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1. Let L'dx/(1 + %)) be the L' space of functions on the real line
R with respect to the measure dx/(1 + 2?). Let C7? be the totality of
infinitely differentiable functions on R with compact support. For 0 <
a < 1, the energy space E, with respect to the a-Riesz kernel |z|*! is
the Banach space of functions on R obtained as the completion of CY
with respect to norm

1= 4] Je1 Forag ™,

where 7 is the Fourier transform of f [5, p. 3852]. The Hilbert transform
H is defined by

Hftw) = Zp.v. |” S gy
—oy — X
For fe L'(dx/(1 + «), [f, H] is an operator defined by
If, Hlow) = H(fo)a) ~ fa Ho@) = pv. | LO=SEgipay)

In the theory of singular integrals, this operator plays an important role
[1]. In this note, we shall characterize the boundedness of [f, H] as an
operator from E, to itself in terms of the BMO space BMO, with respect
to E,. We say that a non-negative measure dg(x, y) in the upper half
plane C, = {(z, ¥); x € R, y > 0} is an a-Carleson measure if there exists
a constant B such that, for any open set OCR with Cap,(0) < o,

Sgad”(“’ y) < BCap,(0),

where O = U{Ix(0, |I|); I component of O} (|I| is the length of I) and
Cap,(+) is the capacity with respect to the a-Riesz kernel [5, p. 131].
The minimum of such constants is denoted by ||dft||cer... Let BMO, denote
the Banach space of functions fe L'(dx/(1 + «%)), modulo constants, with
norm

| £ 1lexo, = 1A, ) 4~ [|Er.a »
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where f(x, y) is the Poisson extension of f to C, and |Vf|* = |affox|* +
|offoy ?. We show:

THEOREM. Awn operator [f, H] is bounded from E, to itself if and
only if fe BMO,.

The dual space E_, of E, is the Banach space of distributions on R
obtained as the completion of C; with respect to norm

1= g1 7@ rag ™
For fe L\ (dx/(1 + %), we put

11t = inf 35119, + ieuHo, || e + s Hhil o

where the infimum is taken over all sequences {(gi, h, &)}i=, of triples
such that

= 30 + ieHg)hy + isHh) (0 b€ CF, e e{~1,1)) .

Let H; be the Banach space of distributions with respect to norm |[-||;.
Our theorem shows that the dual space of H} is BMO,. This corresponds
to Fefferman’s duality theorem [2, p. 145]. Hence our theorem suggests
that BMO, is useful in studying singular integrals from E, to itself. The
authors express their thanks to Professors Y. Meyer and S. Semmes for
some comments about commutators.

2. Throughout this note, we use C for various absolute constants
and for various constants depending only on «. For fe L'(dxz/(1 + x%),
we write simply by f(x, y) its Poisson extension to C.. Let _/#Zf denote
the non-centered maximal function of f [4, p. 6]. The “if” part is im-
mediately deduced from the following known inequality.

LemMa 1 ([3]). S:Capa(x; Af@) > WA= CIFIR (FeEy .

Let fe BMO,. Without loss of generality, we may assume that f is
real-valued. For real-valued functions u, v € Cy, we have
([f; Hlu, v) = (H(fu) — fHu, v) = —(f, Hu-v + uHv),
where (-, +) is the inner product (with respect to dx). Put U= u — 1Hu

and V=v—iHv. Then ||Ul,=2[ulle [[Vl-2=2[v]-. and Ulx, y),
V(x, ¥) are analytic in C,. Since

mql Vi, v) izy—1+adxdy}m =C||V|_a £ C||9]_a
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we have
- Cl SSC+%£(x’ y) U(x’ y) V(x, y)dxdyl

1/2

< of[\, 19, ) P10, ) Py-dady} " {(] (VG w)Pyedady)

< Clloll{[f, 197 1) 11U, py-<dsdy} .

Let 0; = {z; .£U@) >\, 0 = {(z, ¥); |U(z, ¥)l > A} (L > 0). Then 0;cO,,
(v > 0) for some absolute constant 7 [4, p. 85]. Lemma 1 gives that

|, %A@, 1) P10, o) Py—dwdy = C{[§ 194w, Fy-dedsjrin

= o {{], 19 v —dadyprar = €117 o, | Cap(O,na
= Ol f oo, Uz = Cll f lono, [l l7 5
which shows that
(L, Hu, v)| = CHf”BMOa“u”a”v”—a .

Thus [|[f, Hlllae < C|| f |lsxo,» where [|[f, H]... is the norm of [f, H] from
FE, to itself. This completes the proof of the “if” part.

