F{Lr(4s, t£)Lr(4s, £°)}
L(s, rs, Sp(X.)) = L#(2s, tt)Ly(28, ft,)Ly(2s, 1)
X Lg(4s, tt)Lp(4s, t.)Lr(4s, t57)
for any z€X,. On the other hand, by (8.1.1), we obtain
Ly(4s, p,)Lp(4s, ;%) if ze Xy — {0, 4, 2},
Le(4s, 1) if z=4

(8.1.1)

Le(r)(s — e(r), 7o %) = {

L(e(r,)(s — c(1y)), 75 X,)
_ {LF(4s, t)Ly(4s, 17°) if zeXp— {4, j2/3;0 = j = b},
- LpMs, 1) if zeld, j2/3;5 = 1,2, 4,5}
LF(ZS; #z)LF(zsa #z_l) if z€ ZF - {0, 4, zo} .

L(e(rs)(s — ¢(ry)), 15 X,) = {L @5, 1) if z=4
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8.2. Let E be the unramified quadratic extension of ¥ and I =
{1, 6} the Galois group of E over F. Next, we treat the unitary group
with order three and Witt index one, that is,

1 1
g€ GLy(E)| g( 1 )o(‘g) = ( 1 )} .
1 1

We take a Borel subgroup B, a maximal torus T and a maximal F-split
torus S as follows:

GF) =

2 Y * . —
B(F)=<(0 5 —a(w))t’ﬁeei’iiwz )—_1 Wl
00 o) v, yek, —x-o) =y + o)

t 0
T(F)=~( 0 ) t,0e E* 6-000) =1},
0 o(t)™

t
S(F)=<( 1 ) te F'*
!

Let Wi(S) = {1, w} and ¥V = {*a"}, where a"(t) = diag(t, 1, t™*) for t € F'*,
For ze C, let X, be the unramified character of S(F') defined by X, (a¥(t)) =
[t|z for t€ F'*. Then, by the same reason as in (8.1), X,.,(T)/Wg(S) is
equal to {X,|z€e X, — {0, z}}. Further one has
8.2.1) {H(X,) =@, W) =WsS) if zelZ,— {21+ 2z}
o HX) = {a}, WX,) ={1} if 2e{2,1+ 2} )
Now ¢ acts on ‘G° = GL,C) by

1 1
‘g = ( -1 )‘g“1< -1 )
\1 1

for g €*G’. Let \, A" be dominant weights of “T° defined by A\(diag(b,, b.,
b)) = b, and \'(diag(b,, b,, b,)) = b,b,. We consider two dominant weights
A= and n, =N+ A\, Let r, =r(\], Q) be the irreducible representa-
tions of *G for 4 =1, 2. Then one has

L(S, ,rl’ Sp(xz)) = LF(289 #O)LF(ZS: #Z)LF(ZS’ #2_1) )
L(S, "'2; Sp(xz)) = LF(289 #O)LF(sy ﬂ,)LF(S, {I;I)LF(ZS, #z)LF(zs’ #;1)
for any z€ 3. On the other hand, by (8.2.1), one has
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L(e(r)(s — (7)), 7, X,)

Ly(2s, )Ly(2s, 1t7") if 2€3,—1{0,2, 2,1+ 2},
Lu(s, pt) if ze{2 1+ z)

L(e(ry)(s — e(ry)), 72 %)

(Lo(s, t)Ly(s, i) if 2ze3,—{0,2, 2,1+ 2} .
\LaGs, 1) if ze{2, 1 + 2,

Appendix. For a subset 4, let
Sy ={se€S(F)|a(s) =1 f{for any « €6}
and
Sy, = {seSy|la(s)l <1 . for any aed4}.

We show if € is an open compact subgroup of S(#) then S,,/(€NS,,) is
a finitely generated monoid. Let S, be the maximal compact subgroup
of S(F). Since €NS, has the finite index in §,, it is enough to prove
the claim for € =S, Let 4—0 ={a, a,, -+, a,} and v:Sy— Z% the
homomorphism defined by v(s) = (—log, (la:(s)|)izisi for se€S(F). Then
Ker(v) contains S,NS, and Ker(»)/(S,NS,) is finitely generated as monoid.
Let {8, B, **+, B:} be coweights such that

{a, Biy =0 for aech

(B =0 if i#j]

{ay By =m; >0
for any 1 <4, j =< k. Since B,(»)CS;,, we know

k k
Q miZ+Cv(S€,1)C g Z+ ’

where Z, is the set of non-negative integers. Hence there is an exact
sequence of monoids as follows:
k k
1->DmZ, — v(S,,) —v(Sy) DmZ,.—1.
i=1 i=1
{
k
& (Z/m.2)

From this exact sequence, it follows that v(S,,) is finitely generated.
Furthermore, by the exact sequence

1 —Ker(v)/(S,N8y) = 8,,,/(S N Sp) = v(S,,) =1,
Sy../(S;NSy) is also finitely generated.
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