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Introduction. In [Mum], Mumford constructed an algebraic surface
M of general type with KM

2 — 9 and pg = q = 0. This surface is called
Mumford's fake protective plane because it has the same Betti numbers
as the complex protective plane (see [BPV, Historical Note]). No other
example of fake projective planes in this sense seems to be known up
to now.

Since c2(M) = 3c2(M) = 9, the universal covering space of the complex
surface M is isomorphic to the unit ball in C2 by Yau's result. However,
Mumford's surface is constructed by means of the theory of the p-adic
unit ball by Kurihara [Ku] and Mustaίin [Mus]. By the construction of
Mf there exists an unramified Galois covering F-^ilί of order eight.
More precisely, a simple group G of order 168 acts on V, and M is the
quotient of V by a 2-Sylow subgroup of G.

In this paper, we study the quotient surface Y = V/G. Since the
action has fixed points, Y has some singular points. We prove that the
minimal desingularization Y of Y is an elliptic surface. We also determine
the types of the singular fibers of the elliptic fibration.

Mumford's surface M is given as a Z2-scheme. Hence it has a modulo
2 reduction Mo. The normalization Mo of Mo is the blowing-up of P)2 at
the seven F2-rational points. In Section 1, we describe explicitly how to
recover Mo from MQ.

The author expresses his thanks to Professors F. Hirzebruch and I.
Nakumura for their interest and suggestion on this work. Some results
and techniques in Sections 3 and 4 are due to Nakamura in unpublished
notes.

NOTATION. Let X be a scheme over an affine scheme Spec A. When
a ring homomorphism A —> B is given, we denote by XB the fiber product
^XspeciSpecl? and by X(B) the set of ί?-valued points of X. If X is
of finite type and B is an algebraically closed field, then we sometimes
treat X{B) as a variety.
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1. The closed fiber of Mumford's surface. We will recall some
notation in Mumford's paper [Mum].

We always restrict ourselves to the case of the base ring Z2. Hence
the maximal ideal is generated by 2, and the quotient field is the 2-adic
number field Q2. We denote by η and 0 the generic point and the closed
point of SpecZ2, respectively.

A matrix a = (&u)i,i=o,i,2 £ GL(S, Q2) defines a linear automorphism of
the vector space Q2X0 + Q2XX + Q2X2 with indeterminates Xo, Xlf X2 by

a(c0X0 + c A + c2X2) = (Xo, X19 X2)a\c09 c19 c2) =

Hence the induced automorphism aA of PQ2 = Proj Q2[X0, X19 X2] is given
in terms of the homogeneous coordinates (Xo: Xx\ X2) by

α Λ (X 0 : Xt: X2) = (Xo: Xt: X2)a .

Thus the composite /3Λ°αΛ is equal to (α/3)Λ.

The Z2-scheme J2f of Kurihara and Mustafin is defined as follows:
Let Pz2 be the protective plane with the homogeneous coordinates

(Xo: Xx: X2). The closed fiber P | 2 has seven F2-rational points and seven
F2-rational lines. We first blow up Pl2 at these seven F2-rational points,
and then blow up the resulting surface further along the proper transform
of the union of the seven F2-rational lines. Let U be the union of the
generic fiber PQ2 and a sufficiently small open neighborhood of the proper
transform of JPf2 in the blown-up scheme. For each a in GL(3, Q2) we
denote by Ua the Z2-scheme such that the generic fiber is equal to PQ2

and that there exists an isomorphism Uz^U" which induces αΛ on the
generic fiber. Then the union Uαί7

α over all a in GL(3, Q2) is patched
together to a regular scheme J3? with the generic fiber P%2.

By construction, the action of GL(3, Q2) on PQ2 is extended to Jg*.
Mumford found the following discrete subgroup Γ of GL(3, Q2). Γ modulo
scalar matrices acts on the closed fiber ^ freely and induces a quotient
£?jΓ as a formal scheme. <%fjΓ is algebraized to a protective regular
scheme over Z2, and its generic fiber is the fake protective plane.

Γ is contained in the group Γ1 generated by
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where λ = ζ + ζ2 + ζ4 = ( - l + ι/^7)/2 for ζ = exp(2ττi/7). λ is embedded
in Z2 so that λ = (unit) 2, while its complex conjugate λ is a unit. There
exists a homomorphism π: Γx —> GL(2, F7) and Γ is given as the inverse
image π~\S) of an arbitrary 2-Sylow subgroup S of GL(2, F7).

By the matrices in [Mum, p. 243] which describe π, we see that the
subgroup of Γ1 generated by {σ, τ, p} is mapped onto SL(29 F7) by π.
Since — J3 is a scalar matrix, the following change of notation does not
affect the construction:

MODIFICATION OF THE NOTATION. /\ is replaced by its subgroup of
index 2 generated by {σ, τ, p}. The homomorphism π is replaced by one
from the new Γx to PSL(2, F7). More explicitly, π: Γ, -* PSL(2, FΊ) is
given by

2 01 Γl 0

,
and

1 4

(see [Mum, p. 243]). The group Γ is also replaced by π \S) for a 2-Sylow
subgroup S of PSL(2, F7). In this case, the set of scalar matrices in 7\
is {(λ2/2)fc/3 = (r/o)8*;fceZ} (cf. [Mum, p. 241]).

From now on, we use this modified notation.
Let Γo = Ker π. Clearly, ΓQ is a normal subgroup of /\. The quotient

G = Γi/Γo is isomorphic to PSL(2, F7) and hence is a simple group of
order 168. Since Γo modulo scalar matrices is also a torsionfree cocompact
subgroup of PGL(βt Q2), the quotient formal scheme ^ / Γ o can also be
algebraized to a protective regular Z2-scheme. We denote the algebra-
ization by V. Then the action of Γ1 on the scheme J2f induces an action
of G on V. Since the scalar matrices in Γ± are contained in Γo, the
induced action is effective. Mumford's fake protective plane is the generic
fiber of the quotient M = V/S by the 2-Sylow subgroup S of G.

Since Vη is an unramified cover of degree 8 of Mumford's fake pro-
jective plane, the following facts are easily checked.

(1) Vη is a surface of general type.
(2)
(3)
(4)
(5) ί(V9) = 0 ([Mum, p. 238]).
(6) pg(Vv) = 7.
In order to describe the closed fiber of M explicitly, we choose

the 2-Sylow subgroup S of G = ΓJΓ0 to be the subgroup generated
by
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and
0.

where we identify G with PSL(2, F7) by the isomorphism induced by π.
S is isomorphic to the dihedral group of order 8. Indeed,

l IT _ Γ0 IT Γ0 1

j I j f d [l 2 j I [β θ j f a n d [β O
1 1T0 11 Γl I
1 2 6 0 1 2

in PSL(2, FΊ).
We denote by B the proper transform in J2f of the closed fiber

Pl2cPz2 = ProjZ2[X0, -X"i> X2]. B is an irreducible component of ^ and
the projection p:B->P%2 is the blowing-up PA, at the seven /^-rational
points. We denote by C{a, 6, c) the proper transform of the line aX0 +
bXγ + cX2 = 0 on PJ2 to JS and let jK(α, 6, c): = p"\(af b, c)) for each triple
(α, 6, c) of 0 or 1 with not all being zero.

The natural morphism from B to the closed fiber Mo = ^/Γ can be
regarded as the normalization. Actually, we obtain Mo by identifying each
of suitable seven pairs of C(α, 6, c) and £(αf, 6', c') in B. More precisely,
we take {pσ2τ, τpστ, τ2pτ, τzpστ\ τ^pσV, τδpσ\ τQpσh&}aΓ as the set of
representatives of S\{1}. Then each element induces an isomorphism
of curves on B as follows:

(τpστ)A:E(l, 0, 0)^C(l, 0, 0) .

{τ2pτY:E{l, 1, 0)~C(0, 1, 0) .

, 0, l)
, 1, 0)^C(l, 1, 1) .

In Figure 1, we explicitly describe how these seven pairs are iden-
tified. The three points to which the same symbol among A, B, •••, G
is attached are identified to a triple point of Mo. Here, by pσ2τ, the two
rational curves 2?(0, 0, 1) and C(l, 1, 0) are identified in such a way that
symbols A, A*, B come to A*, A, B, respectively. Consequently, the
double curve obtained by this identification has a self-intersection point.
Figure 2 indicates the configuration of the double curves on Mo.

We can check these results by calculating the corresponding action
of Γ1 on the Bruhat-Tits building which is isomorphic to the dual graph
of the irreducible components of ^ [Mum, p. 235].
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1 £(0,1,1)

FIGURE 1

FIGURE 2
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2. Singularities of the quotient surface. Since V is protective and
G is finite, the quotient Y = V/G is also a protective Z2-scheme. Although
V is regular, Y has some singularities, since the action has fixed points.
In this section, we study the singularities of Y.