3. The main part of this note is the proof of the “only if” part.
We see easily the following lemma.

LEMMA 2. For feL'(dz/(1 + %), s >0, we put f,(x) = flx,s) and
F, =f, — ¢Hf,. Then
LFy HYla S Fo Hllao < L, Hlle -

Let BMO denote the Banach space of functions f, modulo constants,
with norm

[ £ llowo = sup 3= | 1) = (xlde

where (f); is the mean of f over I and the supremum is taken over all
intervals I. We show:
LEMMA 3. || fllsxo = CIILf, H]lla,e-

PrROOF. For an interval I, X denotes its characteristic function and
M) = (& — x,)X(x), where z, is the midpoint of I. We have
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11| 17@) = (e = | |{ (7@) — | de

=i,

T S:'x(”)[f’ HMe) — M@)[f, H() |dz .

[ L=y ) — (@ — zody|da

I y—x

Note that || X ||, = C|I|*"®”and ||\, = C|I|**”. Let g = |[f, H]X|. Then
Parseval’s equality shows that
o oo x) — 2 1/2
loll. = off” |” 100 =00 oy
<cff |7 L8 H o) = L, HUQ)E gy
- @ — y[*
= C[[lf, HIll« £ CIIf; Hlllae | Xl = CILS; Hlllae I1*7%7,

—o0

and hence

| Mog@ie < 111 | 2@ig@is = ci11 | 20)5@a

0 ~ 1/2 o ~ .
<cinf(” terig@ra (| eria@rds)
= ClI""“**%|g|l, £ CILf; Hlllawel II" -

Let h = |[f, HI\|. Then, in the same manner as above,

I2]le < ClILE, HllleellM o < CULS, Hlllaol I1® 02,

1/2

and hence
" K@h@de < C|11* 2| k|, < CIIf, Hllaol 11 -
Consequently we have

7 ),1@) — (rlds < CILS, Hle
which shows that ||fllsuo < C|I[f; H]lla,a- q.e.d.

Let L*1 — o, C) denote the L* space on the complex plane C with
respect to the measure |y["*dzdy. The norm is denoted by ||«||;2q—ec-
Let T* be an operator defined by

SS MY gedgt| C=s+it, 2=+ ).
18—zl>¢ (C - 2)2

The 2-dimensional (centered) maximal operator _# is defined by

T*u(zx, y) = sup
e>

0
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Au(@, y) = sup L “ lu(s, t)|dsdt ,
>0 TTE D((z,y),¢)
where D((z, ), ¢) is the open disk of center (x, ¥) and of radius . It is
well-known that T*, _# are bounded operators from L*(1 — a, C) to
itself [4, pp. 21 and 56]. For g€ R and a function w(z, y) in C,, we
write
1/2
lallls = {{{ 19, w)ryrdnay}” .
Cy+

We show:

LEMMA 4. Let g(x, y) be a function in C, such that |||g]]le < .
Then there exists a function h(x, y) in C, such that

onx, y) = 9=, ¥) (@, 9)eCy), |kl -sra = Clllg]llita >
where 0 = (8/ox + 10/0Y)/2.
Proor. We put
25 g(s, D)t _ . _ .
h(w, y) = ‘7?' Ssc_l—(—c—__—z)(—z_—z)'det (C =8+, z=o + ’&y) .

(This form was communicated by Professor S. Semmes; in the earlier
draft, the authors did not use this form.) Then ah(x, ¥) = g(x, ¥)
((, ¥) € C,). Suppose that the support of g is compact and contained in
C,. Then we have easily |||h]||_1e < . For uweL*1l — a, C), we have

\f,. 2te vyutw, widady| = |{|_ o 0Suts, tdsdt| < g lheelliSull-r

where

— 2 u(x’ y) — > — y,
Suls, t) = —~ SSC+-——————(C 0 = z)dxdy C=s4+1, z=2x+ 1y).

We have, for (s, t)eC,,

Su(s,t)=£“ +£SS =L, + L,,
T JIpua,tr,n T Jler-pis, 0

A

1% |u(z, 9)| < C Fuls. 1
. t SSD((a,t),t) ¢ — 2] dady = C_#u(s, t)

and

1 1
C+—D((a,t),t){ € - z)(z —2) - z)z}u(x' y)dwdit/‘

T*u(s, t) < C_#ul(s, t) + %—T*u(s, t).

s 2

2

+ =
T
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Hence
|Suls, )] < C_Zuls, t) + %T*u(s, t) (s, t)eC,).