Let Q2 be the algebraic closure of the 2-adic number field Q2. The
discrete valuation v of Q2 with v(2) = 1 is uniquely extended to a valuation

The non-noetherian valuation ring Z2 = {ae Q2; v(a) ^ 0} is equal to the
integral closure of Z2 in Q2. For the maximal ideal m = {ae Z2; v(a) > 0},
the residue field ZJm is equal to the algebraic closure F2 of the prime
field F2.

In order to describe the geometric points of Vv and Yv, it is convenient
to use the Z2-valued points of the Z2-scheme £f.

Let 3f: = £f(Z2) be the set of Z2 valued points of gf. Since Q2 is
the quotient field of Z2, we have an injection

where P2(Q2) is the protective plane with the coordinates (Xo: Xt: X2).
Hence we use this coordinate system to represent the points of & through
this injection. As we see later, Mumford's fake projective plane is set-
theoretically the quotient of £2f by ΓcGL(3, Q2).

Let x: Spec(Z2) -> <%f be a point of ^ . Then by composing it with
the inclusion Spec(F2) ̂ >Spec(Z2), we get an F2-valued point of gf^cgf.
We denote it by 2-red(α;). Let y^Jgf be the support point of 2-red(#).
Then we get the associated local homomorphism έ?y,M?—*Z2. By this ob-
servation, we see that ^ is equal to the sum

U {x: έ?y jr —> Z2; x is a local Z2-homomorphism} .

We would like to know which points of P\Q2) are in &. Since
is a normal crossing divisor in <%f, the points of ^ are classified into
the following three types: (1) Smooth points of ^ . (2) Points lying
only on a double curve of ^ . (3) Triple points.

Recall that the dual graph which describes the intersections of the
components of ^ is known as the Bruhat-Tits building. Each irreducible
component E of ^ corresponds to a free Z2-module ikfcQ2X0+Q2X1+Q2Z2

of rank three modulo the equivalence relation M~2kM. More explicitly,
ProjS*M^PJ2 for the symmetric algebra S*M is dominated by ^ and E is
the proper transform of the closed fiber. For the detail, see [Mum, p. 235].
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( 1 ) Let B be the irreducible component of ^ which corresponds
to the module Mo = Z2X0 + Z2XX + Z2X2. The smooth points of ^ which
are contained in B are exactly those points of PJ2 = Proj F2[X0, X19 X2] c
Proj Z2[X0, X19 X2] which are not on the seven F2-rational lines on it.
These lines are given by (Xo = 0), (X, = 0), (X2 = 0), (Xo + Xx = 0),
(Xo + X2 = 0), (X, + X2 = 0) and (Xo + Xx + X2 = 0). Hence, a point
α? = (sc0: xx\ x2) e P\Q2) is in ^ with 2-red(a?) in this smooth part if and
only if

v(xQ) = v(x,) = v(x2) = v(xQ + x,) = v(x0 + aj2) = v{xx + a?2) = v(x0 + xλ + x2) .

( 2 ) Let C be the double curve which corresponds to the pair
Z2X0 + Z2X, + Z2XJ2z)Z2X0 + Z2XX + Z2X2. It can be shown easily that
2-red(#) of a point x e P\Q2) is on C and that it is not a triple point if
and only if

v(x2) — 1 < v(ίc0) = v(a?x) = v(x0 + a?i) < v(x2) .

( 3 ) The triple point P which corresponds to the triple Z2XQ +
Z2XJ2 + Z2XJ2i)Z2X0 + Z2Xλ + Z2XJ2i)Z2X0 + Z2XX + Z2X2 is the point
XJX0 = XJX, = 2X0/X2 = 0 of Spec Z2[XJXQ9 XJX19 2XQ/X2] (see [Mum, p.
234]). Then 2-red(α) is equal to P if and only if

v(x2) — 1 < v(x0) < v(x±) < v(x2) .

PGL(3, Q2) acts transitively on the sets of the irreducible components,
the double curves and triple points of <^, respectively. Hence we have
the following description of &.

PROPOSITION 2.1. Let x = (x0: xx\ x2) be a point of P2(Q2). Then x is
in £& if and only if there exists a e GL(3, Q2) such that (y09 y19 y2) =
(x09 x19 x2)a satisfies either

( i ) v(y0) = v{yx) = v(y2) = v(y0+yλ) = v(y0+y2) = v(y,+y2) = v(y0+y1

Jr y2),
( ϋ ) v(y2) - 1 < v(y0) = v(y±) = v(y0 + yj < v(y2) or
(iii) v(y2) - 1 < vd/0) < v(y,) < v{y2).

By the above criterion, it is easy to see that any Q2-rational point of

P\Q2) is not in 3f. In fact, we have the following stronger result.

PROPOSITION 2.2. Let K be an arbitrary quadratic extension of Q2.

If Xo, Xi, %2 <*>r™ dements of K, then the point (x0: xx: x2) e P2(Q2) is not

contained in &.

PROOF. Let a be an element of GL(3, Q2) and let (y09 y19 y2) =
(Xo, Xι, %ϊ)oc. Clearly, y09 y19 y2 are also in K. Let έ?κ be the integral
closure of Z2 in K. Since Z2 is Henselian, έ7κ is also a discrete valuation



374 M.-N. ISHIDA

ring. Let uέ?κ be the maximal ideal of έ?κ. Since the ramification index
e and the relative degree / satisfy the relation ef = [K: Q2] = 2, we have
two possibilities: Namely,

( 1 ) e = 1 and / = 2, i.e., v(w) = 1 and έ?κluέ?κ = F 4, or
( 2 ) e = 2 and / = 1, i.e., v(u) = 1/2 and a7K\n^K = JF2.
We now show that in both cases none of the three conditions in

Proposition 2.1 is satisfied. We may assume yQ, y19 y2 e &κ and one of
them is 1 by dividing them by some yi9 if necessary. Let y09 y19 y2 be
the images of y0, ylf y2 in ^κlu^κ, respectively.

Case (1). v(y0) = v(y,) = v(y2) = 0 implies »0, ft, & Φ 0. v(y0 + yx) =
v(Vo + 2/2) — v(Vi + 2/2) — 0 implies that y0, ylf y2 are distinct elements of
F 4 . Since the sum of the three distinct non-zero elements of JF4 is
zero, we have v(y0 + ^ + y2) > 0. Hence (i) of Proposition 2.1 is im-
possible. Both (ii) and (iii) are obviously impossible, since v(ytyQ are
integers.

Case (2). (i) and (ii) are impossible, since v(yo) = v(yί) and (9K\ua7Kc^F2

imply v(y0 + y j > v(2/0). (iii) is also impossible, since v(ytys are half in-
tegers, q.e.d.

Although Z2 is neither complete nor noetherian, we have the following:

LEMMA 2.3. Let (A, xnA) be a local Z2-algebra essentially of finite
type with 2 e m i t Then, for the 2-adic completion i: A—>A[2], the in-
duced map

ί*: {/: A [2] —>Z2; local Z2-homomoτphism}

—> {/: A —> Z 2 ; Zocαi Z2-homomorphism}

is bijective.

PROOF. Let /, #: A [2] ->Z 2 be two local Z2-homomorphisms. Suppose

that their restrictions to A are equal. Then they induce the same ho-

momorphism A/2nA —• ZJ2nZ2 for every n > 0. By taking their protective

limits, we have a homomorphism A [2] ->Z2[2J. Since the natural ho-

momorphism Z2—>Z2[2J is injective, / and g are equal. Hence i* is

injective. We now show the surjectivity. Let f:A-+Z2 be a local Z2-

homomorphism. Since A is essentially of finite type, the image /(A) is

contained in a finite extension of Q2 and hence it is a finite Z2-algebra.

Hence it is complete in the 2-adic topology. Hence the homomorphism

f:A-+f(A)^+Z2 can be extended to A[2] ->/(A). q.e.d.

Recall that Γo is a normal subgroup of Γx such that G = ΓJΓ0 is
isomorphic to PSL(2, F7). For an element a of Γ19 we denote by α~ the
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induced automorphism of the Z2-scheme V =

PROPOSITION 2.4. There exists a natural map

such that the action of Γx on & and V(Q2) are compatible with this map,
i.e., for an arbitrary element aeΓlf the diagram

commutes. Furthermore, the induced map φ: &/Γ0-^V(Q2) is bijective.

PROOF. Note that V(Q2) = V{Z2), since V is proper over Z2. By
Lemma 2.3, we have natural bisections

£ ^ ~ U {xi^y^—> Z2; local Z2-homomorphism}

and

V(Q2) ~ U {x: ^yh^/Γ() -^ Z2; local Z2-homomorphism} ,

where έ?ϊ%Λr (resp. ^V/r0)
 ί s the local ring at y (resp y) of <%f (resp.

<%f\Γ^) as a formal scheme, i.e., the 2-adic completion of the usual
algebraic local ring. Let x: ^Vt^ —> Z2 be an element of 2f. Then, for
the image y of y in the free quotient <£fo/Γo, we have a natural iso-
morphism

We define 9(35) to be the composite

where xf is the homomorphism which satisfies i*(x') = x for the embedding
i- ^y,^ —> ^yV Then it is obvious that ψ satisfies the assertion of the
proposition since £f\Γ* is the quotient of the formal scheme <%f with
respect to a free action. q.e.d.

Now, we study the ramification of the quotient Vη->(V/H)η with
respect to a subgroup HcG. We need the following elementary ring-
theoretic lemmas.

LEMMA 2.5. Let B be a Z2algebra of finite type. Assume that a
finite group G acts on B as a Z2-algebra, and that a G-invariant maximal
ideal p contains 2. Then, for the local ring A — !?„, the ring AG of G-
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invariant elements of A is essentially of finite type over Z2, and AG[2J

is equal to Al2Jσ.

PROOF. Since B is of finite type and G is a finite group, the subring
BG is also of finite type over Z2 and B is finite over BG. Let pG = BGf]p.
Then since p is G-invariant, B\p is a G-invariant multiplicative set with
(B\p)° = BG\pG. Since G is finite, A is equal to (B°\}f)'iB and A* =
(JB0),*. Hence AG is essentially of finite type and A is finite over AG.
There is an exact sequence

of finite A^-modules, where Δ{A) is the diagonal and δ(a) = (ga)geG. Since
Aσ[2] is flat over AG, and since A(g)^A f f[2] is equal to A [2], we get
AG[2] = A[2] f f by tensoring this exact sequence with A*[2]. q.e.d.

LEMMA 2.6. Let A be a local Z2-algebra essentially of finite type with
2 e m A . Let p be a prime ideal of A with 2£p and A/p is finite over Z2.
Then, for A' = A[2], we have A'PAPί = 4 M

PROOF. Since A/p is finite over Z2, the finite A/£-module pnjpn+1 is
also a finite Z2-module for every n ^ 0. Hence A/ί>n is a finite Z2-algebra,
and is complete in the 2-adic topology. Namely, we have A/pn = (A/pn)l2J —
A'lpnA'. Since (A/pn\/pn=AJpnAp and (A'lFA'Xw^A'^lyrA'^,, we have
AJpnAp — A'pA>/pnA'pAr. The lemma is just the protective limit with respect
to n of this equality. q.e.d.

Let H be a subgroup of G = ΓJΓ0, and let ΓH be the pull-back
τr~1(ί3Γ)cΓ1. Let x be a point in & and let δ> = φ(x) e V(Q2). We denote
by Γ19 Γo and ΓH the images of Γx, Γo and Γ H in PGL(3, Q2) as in Mumford
[Mum, p. 240]. Since ΓH/Γ0 ^ H and since Γo acts freely on ^ , the iso-
tropy groups

T(x, ΓH) = {αA 6 ΓH; αΛ(ίc) = x) and

ΪXfic, fΓ) = {or 6 ίί; «-(») = x)

are isomorphic.

PROPOSITION 2.7. The singularity of the quotient of PQ2 with respect
to T(x9 ΓH) at the image of x is formally isomorphic to that of the
quotient of V with respect to T{x, H) at the image of x.

PROOF. Set T = T(x, ΓH) and T = T(x, H). Let y be the support
point of 2-red(a?) and let y eV0 be the specialization of the support point
of x. Then by Lemma 2.5, we have
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Let p and £' be the kernel of the composite homomorphisms

Wv^Y-^&v^^Z, and (^,vy-+έ?y>v^Z2,

respectively. Then {{d7y^)T\ and ((^V.FΓV are the local rings of the
support points of x and x, respectively. By Lemma 2.6 and the above
equality, we have an isomorphism ((έ?ytJr)τ\lP} ^ ((<?*,vYX'WJ q.e.d.

Now, we study the case H — G and hence ΓH = Γt. We denote by
Y the Z2-scheme V/G. Since T(x, Γjcz T(x, G)aG, each element of
T(x, Γ) is of finite order. Mumford [Mum, p. 241] has already shown
that every element of Γ1 of finite order is conjugate to one of σV or
(pzY for some 0 ̂  ί <; 2 and 0 <̂  j <; 6. Since {#, τ} generates a non-
commutative group of order 21, they are conjugate to one of

1, σ, σ\ τ, τ\ , τβ, (zγ>), {τpf .

Since the fixed points of conjugate elements come to the same points
in Y, it is sufficient to determine the fixed points of σ, τ and τp in ^
or £& in order to find out all the ramification points of /: V—>Y.

Before determining the ramification points of f:V-+Y, we have to
reformulate some of Mumford's results in a different way.

REMARK 2.8. Mumford has shown the following in his paper.
( i ) For the component B of ^ which corresponds to the module

MQ = Z2X0 + Z2X, + Z2X2, the stabilizer {aA e Γ,; aA(B) = B) is equal to
Γ2 which is the group of order 21 generated by σ and τ (cf. [Mum, p.
241]).

(ii) Γ2 acts on the F2-rational points on B simply transitively (cf.
[Mum, p. 242]).

(iii) In particular, if αΛ e Γx fixes B and one F2-rational point on it,
then aA = 1.

We first determine the fixed points of σ, τ and τp in the closed fiber
^ . We can do so by looking at the corresponding action on the Bruhat-
Tits building as follows:

Let x0 be a fixed point of σ on ̂ . Then there exists an irreducible
component B' of ^ which is stable under σ and which contains x0. Ac-
tually if x0 is the triple point corresponding to the triple of distinct Z2

submodules M^Ml^Ml of Q2X0 + Q2X, + Q2X2 with Mi 5 2ikf0', then since
det σ = 1 we have σ(Mi) = M- for every ί. If x0 is not triple and is on
a double curve of ^ , then σ fixes the two components of ^ which are
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adjacent along the double curve since σ is of order three. If x0 is not
on any double curve, then σ stabilizes the unique component which con-
tains x0.

Let 7 be an element of Γx with 7Λ(B) = B'. Then (KTΓ1)* stabilizes
B. Since the subgroups of order three of Γ2 are mutually conjugate,
ΊσΊ~ι is conjugate to α or α2, Hence the fixed points of a in Bf and B
give the same ramification points on Yo. It is easy to see that σ has
just two fixed points on B. One of them is on C(l, 0, 0) and the other
is on E(l, 0, 0), and they are identified by (τpστ)A in Mo. The point on
C(l, 0, 0) is mapped to the point defined by X2 + X,X2 + X2

2 = 0 on the line
Xo = 0 in P}% by the natural isomorphism. We denote by w the corre-
sponding ramification point of Y. Clearly, w is of degree two and splits
into two points in Y(F2).

Since τ is of order seven, any fixed point of τ in <%?§ is on a stabilized
component. Let Ml be the module associated to a component of ^
stabilized by τ. We may assume M0"DMI and 2M02>Ml. Since the group
generated by τ acts transitively on (M0/2M0)\{0}, we have Ml = M0. Hence
the fixed points of τ are in B. Later we explicitly determine the fixed
points of τ together with those in 3f.

Since det τp — λ2/2, τp stabilizes no component of ^ . Hence it
stabilizes no double curve of ^ since it is of order three. It is easy
to see that PeB is the unique triple point fixed by τp.

The fixed points of σ,
follows.

"1 0

(1) σ= 0 0

_0 1

eigenvalues 1

eigenvectors (3, λ, λ)

where ω = (-1 + \/~Ilί)/2.

"0 0

(2)

τ and τp in P\Q2) are calculated easily as

λ
1

- 1

det(ί/3 - σ) = f - 1 ,

ω

(0,1, ω)

ω2

( 0 , 1 , ft)2) ,

τ =

1

1 0 1 + λ

0 1 λ

det(ί/, - r) = t - λί2 - (λ + l)ί - 1 = (ί - ζ)(t - ζ2)(ί - ζ4) .

eigenvalues ζ ζ2 ζ4

eigenvectors (1, ζ, ζ2) (1, ζ2, ζ4) (1, ζ4, ζ) ,

where ζ = exp(2;α/7) .
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(3) τp =

"0 0 λ2/2'

1 0 0 detftJ8 - τp) = f - λ2/2 ,

.0 1 0

eigenvalues ε ωε ω2ε

eigenvectors (1, ε, ε2) (1, ωε, ω2ε2) (1, ω2ε, ωε2) ,

where ε = (λ2/2)1/3.

In case (1), since every component of the eigenvectors are in Q2{λ/ — 7)
or Q ^ v 7 ^ ) , the fixed points of σ in P\Q2) are outside £& by Proposition
2.2.

In case (2), set q = (1, ζ, ζ2). Note that σA(q) = (1, ζ2, ζ4) and (σA)%q) =
(1, ζ4, ζ). Let ζ0 be the image of ζ in Z2(ζ)/(2) ^ F 8 . Then since ζ0 e F 8 \ F 4 ,
we see that 1 + ζ0, 1 + ζ0

2, ζ0 + Co2 and 1 + ζ0 + Q are not zero. This
implies that v(l) = v(ζ) = v(ζ2) = v(l + Q = v(l + ζ2) = v(ζ + ζ2) = v(l + ζ + ζ2) - 0.
Hence q is a point of ^ by Proposition 2.1. We denote by q the image
foφ(q) 6 Γ(Q2).