Consequently

(1) 1§, 2 vz, vdady| < CllgllusallAullz0-ne

+ | T*uan(l—a,C)} = C|||g|||1+a”uI|L2(1—a,C) .
We now choose
h(z, y)y=* (=, y) eC,)
0 (@, y)eC—C,).
Since ||%llz2q_ac) = |1 ]l|_14a < o, (1) yields that [[A][|_1e = Cll| 9]l

In the general case, we restrict g to {(x, ¥);|2| = n,1/n <y < n};
say ¢,. Let h, be the function corresponding to g,. Then

NAalllite = Clllgallliva = CllIGl14a -
Letting n tend to infinity, we obtain ||| ]l|_11a = Cll|9]l14e q.e.d.

u(®, y) = {

LEMMA 5. Let f be a differentiable function on R satisfying
sup{|f(z) + |f'(x); x€ R} < . We put

D) = —i | L2 Mo = gy,

0 t1+a

Then, for any w € Cy,

{11, \oprm vy v U,y redzdy] < Clf ol

where U = u — 1Hu.
PrOOF. Since
MVUllle =CllUll. = Cllulla,
it is sufficient to show that
(2) I(Df ), »)| < C|l fllsuo/y* (=, y)€C,) .

Without loss of generality, we may assume that x = 0. We have, with
I= (_y7 y)r

o, i =2\ (—L L)) — ()ds}dt|

ot U\ —tF + o T+
<Vt el + Hllg=tited + 2wl

=L +L,+ L,.

L1
T
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Since
| Y1719 = (Pilds = Cll fllowo (2, D. 142D,
L= | | i — (lasfat
= C["Lat | £ loxoly = O£ ol
We have

Ll = € L 179 — (Plds}dt < O ol

It remains to estimate L,. We have

S ;tia{slcm(f &) — (f )z)ds} dt
) tllh'{s }dt+2g;«/ ”t“"{s }

P ontly 1 on+2y t o0 ontly 1 P d
+ ng{ Sz"y t_“:"{gz —1 } + nz‘{ Sz"y t—ln{swﬂ‘zy} ¢
= Lg + Ly, + Lgy + Ly, .

We have easily | L, | < C|| f llsmo/y*. Since

() = Py = Cnll fllemwo (n = 2) ([2, p. 142]),

Ll 50 R 00 - (ias)ar

o an+ly 1 1 on—ly
<51 1710 = (aseesalds + 0117 ol

© on+ly
SOl llowo 30 | hodt < €L ool -

t1+a

We have

ontly 1

LaiscE | W{Sms L)) — ()l ds]ds

s 0f )" L1 — (Prlds S Cl Fllavoly”

Since |(f); — (f)(t—y,t-H!)l SCn| fllemo (te @y, 2¢"y)),

403



404 R. R. COIFMAN AND T. MURAI

ont+ly 1

{82”2”——_]]“( ) = (Nie—p e+l d8 + Cn”f”nmo}dt

Luls 3
| 33'—7; (s — £ 4+ Y°

2ny tH—a

Ms

SZHI"_I_{S‘” (—s_t)z——lf( s) — (f)(,_,,,H,,,Ids}dt + C|| f |lsxo/y*

n=1 Jamy t1+a

< 1l lowo{ £ |1 "Rt + 1} < CIL S ol
Consequently,
@) || ] g e — Pndsldt| 5 C1Lf ol

In the same manner, we have (8) with (s — t)? + #* replaced by (s + t)* + %>
Thus |Ls| £ C|| f|lemo/y*. This completes the proof of (2). q.e.d.

We now show the main lemma in this note.
LEMMA 6. Let F, be the funmction in Lemma 2. Then, for any
u € Cy,

{1, JFo@ v U, vpy-rdads] " < CIL, Hllaellnle

where U = w — 1Hu.
PrROOF. Let V be a function in L'(dx/(1 + «*)) such that V(z, y) is
analytic in C,. Parseval’s equality and Lemma 2 show that
) |||, OO U@ )V, vyrdedy| = CIF., UV
+
= C|(([F,, H]U, V)| = C|I[F,, Hllla,u Ul V-«
= CILS Hllleall eI V| —a -

Let g(z, y) = (D*F,)(x, y)oU(x, y) (0 = (0/ox — ©0/dy)/2). Then Lemmas 2,
3 and 5 show that

glllie = Cll Fyllexo | Ulle = C[Fy Hlllaalllle < CILS Hlllayell% |l -
Let h(x, y) be the function associated with g(z, ) in Lemma 4. We put

(5) Vi, y) = (D*F)(w, ) Uz, y) — h(z, y) .