Since 2-red(g) is a smooth point of ^ and is on the component B,
the isotropy group T(q, Γx) is a subgroup of Γ2 by Remark 2.8. Since σ
does not fix ? 6 ^ , we have T(q, Γx) = <τ>. As we see later in Remark
2.10, the linear map τ is given locally at q by (y19 y2)^-^{ζy19 ζ32/2). Hence
the singularity of the quotient at this point is the cyclic quotient singu-
larity of type (7, 3). By Proposition 2.7, the singularity of Y(Q2) at q is
also a cyclic quotient singularity of type (7, 3).

These τ-invariant points of P\Q2) are Q2(ζ)-valued and they are iden-
tified to q in Y(Q2) by σ. Since the action of σ on these three points is
compatible with the automorphism of Q2(ζ) defined by ζ i—* ζ2, we see that
q is a Q2-valued point. Since Y is proper over Z2, there exists a Z2-valued
point <7:SpecZ2—>Y such that q(η) = q. We see easily that q(0) e Yo is
also a cyclic quotient singularity of type (7, 3). We can see similarly
that the fixed points of τ on B are only (1, ζ0, ζ0

2), (1, ζ0

2, ζ0

4) and (1, ζ0

4, Co).
Since B is the only component of <£f0 stabilized by τ, we see that qczY
is the unique ramification locus given by τ.

Finally in case (3), set p0 = (1, ε, ε2), ft = (1, ωε, ω2ε2) and p2 =
(1, α>2ε, ωε2). Since ^(λ2/2) = 1, we have v(ε) = 1/3, while v(α>) = 0. Hence
these points are in 3ί by Proposition 2.1. In this case, 2-red(pί)'s are
the same triple point P e ^ . At this point P, the three components of
j r 0 which correspond to Z2X0 + Z2XJ2 + Z2Z2/2, Z2X0 + Z2X, + Z2Z2/2 and
Z2X0 + Z2Xi + Z2X2 meet together. In particular, the component B con-
tains P. Suppose α Λ 6 Γx fixes P. Then since τp cyclically permutes
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the three components, (r<o)~*aA stabilize B for i — 0, 1 or 2. By (iii) of
Remark 2.8, we get α Λ = (τp)\ Since the isotropy group of p/s are
contained in that of P, we have T(pίf Γλ) = <Γ|0>.

No α e / \ maps g€ to another pβ since αA(Pi) = Pj implies ae(τp).

Hence, the points p0, pίy p2 are mapped to distinct points in Y(Q2). Let

them be p0, px and p2, respectively. As in case (2), we see that Y(Q2) has

cyclic quotient singularities of type (3, 2) at these points.
The points p0, pιy p2 are solutions of the system of equations (XJX0) =

(XJXJ = {έXJX2). Since the local ring of g? at P is Zt[XJX0, XJX19

^X0/X2]u for the maximal ideal m = (XJX0, XJX19 ε*X0IX2), the equations
give a Z2[ε]-valued point p of 7 such that p(0) = P and that the image
of p(τj) in Y is a Q2(ε)-valued point which splits into the three points
Vo, Piy Vi in Y(Q2). Since P is the unique fixed point of τp in ^ , we see
that p is the unique ramification locus of f:V—>Y caused by τp.

Thus we conclude:

THEOREM 2.9. The morphίsm f:V—>Y is ramified along q, p and at
the point weY0 of degree two. The restriction to the geometric fibers
f-Q2'.V(Q2) —•Y"(Q2) is ramified at the point p0, plf p2 and q. p0, px and p2

(resp. q) are cyclic quotient singularities of type (3, 2) {resp. of type
(7, 3)).

REMARK 2.10. Let R be the etale finite ring extension Z2[ζ, ω\ of
Z2. We can describe the minimal resolution of the singularities along q
and p after the etale base extension YR —> Spec R of Y —• Spec Z2 as
follows:

By the coordinate change

Xu

CT1

ζ4

ζ .

of Pn, τ is diagonalized as

"C
0

0

0

ζ2

0

0"

0

c*
and the eigenvectors are (1, 0, 0), (0, 1, 0) and (0, 0, 1). Hence the local
ring of YR at £(0) is formally isomorphic to the localization of the ring
of invariants R[YJY0,YJY0]

τ in the polynomial ring R[YJY0,YJY0] with
respect to the action of τ defined by YJY0^ζYJY0 and YJY0^ζ*YJYQ.
One can resolve it minimally by the standard method. For any geometric
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fiber, the exceptional set is a chain of nonsingular rational curves with
the self-intersection numbers —3, —2, —2.

The local ring of YR at p(0) is formally isomorphic to the localization
of the ring of invariants R[XJX0, XJXlf e?XJXAvp^R[XJX» XJX» s*XJX2]
with respect to the automorphism τp given by XJX0 f-> XJXlf X2\X1 H*
ε*X0/X2, ε*X0/X2 \-^ XJX0. Note that ε3 = λ2/2 is a generator of the maximal
ideal of the discrete valuation ring R. By the coordinate change

τl9 τ2) =

we have

1

0

0

x u <

0

ft)

0

fXolXz)

o -
0

ft)2

1

_1

1

ft)2

ft)

1

ft)

ft)

Then the ring of invariants is R[T0, ΓΛ T2\ T^] with the relation
Γ0

3 + TV + T2

3 - SToT.T, = 27ε3. We see easily that this is a complete
intersection of a regular ring. In particular, this is a Gorenstein ring.
This singularity is resolved by the blowing up along the prime ideal
(ΓΛ Ύ2\ TXT2). For the geometric fiber Γ(Q2), this is the blowing-up at
{Po, Vu P2} Since these are cyclic quotient singularities of type (3, 2), this
blowing-up gives the minimal resolution of these singular points and each
exceptional set is the union of two nonsingular rational curves with the
self-intersection numbers —2 intersecting each other at one point.

Thus we minimally resolved the singularities of YR along q and p.
Since this resolution is canonical, it descends to a scheme Y' over Z2.
Clearly, Y'{Q2) is the minimal resolution of Y(Q2).

3. The plurigenera of the quotient surface. In this section, we
study pluri-canonical line bundles on V and its quotients.

The component B of <2% is a smooth rational surface, and the fourteen
rational curves C(α, 6, c)'s and E(a, 6, c)'s form a divisor A= Uα,&,c(C(α, b, c)U
E(a, 6, c)) with only normal crossings in B. For the unramified covering
<^-»Vo, we denote by Blf C{a, b, c)19 E(a, 6, c)ίf P1 and A1 the image of
β, C(a, 6, c), E(a, 6, c), P and A in VOf respectively. Note that the fixed
point P e J ^ of τp, is the intersection point of C(0, 0, 1) and £7(1, 0, 0).
One can check that Bx has no self-inter section. Hence Bx is isomorphic
to B.

From now on, we mainly treat V and its quotient with respect to a
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subgroup of G. Hence, for simplicity, we denote also by σ, τ, p their
images in G. For an element a e G, we denote by eC the associated
automorphism of V as in Section 2.

Since Mo = VJS consists of only one irreducible component, we have

Vo = U Ba where Ba = ar(Bύ .
aeS

Here Ba's cross each other normally and the normalization Vo is equal to
the disjoint union ]IaesBa. Let φ:V0-*V0 be the natural morphism.

Since the induced action of G on the set of double curves is transi-
tive, and since the stabilizer of the double curve Dx — C(l, 0, OX is {1, σ, σ2},
we see that the union D of the double curves is

D= U Dβ ,

where G/(σ) is the set of left cosets {(σ)g; gzG} and Dβ:= /5~(A)
Similarly, the stabilizer of Px is {1, τp, {τpf} and

is the set of the triple points of Vo. Note that the set of /^-rational
points of VQ is exactly equal to this set.

For the union D of the double curves of Vo, let d:D—>V0 be the
natural morphism from the normalization D = Πj8e<?/<σ>-Dj9 of D to VQ.

Since the double curves arise from the identification of ( —l)-curves
and (—2)-curves [Mum, p. 236], there exist morphisms ε, 7:B—>V0 such
that e(Dβ)

2 = — 1 and Ύ(Dβ)
2 = — 2 for every component Dβ of D and

φoε =z φoy = d. The union e(D){J7(D) is equal to IL6sΛr> where Aa =

For any line bundle L on Fo, the following diagram is exact:

H\V0, L) ^ H\V0, φ*L) zX H\D, δ*L) .
r*

For an equidimensional Gorenstein scheme Z, we denote by ωz its
canonical invertible sheaf. As is well known for varieties with normal
crossing singularities, we have

<P*ωVo = ωyo(εφ)ΌΎ(D)) = 0 ωB(x(Aa) .
aeS

Hence we get the exact diagram

(1) H\Vo, ωψf) - φ H%Ba, ωTa{mAa)) z$ H\D, δ

for every integer m.
On the other hand, ®a^sΨ^Ba{ — Aa) is equal to the ideal
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defining D. Hence by the projection formula, we have

< m <g> h = θ <P*ω$:((m - ΐ)Aa) .
aeS

Hence we get an exact sequence of ^V0-modules

( 2 ) 0-^

Now we analyze the sections of α>fm{mA) and α>f m((m — 1)A) more
precisely.

For the projective plane P | 2 with the homogeneous coordinate system
(Xo: Xt: X2), we set y = XJX2 and z = XJX2. Then the rational 2-form
<0O = (dyΛdz)/yz vanishes nowhere and has a pole of order one along the
divisor {XQXXX2 = 0). Let p*α>0 be the pull-back of ω0 with respect to
the natural morphism p:B-*P\2. Then, the divisor (p*α>0) is equal to

E(l, 1, 1) - C(l, 0, 0) - C(0, 1, 0) - C(0, 0, 1)

- E(l, 0, 0) - £7(0, 1, 0) - E(0, 0, 1) .

Hence p*ω0 is a section of ωΛ(A) with the zero divisor

Fo = C(l, 1, 0) + C(l, 0, 1) + C(0, 1, 1) + C(l, 1, 1)

+ E(l, 1, 0) + E(l, 0, 1) + #(0, 1, 1) + 2E(1, 1, 1) .

Let F be a divisor on i? which is linearly equivalent to Fo. Then

the images p(F0) and p(F) in P | 2 are also linearly equivalent. Since

see that p{F) is equal to (/ = 0) for a homogeneous quartic polynomial
feF2[X0, X19 X2].

Since p*(u0 = 0)-F0 = Σα > 6, c E(a, b, c) should be equal to p*(f = 0)-F,
the divisor (/ = 0 ) c P | 2 contains all the seven F2-rational points of P | 2 .
Conversely, if / is a quartic homogeneous polynomial with /(α, 6, c) = 0
for all triple (α, &, c) of 0 or 1, then p*(f = 0) — Σα,&,c ̂ f e δ, c) is effective
and linearly equivalent to FQ. Hence (f/uo)p*ωo is a section of ωB(A).

Thus the space of section of ωB(A) is described as

(3 ) H\ωB{A)) = \1J*3L Λ i £ ) i ,
ίuo\y z I)

where / runs over the homogeneous polynomials in F2[X0, Xlf X2] of degree
4 such that /(α, 6, c) = 0 if α, 6, c = 0 or 1.

Similarly for general m e Z, we get the following:

(4) H\ωίm{mA)) - \JJ*!L Λ ^
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where / runs over the homogeneous polynomials in F2[X0, Xu X2] of degree
4m which has zero of multiplicity at least m at each of the seven Fa-
rational points of Pf2.

Let ω = (f/K)(dy/yΛdz/z)®m be an element of H\ωίm(mA)). Then
ω is in H\ωίm{{m - 1)A)) if and only if / has the factor u = X^X^X, +
-XΊX-Xo + Xi)(Xi + X*)(Xo + Xi + X2) and / has zero of multiplicity at least
m + 1 at every F2-rational point of P | 2 . Since u has zeros of multiplicity
three at these points, we see that

(5) B W « m - DA)) = ί « j ( * t Λ **-

where # runs over the homogeneous polynomials in F2[X0, Xly X2] of degree
4m — 7 which has zeros of multiplicity at least m — 2 at the seven Ir-
rational points of Pp2.

Let m be an integer greater than one. Since c?(Vη) = 72 and
X(έ?Vη) = 8, we have Pm(V9) = %°(ωf~) = 36m(m - 1) + 8 by the plurigenus
formula for surfaces of general type. Hence H\V, ωfm) is a free Z2-
module of rank 36m(m — 1) + 8. By Grothendieck's base change theorem,
we have a natural injection

Z 2

More generally, let if be a subgroup of G acting freely on V and let
V = y/ff. Then we have an injection

i'm: H\ V\ ωfn ® F2 -> iϊ°( Fo', ω?p .

Note that the left hand side is of dimension (36m(m — 1) + S)/\H\f since
V'η is also of general type.

PROPOSITION 3.1. The above homomorphisms ίm and ϊm are isomor-
phisms for m = 2 and 3.

PROOF. We give the proof only for im, since the proof for general
ϊm is similar. Suppose m = 2. By (5), we have

1 (ft*o + bX, + cX2)u /dy_ Λ d*\* ; a b

This is obviously three-dimensional. Hence φ α e s ίίo(ft)f2(Aα)) is of
dimension 8 x 3 = 24. On the other hand, Vo has fifty-six F2-rational
points {Pμ}μββ/<τp> Hence there exists a natural homomorphism

(6) 32:H\V0, <3 2 \ 0 , < ) 0
0 μeG/(τp>

Here the right hand side is an F2-vector space of dimension 56. Hence
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it suffices to show that the kernel Ker^2 is contained in ®α esif °(
because then the dimension of H°(V0, ωf*) is at most 24 + 56 = 80 which
is the rank of H\V, ωψ).

Let ω be an element of Ker j2. We have to show that ω\Dβ = 0 on
each double curve Dβ. Set Mβ = δ*ωVo\Dβ. Since δ*ωVo\Dp = Ύ*ωBa(Aa)\Dβ

for some aeS, and since Ύ(Dβ) is a nonsingular rational curve with
y(Dβy = — 2, we have

degM, = άegωBa\nDβ) + Ί(Dβ)*Aa = 0 + 1 = 1 .

Since Dβ cz P\F2) has three F2-rational points and ω is zero there,
ω\Dβ 6 H\Mf2) should be zero.

We now consider the case m = 3. By (5), H°(ωψ(2A)) is isomorphic
to the module of homogeneous quintic polynomials which have zeros at
all the seven F2-rational points of P | 2 . It is easy to see that this is of
dimesion 21-7 = 14. Hence φ α 6 ( S H\ωψa(2Aa)) is of dimension 8 x 14 = 112.
Let L be the kernel of the homomorphism

(7) j3:H\V0,ωr0)-> φ <(P,) = Ft«" .

Clearly, L is of codimension at most 56 in H\VQ, α>?0

3). Let Dβ be a
double curve of VOf and let 0, 1, oo be its F2-rational points. We consider
the restriction map L —> H\Mf%). Since degikίf3 = 3 and since each
element ωeL has zeros at {0, 1, oo}, the image of this map is in
H0(MfX-Q - 1 - oo))-F 2 . Hence the kernel of the natural homo-
morphism

(8) L -> 0 H°(MfX-0 - 1 - oo)) = F2

φδβ

9e(?/<>

is of codimension at most 56. Since the kernel is contained in
φaes H\ωψa(2Aa)), we see that the dimension of H°(V0, ωfl) is at most
112 + 56 + 56 = 224 which is the rank of H\V, ωψ). Hence ί3 is an
isomorphism. q.e.d.

REMARK 3.2. This proof implies that the homomorphisms (6), (7) and
(8) are surjective. This is also true for the homomophism i'm.

PROPOSITION 3.3. Let H be a subgroup of G, and let ω be an element
of H°(V0, o)f0

m) for m = 2 or 3. If ω is H-invariant, then there exists
an element ώeH°(V, ωfm) which is H-invariant and ώ\Vo = ω.

PROOF. Let So be a 2-Sylow subgroup of H. Then since So is con-
tained in a 2-Sylow subgroup of G, So acts on V freely by a result of
Mumford. Let V be the quotient V/So. Since ω is S0-invariant, it
descends to an element of H°(Vi, ωf™). By Proposition 3.1, there exists
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ώr eH°(V', ωv>) with ώ'\v>^ — ω. We regard ώ' as an S0-invariant element
of H\V9 ωf2). Let H = SQ^ + + SQan be the left coset decomposition
of H with respect to So. Let ώ = Σ?=i «*(<*>')• Then ώ is iϊ-invariant,
and ώ|Fo = wω = ω, since 71 = [iJ: SQ] is an odd number. q.e.d.

THEOREM 3.4. Let H be a subgroup of G and let m be 2 or 3. Then
the homomorphism

H\ V, ωfm)H <g> F2 -> H\ Fo, < T
Z 2

induced by im is an isomorphism.

PROOF. Since the quotient H\V, ωfm)/H\V, ωfm)H is contained in
the Q2-module H\VΨ ωf^)/H\Vη9 ωf™)H, it is a free Z2-module. Hence
H\V, ωfm)H is a direct summand of H°(V, ωfm). In particular, the homo-
morphism is injective. Since m = 2 or 3, it is surjective by Proposition
3.3. q.e.d.

The following shows that the bigenus P2 of the desingularization of
the quotient surface Vη/H is calculated only in terms of the closed fiber
Vo.

PROPOSITION 3.5. Let H be a subgroup of G, and let Z be the mini-
mal resolution of Z = Vη/H. Then P2(Z) = dim iϊo(Fo, ω?2

0)
H.