Then V(x, y) is analytic in C, (V(x, y) is an analytic extension of a
function in L'(dx/(1 + x?), say Vi(x)) and

1Voll-e = CllVulllsta = CHIDF)Ul|—s1a + ClIB|-14a
= ClID*F) Ul -14a + CILS Hlllaall % la -
Hence, by (4),
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D F)V s = | [, DT DU, Vi@, 9) + bz, )y~ dady

é C”[-f’ H]”a,a”u’”a” V ”—m + ]”(DaFa)U[”—1+a]”hl“—l+a
< CUIDF)UN-sre Il Hlllaallwlla + [ILF5 HING ol [I2}
which shows that

D F)Ulll-14a = CIILS, Hlllayall %l - q.e.d.

LEMMA 7. Let F,, w and U be the same as in Lemma 6. We put
Ur,(2, 9) = S‘”( Uk, y +t) — U, y))(D*F,)(x, y + t)t~*"dt .
0

Then
NUp, e = CILA, Hllayell ]l

PrOOF. We may assume that ||[f, H]||... = 1. Inequality (2) combined
with Lemmas 2 and 3 shows that

U, (o, 931 = cf| 1L f+( yt>+—t§{<x, Dlgr)’

= C{SZ + S:’}z =< C{y““ SZIU(w, Yy + t) — Ulw, p)IFt~**=dt

+ 3| 1U@ v + & ~ U, witat)
Y
and hence

10, lEa = € [, {106 v+ 0) ~ U, e edefy=dady
+cff {1ve, v + 0 -V weeaty-edsay
S O@r([ ey (| le — 1reereat)ae
+ c[1o@n(| e oyeav)([ e - 1peat)a
= | e|0@rds = CIUIE < Cllulk . a.e.d.
4. We now show the “only if” part. Let fe L'(dz/(1 + 2%) satisfy

ILf, H]llge < . We may assume that f is real-valued. Let F,, u, U, V,
be the functions in Lemma 6 and (5). Then

L= ‘SSC+(%F.)(90, U, y) Vi, y)dzdy
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= C|(F,, UV,)| = C|((F, H]U, V)

= ClLSf, Hlllaellwllall Voll-a

= ClIIf, Hlllae I lAND*FY Ul -14a + [ILf; Hlla,all %]}
= ClIf, Hlxellwl

and

L=z

SL(%F s)@ YU, y)(DF,)z, y) mdxdy’

- (a%F) ol Nall

2 ||{, (ZF.)@ U@ »Ue D F e vdsdy|

—c|(Zr.)u]| itz Blealiull,
We put G(z, y) = Uz, y)(D°F,)(x, y) and
DG, v) = ~| (6@, y + t) - Gla, y)t-++dt .
Since
D+Gla, ) = = Ulw, ) (D), y + t) — (DF.)a, )t*dt
— Ur (&, 4) = CUG, v)(2F. )@, ¥) = Up@, 1)
we have, by Lemma 7,

’ SSC+(:—wF,)(w, YUz, y) Uz, y)(D*F,)(w, y)dxdyl

SS(%F )@, v)Ulw, »)DGla, y)yl—adxdy[
= [,
B “(%F s)@c, U, y) U (@, y)yl““dxdyl

= l(ze)el - hze )l o
= CllIVE,|UlEe — CIIVE U o ILf, Hllayell% [l -

(27.)@ )| 1UG, vy dedy

Thus
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WVF|Ule = CIVF, | Ullli-eILf; Hlllaye I lla + CILA HIE N w2,
which gives that

(6) S§C+I VE (2, v)I*|Ulx, y)Fy'~dady = C|[f, Hll..llulli (weCy).

The standard argument shows that (6) holds for any u ¢ E,.

Let O be an open set in R with Cap,(0O) < . Then there exists a
non-negative function wu,€ E, such that ||u,]]2 = Cap,(0) and wu,(x) = C
on O[5, p. 138]. Let U, = u, — iHu,. Then |U,(w, y)| = C on 0. Hence
(6) shows that

1,1V w)ry-<dedy = CIIIVE.IT, 1.

= C|IIf; Hlll%«llwo llz = CILf, H]|l:. Cap.(O) .
Thus

1,19, v + opry-dedy = | | VA, v)iydody
=< ||| VFw, wFy-<dedy = CIIIS, I, Can(0) .

Letting s tend to O,
[\,19s@, wiry=dzdy = CIlif, HIk. Can,(0)

Since O is arbitrary, we have || f|lswo, < C||[f, H]|ls,.. This completes the
proof of the “only if” part.
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