PROOF. By Theorem 3.4, we have dim H\ Vψ ωf2)11 = dim H\ Vo, ω%)*.
By Theorem 2.9, Z may only have at most cyclic quotient singularities
of types (3, 2) or (7, 3), and the morphism Vη —> Z is ramified only at these
singular points. Hence an element seH°(Vv, ωf2)H can be regarded as
a section of ωψ, where Zf = Z\{singular points}. Note that Z contains
Zf as an open subset. It suffices to show that the rational section s of
o)z®2 has no pole along the exceptional divisors. This is the case over the
cyclic quotient singularities of type (3, 2), since they are rational double
points. Let y e Z be a cyclic quotient singularity of type (7, 3) and let
Dlf D2, Dz be the exceptional curves for the resolution of y with D* =
- 3 , D2 = D2 = - 2 , A A = A A = 1 and A Ά = 0.

~3 -2 -2
O O O
A D2 D3

We can write the divisor (s) on Z as αA + bD2 + cDB + F, where the
support of F contains none of A's. Let d* be the intersection number
Di'F for i = 1, 2, 3. Since (s) is linearly equivalent to 2K^, we have
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2 = ( s ) A = - 3 a + b + dlf

0 = (s) A = a - 2b + c + d, ,

0 = (s) A = b - 2c + d3 .

By these equalities, we calculate easily that

7α = 3{d1 - 2) + 2d2 + d3 ,

76 = 2(<Zi - 2) + 6cϋ2 + 3c£3 ,

7c = (eZx - 2) + 3<Z2 + 5<23 .

Since α, 6, c are integers and dlf d2, ds are nonnegative, we have
a, b, c ^ 0. Hence s has no pole on Z. q.e.d.

Recall that Γ2 = <σ, τ> stabilizes the component B of «^J. We denote
by G21 the injective image of Γ2 in G. G21 is a group of order 21. Since
G 2 1 nS = {1}, G is equal to the disjoint union \JaesG21a. If an element β
is in G21α, then β induces an isomorphism (β\Bl): B1—>Ba.

The action of G on Vo induces an action on the diagram (1). An
element (ωa)aes £0«es H\Bm α)f^(mAβ)) is G-invariant if and only if
(β\Bl)*(0a = (θι for every βeG, where a is the element of S with β e G2la.
This is also equivalent to the condition that ωλ is G21-invariant and
β>i — ( α l ^ ) * ^ for every aeS.

Suppose (ωa) is G-invariant. By the diagram (1), (ωa) is in
H\V0, ωf?)G if and only if e*((ωβ)) = T*((ωβ)). Since the action of G on
the set of double curves of Vo is transitive, this equality holds if they
coincide on a component of D. Recall that, for a = τpστ, C(l, 0, 0)dB
and αA(£ r(l, 0, 0))cα Λ (S) form a double curve of ^ . The isomorphism Λ:
of the identification £7(1, 0, 0)->C(l, 0, 0) is given by (X,: X2)\-+(X2: X,).

We set

Lm = {ω 6 i ϊ o (5, ωf ro(m4))^; Λ^ωlcα.co,) = ωU(1,0>0)} .

By the expression (4) for H°(B, # ( m A ) ) , we see easily that Lm is natu-
rally isomorphic to L'mczF2[X0, Xlf X2] consisting of Γ2-invariant homo-
geneous polynomials / of degree 4m such that / ( I , Xlf X2) has no terms
of degree smaller than m and /(0, X2, X^/XΓXΓiX, + X2)

m = [/(I, -X* X2)]m.
where [g]m denotes the homogeneous part of degree m of a polynomial
g. Note that / has zero of multiplicity at least m at (1, 0, 0) if and
only if / (I , X19 X2) has no terms of degree smaller than m. By the above
observation, we have the following:

PROPOSITION 3.6. H°(V0, ωf™)° is isomorphic to Lm by the corre-
spondence (α>Λ)α e 5^α)ί where ω[ is the pull-back of ωλ by the natural
isomorphism B^Bλ. Hence it is also isomorphic to L'm.
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For any αeGL(3, F2), we have a*(f/uT(dy/yΛdz/z)®m) = (
Λdz/z)®m for f/uΐ(dylyΛdz/z)®meH0(B, ωfm(mA)), where / is a homo-
geneous polynomial of degree 4m. Hence, in order to determine the Γ2-
invariant elements of £Γ°(α)fm(mA)), we have to know those of F2[X0, Xlt X2],

Recall that λ = ( — 1+1/^)12 is embedded in Z2 so that λ = 0 (mod 2).
Hence, for ζ = exp(2ττi/7), Q2(ζ) is a cubic extension of Q2 with the re-
lation ζ3 - λζ2 - (1 + λ)ζ - 1 = 0. We denote by ζ0 the modulo 2 reduction
of ζ, i.e., ζo is a root of the equation X3 + X + 1 = 0 in F2[X].

The following method to find /Yin variant polynomials in F2[X0, Xlf X2]
is due to Nakamura.

We set

J- 2 — -Λ-0 ^~ Sθ-^1 "Γ SO -Λ-2

Note that this is the modulo 2 reduction of the coordinate change in
Remark 2.10, since

Then we have

1

Co2

.Co

1

Co4

Co2

i

Co

Co 4 -

=

"1
1

.1

Co

Co2

Co4

C o 2 "

Co4

Co.

σ(Y0) = σ(Y1)=Y0 and σ(Y2)=Y1.

Thus, if a polynomial / in F2[Y0,YlfY2] is r-invariant, then it is a sum
of r-invariant monomials in YQ, Y1 and Y2.

A monomial YfY^Yf is r-invariant if and only if i + 2j + Ak = 0
(mod 7). If it is r-invariant, then

Fitjfk = YJYJY* + YoΎYJ + Yo'YfYt*

is Γ2-invariant. Conversely, every Γ2-invariant polynomial in F2[Y0fYlfY2]
is a linear combination of FitJtk's.

PROPOSITION 3.7. For any i, j , k with i + 2j + 4k = 0 (mod 7), Fititk

is in F2[XQ, Xlf X2]. Conversely, every Γ^invariant polynomial in
F2[X0, Xlf X2] is a sum of FitJtk's.

PROOF. Clearly, FiJtkeF2{ζQ)[X0, Xlf X2], Let u be the automorphism
of F2(ζ0)[X0, X» X,] defined by u(X<) = Xt for i = 0, 1, 2 and u(ζ0) = ζ0

2.
Then, a polynomial / in F2(ζ0)[X0, Xu X2] is in F2[X0, Xlf X2] if and only
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if u(f) = /. Since u(Y0) = Yl9 u(Yλ) = Yt, u(Y2) = Yo, we have u(Fiιitk) =

Suppose FeF2[X0, Xlf X2] is Γ2-invariant. Since F2[X0, X19 X2]d
F2(ζ0)[Y0fYltY2]f F is written uniquely as a linear combination of FitJtks
with coefficients in F2(ζ0)\{0}. Since u(FitJ>k) = Fititkf the coefficients are
in F2\{0} = {1}. " " q.e.d.

We denote by Invn the F2-vector space of Γ2-invariant homogeneous
polynomials of degree n in F2[X0, X19 X2], By the above proposition, we
can easily find bases for Invn for small w's as follows:

Inv0 = (1) .

Invx = Inv2 = {0} .

Inv3 = (03) , φ3 — YQ YX Y2 .

i n V 4 = ( 0 J , ^ = i o J - l -f" J: i JL 2 " 1 - ^ 2 - ^ 0

inv δ = (^ δ ), φ5 — γo

sY* + Y*Y2 + y 2

8 y o

2 .

Invβ = (φt

Inv 7 = (φ<

Inv 8 = (^

We can also show t h a t Inv1 2 is g e n e r a t e d by {-Pio,2fo» ^3,9,0, ^5,6,1, ^7,8,21

1̂ 4,4,4}. Hence

mv 1 2 = (03, φz φQj φzφt

TABLE 1

), φQ = Γ

h), φ7 =

TABLE 2

/

Φt/fo

ΦlΦiΦl

Φl<

φ^

A0,ZuXύ /αL,Xi,X0modCZi,i)*

1

1
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s i n c e i^iO)2,o — Φ&2> ^3,9,0 — 0507 + Φβ2 + Φ2Φβ> ^5,6,1 = ΦzΦ±Φs + Φ$ + Φs2Φβ> -^7,3,2 =

03

206 and F M f 4 = 03

4.
In order to determine L'm for m = 2, 3, we provide the Tables 1 and

2 of /(0, X2, XJ and /(I, Xly X2) for / = φi and each element of the basis
for Inv12. In the tables, we omit the part of degree greater than 3 of
/(I, X

PROPOSITION 3.8. We have L'2=(φt2+φsφδ) and Lf^(φδφ7+φΆ\ ΦzΦ±φδ+φ2).
In particular, dim H\V0, ωf2f = 1 and dim iϊ o(F o, ωψf = 2.

PROOF. The second assertion follows from the first by Proposition
3.6. In Inv8\{0}, only φ* + φ3φ5 has zero of multiplicity 2 at (1, 0, 0).
For / = φ? + φiφi, we calculate easily by Table 1 that [/(I, Xlf X2)]2 =
/(0, X2, XJ/X^XttX, + X2)

2 = X,2 + X,X2 + X2. Hence V2 is generated by
φ2 + 3̂̂ 5 •

From Table 2, the F2-vector space {/ e Inv12; / has zero of multiplicity
3 at (1, 0, 0)} is of dimension 3 and is generated by {φQ

2 + φ3\ φ6φ7 +
Φz\ ΦzΦtΦs + Φz}- Hence i t is easy to see t h a t L[ = (φ5φ7 + φ%\ φsφ±φδ + φ6

2).
Actually, we have

/(o, x2, xύixtxxx, + x2γ = [/(1, xlf

for / = φ5φ7 + 3̂

4» and

/(0, X2, X^/X^X^X, + X2)
3 = [/(I, Xx, X2)]3 = X,3 + X,2X2 + X2

3

for / = φΆφ,φ5 + φ6

2. q.e.d.

We now prove the following:

THEOREM 3.9. For the minimal resolution Y'η of Yv = VJG, we have
P2(Y'η) = P5(Yη) = 1. We can choose as generators of H\Y'η, ωfξ) and
H°(Yη, α>?|), the elements which corresponds to the Γ^invariant polynomilals
Φ2 + ΦzΦδ and φz + 03040s + 0507 + 06

2 by the modulo 2 reduction, respectively.

PROOF. We have P2(Y'η) = 1 by Propositions 3.5, 3.6 and 3.8. By
Proposition 3.8, H\Yfrj, ωψf) is generated by the lifting of the element of
H%V0, ω¥2)G which corresponds to 04

2 + 0305.
By Theorem 2.9 and Remark 2.10, Y has cyclic quotient singularity

of type (7, 3) along q, and it is minimally resolved simultaneously in Y\
Let s be a section of cofl, where Y" is the smooth part F\{J>, q, w)

of Y. For the resolution of Yη at q, we define the exceptional divisors
Dlf D2f D3 in Ylj and integers α, 6, c and dlf d2y dΆ ^ 0 similarly as in the
proof of Proposition 3.5. Then we have

7a = 3 ^ ! - 3) + 2d2 + d,
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76 = 2(dλ - 3) + U2 + 3eZ3 ,

7c = {dx - 3) + 3d2 + 5c£3 .

Hence 6, c ^ 0 and α ̂  — 1. In other words, s is regular at the divisors
Zλ>, DΆ and may have a pole of order at most one along Dλ.

Let Li be the intersection of the closure of Dt with Y'o for i = 1, 2, 3.
Then L = Lx U L2 U L3 is the exceptional curve of g(0) 6 Fo. Let ?7c FJ be
a smooth neighborhood of L and let &)0 be a rational section of ωf3 which
is regular outside L. Then, as in the case of the generic fiber, ω0 may
have a pole of order at most one along L1 When ω0 is represented by an
element of H\B, ωψ(SA))Γ2

f its regularity at Lx is examined as follows:
Let f(Y0,YlfY2) be the corresponding Γ2-invariant homogeneous poly-

nomial of degree 12 in F/s. We take the local coordinate (yly y2) =
(YJYQ, YJY0) of the point (1: ζ0: ζ0

2) e P% = Proj F2[X0, Xlf X2]. Then the
action of τ is given by (ylf y2) H^ (ζoylf ζ0

3y2) (cf. Remark 2.10). In the
resolution, L is covered by four affine open sets with coordinates (y?, yϊzy2),
(ViVϊ1, VΪ2V2S)> (y?yϊ\ Vϊιy£) and {yλy^\ y2), where the second and the
third coordinates are of the neighborhoods of Lιf]L2 and L 2 nL 3 , respec-
tively. The divisor L1 is described as the line (s = 0) with respect to the
coordinate (s, ί) = (#/, yϊ%). ω0 is equal to v /( l , ylf y2){dyι/\dy2)^ for a
non-vanishing regular function v on U. In view of the equality dyγ/\dy2 =
(l/7)s~3/7dsΛdt, we see that α)0 has a pole at Lx if and only if s~9/7g(s, t)
has a pole along (s = 0), where g(β, t) = /(I , 2/1, l/2)

Among τ-invariant monomials of degree 12 in F/s only s~9/7sf(s, ί) for
FQ^FX2 has a pole along (s = 0). Hence α>0's which correspond to ^ 7 + φ* =

• 1̂0,2,0 + ^3,9,0 + ^7,3,2 + ^4,4,4 &nd ΦiΦiΦδ + ^ = ^10,2,0 + ^5,6,1 + -^7,3,2 + ^4,4,4

have a pole along Llf while α)0 for φ3* + ̂ 3 ^ 5 + ̂ 7 + φβ

2 = FS)9>0 + FΛt6tl

does not.
Let o)̂  be an element of H°(Y", o)f») which has nontrivial reduction

ω0 to Fo'. Then ωη has a pole at A> if so does α)0 at Lx. Hence, by
Theorem 3.4, there exists ωe H°(Y", Q)f?>) with a pole along Dλ. Since
Ό1 is a nonsingular rational curve and Dt

2 = —3, we have a)ff{D^)\Dl ~έ?Di.
Hence H\Y'η, ωfξ) is of codimension one in H\Y'ηi α)??(A))> which is iso-
morphic to H°(Y", ωf»), since the other singularities p0, plf p2 are rational
double points. Since H°W, ωfl) a H\VΨ ωfζ)G is of dimension two by
Theorem 3.4 and Proposition 3.8, we have dimίf^F^, ωfp = 1. q.e.d.

REMARK 3.10. The Γ2-invariant polynomials f2 = φ* + φ3φδ and /3 =
Φz* + 08^5 + 0507 + 062 a™ equal to .P2>6)o + 4̂,3,1 and F3>9>0 + Fδtfitl, respec-
tively. By expressing these polynomials in terms of the coordinates at
LiΠl/2 and L2f]L3 in the proof of the above theorem, we see that gene-
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rators of H\Yf

ηy ωψ%) for m = 2, 3 and their modulo 2 reductions have
no zero along D/s and L/s, respectively.

4. The minimal resolution of Y(Q2) In this section, we denote by
X the normal surface Y(Q2). By Theorem 2.9, X has cyclic quotient
singularities pQ, plf p2 and g. Let π: X—>X be the minimal resolution of
these singularities. Hence X — Y\Q2) for Yf in Remark 2.10. We denote
by A> * •> A the irreducible divisors of X such that π"1^) = A + A + A>

π-i(p0) = A + D5, π-^Pi) = A + A and T Γ " 1 ^ = A + A We assume
A2 = —3 and A n A = 0 as in Section 3. Hence we have A2 = —2 for
2 ^ i ^ 9. Let Kx be a canonical divisor of X. Since X has only cyclic
quotient singularities, Kx is a Q-Cartier divisor. In fact, 21KX is a
Cartier divisor.

PROPOSITION 4.1. The Chern numbers of the nonsingular surface X
are c^X) = 0 and c2(X) = 12.

PROOF. Let Kx be the canonical divisor of X which is equal to Kx

on X\{p0, plt p2, q}. Then π*Kx — Kx is a Q-divisor supported in
AU U A> i e., π*Kx — Kx = αxA + + α9A for some α^ , α9 6 Q.
Since D/ s are nonsingular rational curves, we have (π*Kx — Kx)-Di =
-ifx A = 2 + A2 for every i.

Then we see easily that

π*Kx -Kx = (3/7)A + (2/7)A + (1/7)A .

In particular, we have

(1) K/ - # ί 2 = (ττ*iΓx - KX) KX = 3/7 .

On the other hand, by Theorem 2.9, there exists a finite morphism
/: V{Q2) -*Xoί degree 168 ramified only at {pQ, plf p2, g). Since c/( F(Q2)) =
72, we have

(2 ) iΓx

2 - 72/168 - 3/7 .

Hence c?(X) = Kx

2 = 0 by (1) and (2).
For c2(X), we may let Q2 — C and calculate it as the topological Euler

number e(X). By Theorem 2.9, f~\Pi) for i = 0, 1, 2 and /"X?) consist
of 168/3 = 56 and 168/7 = 24 points, respectively. Since c2(F(Q2)) = 24,
we have

c2(X) = (c2(F(Q2)) - V'KίPo, PU ft, ff}))/168 + β^-Kίft, p u ft, ί}))
= (24 - (3-56 + 24))/168 + (3-3 + 4) = 12 . q.e.d.

REMARK 4.2. The above proposition implies X(έ?2) = 1 by Noether's
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formula. In fact, we have pg(X) = q(X) = 0, since X has a finite covering
M(Q2) —• X from Mumford's fake projective plane M(Q2) ramified only at
finite points.

PROPOSITION 4.3. X is a minimal elliptic surface, i.e., the Kodaira
dimension of X is equal to one.

PROOF. Suppose X were of general type, and let X' be its minimal
model. By the plurigenus formula, we have Pm(X) = (m(m — 1)/2)KX,

2 +
X(^x) for m ^ 2. In particular P2(X) :> 2. This contradicts Theorem
3.9.

If X were of Kodaira dimension zero, then X is either a KS surface
or an Enriques surface, since q{X) = 0. These are impossible since
pg(X) = 0 and P,(X) = 1 by Theorem 3.9.

Hence X is an elliptic surface and it is minimal by Kχ2 = 0. q.e.d.

Recall that the ^-scheme γf is regular outside the point w in the
closed fiber. For each integer m, we denote by ωfr the maximal torsion-
free extension of ωf™\{w} to Y'. We fix sections F2 and Fz of ωp and
ωψ* with non-trivial modulo 2 reductions, respectively, which exist by
Theorem 3.9. Let Ef and E" be the effective divisors (F2) and (F3) of
Y', respectively. Clearly, 3£" and 2E" are linearly equivalent.

LEMMA 4.4. E' and E" are disjoint.

PROOF. Let πQ:YΌ—>Y0 be the natural morphism. We denote by E[
and EΌ' the images by π0 of the divisors E'o = E'f) Y'o and E'o' = E" Π YΌ,
respectively.

By the definition of E' and E" and by Theorem 3.9, EΌ and E" correspond
to the Γ2-invariant polynomials /2 = φ? + φ3φδ and /3 = φs* + <jhΦ<Φ* + ΦsΦτ + ΦQ\
respectively. Let JEΌ and E" be the pull-backs of E[ and ^ ' , respectively,
by the natural surjective morphism h:B—^Y0. By Tables 1 and 2, the
restrictions of EΌ and S" to the rational curve C(l, 0, 0)cB is defined by
X,2 + XXX2 + X2

2 and XXX2{XX + X2), respectively. In particular, they do
not intersect each other on the curve. Since G acts transitively on the
set of double curves of Vo, and since B is isomorphic to the component
Bx of VQ, EΌ and E" do not intersect each other on the fourteen rational
curves in Figure 1 in Section 1. Since the complement of the union of
the curves in B is an affine open set, EΌ and E" have no common com-
ponents. EΌ and E" also have no common components, since they do not
contain Lt for i = 1, 2, 3 by Remark 3.10, and since EΌ does not have any
zero on the other exceptional curves of π0.

On the other hand, f2 and /3 have zeros of multiplicities 2 and 3, re-
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spectively, at the seven F2-rational points of P}2. Since B is the blowing-
up of P\2 at the seven F2-rational points, the intersection number EΌ EΌ'
is deg/2 deg/3 - 7 2 3 = 96 - 42 = 54. Since Y0\h(C(l, 0, 0)) is smooth
except at the cyclic quotient singularity g(0), we can consider the inter-
section number EΌ EΌ' — 54/21 = 18/7, since h is of degree 21. As in the
proof of Proposition 4.1, we have

πϊE'o -EΌ = 2((3/7)L1 + (2/7)L2 + (1/7)L3) ,

πϊE'o' - E'o
f = 3((3/7)L1 + (2/7)L2 + (1/7)L3) and

EΌ-EΌ' - EΌ EΌ' = 2 3 3/7 = 18/7.

Hence EΌ EΌ' = 0. We have EΌnE" = 0, since they have no common
components. This implies E'PiE" = 0. q.e.d.

Let /c:Γ'->Pi2 be the morphism defined by (F2\ F3

2).

PROPOSITION 4.5. The induced morphism /c^2: X-^P\ of the geometric
fibers is the elliptic fibration of X. It has just two multiple fibers 3£"ρ2

and 2E"Q2, where E'Q2 and E"Q2 are the restrictions of Ef and E" to X,
respectively.

PROOF. Let /: X-^P\ be the elliptic fibration, and let m^d, , rnnCn

be its multiple fibers. By Kodaira's canonical bundle formula [Ko2, Th.
12], we have

where x0 is a point of P\, since degifPi + Ί(<g?ϊ) = — 1. Since 2Kχ ~
(n - 2)f-\xQ) + Σ?=i (w, - 2)Ct, we have dim \2Kχ\ = n - 2. Hence n = 2
by Theorem 3.9. Since E'Q2 is a unique effective bicanonical divisor, we
have E'Q2 = (m1-2)C1 + (m2-2)C2. If mlf m 2 ^ 3 , 3^-/- 1 (x 0 ) + (m1-3)C1 +
(m2—3)C2 and hence dim|3Zχ| = l. This contradicts Theorem 3.9. Hence
we may assume m1 — 2. Since (m2 —2)C2 = E\2, we have m 2 >2. Hence
ZKx - E\ = CX + (m2 - 3)C2. Since E\2 Π E\ = 0 by Lemma 4.4, we
have m2 = 3.

Thus we have Ef-Q2 = C2, E\ = Cx and f~\xQ) - 3£"^2 - 2£"'g2. Hence
/ is equal to KQ2 up to automorphism of P\. q.e.d.

The connected curves D2{JDB, D4UA> ΰ 6 U A and fl8uflβ are unions
of (—2)-curves. Hence they are mapped to points in P\ by /CQ2. We
denote y = KQ2(D2UD3) and ^ = ^ ( A + ^ U A J for ΐ = 0, 1, 2.

PROPOSITION 4.6. £"^2, £"^2, A U A , AUA» A U A and A U A are
mapped to distinct points in P^2 by /CQ2.
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P R O O F . By definition, /CQ2(E'Q2) = (0:1) and /CQ2(E"Q2) = (1: 0). By

Remark 3.10, the modulo 2 reduction L 2 UL 3 of A U A is contained in
neither E'o nor E". Hence the specialization of y in PA, is neither (1: 0)
nor (0:1). As we saw immediately before Theorem 2.9, there exists a
Z2-morphism Spec Z2[ε] —> <%f which is fixed by τp, and the induced Q2[ε]-
valued point in Y splits to p0, plf p2 in Y(Q2) and the image of the closed
point is the triple point P of ^ . As we saw in the proof of Lemma 4.4,
the pull-back of E' and E" to C(l, 0, 0) is defined by X2 +_X,X2 + X2 and
X1X2{Xι + X2), respectively. Hence we have PeE" and PiE\ where P
is the image of P in Y. Since AUA> A U A and A U A are the ex-
ceptional curves of p0, px and p2, respectively, the specialization of z/s
are all (1:0). We get the following diagram after the base extension in
Remark 2.10:

•Spec#[ε] -*V'R^VR

i ϊ
--Yn^-Yk

->Speci2[ί] = AR ^> Ph.

Here K is the quotient field of R = Z2[ζ, α>], F i a neighborhood of Px e F Λ ,
ER the image of ^ in YR and ^4^ = PB\κB(EB). It suffices to show that
the iί-homomorphism μ*: K[t] -+K[ε] is surjective, since then the image
of μ is a separable point of degree 3 while (1: 0) is the if-rational point
t — 0. By the notation in Remark 2.10, we get the following sequence
of formal completions of local rings:

R[tJ ->i2[Γ0, ΓΛ T2\ TλT2J ->R[TQ, Tlf T2] -LR[6] ,

where TQ, ϊ\, T2 have a relation Γ0

3 + Γx

8 + T2

3 - ST^T, = 27ε3. ϊ is given
by Z(Γ0) = 3ε and ZίΓJ = l(T2) = 0. The image of t in iefΓo, 2\, T2] is
equal to F3

2/F2. Since F is a Gorenstein scheme and since F2 and F 3 are
sections of α>?* for m = 2, 3, respectively, we may regard F 2 and F 3 as
elements of R[TQ, 7\3, Γ2

3, TXT2J. By the restriction of the polynomials
f2 and /8 to C(l, 0, 0 ) c β , we see that ^3G(ro, ΓD Γ2)\(Γ0, Tlf T2)

2 and i^2

is a unit. Hence F 3 has a unit coefficient for To, and hence FS

2/F2

S has
a unit coefficient for T0

2. This implies that the image of t in R[ε] is
outside R. Hence μ* is surjective. q.e.d.

Now we can determine the types of the singular fibers:

THEOREM 4.7. The elliptic fibration /CQ2: X->P1Q2 has singular fibers
at {(1:0), (0:1), y, z0, z19 Z2}C:P1Q2 and smooth elsewhere. The singular
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fibers over z0, zu z2 and y are not multiple and are of type I3 in the
notation of [Kol, Th. 6.2]. The fibers over (1: 0) and (0:1) are 2E\
and 3£"^2, respectively, where E"Q2 and E'Q2 are smooth elliptic curves.

PROOF. Each of the fibers over z0, z19 z2 and y contains a union of
two (—2)-curves intersecting each other transversally at one point. Hence
they are not of type II nor III. Hence the Euler number of the non-
elliptic fiber is at least three and is equal to three if and only if it is of
type I3. Now we apply Kodaira's formula for the second Betti number
of an elliptic surface [Kol, Th. 12.2]. Since c2(X) = 12 by Proposition
4.1, all these fibers are of type I3 and the other fibers are elliptic curves.
The multiple fibers are only 2E"Q2 and 3£"g2 by Proposition 4.5. q.e.d.
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