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Introduction. In [Mum], Mumford constructed an algebraic surface
M of general type with K, =9 and p, = ¢ = 0. This surface is called
Mumford’s fake projective plane because it has the same Betti numbers
as the complex projective plane (see [BPV, Historical Note]). No other
example of fake projective planes in this sense seems to be known up
to now.

Since ¢,* (M) = 3¢c,(M) = 9, the universal covering space of the complex
surface M is isomorphic to the unit ball in C* by Yau’s result. However,
Mumford’s surface is constructed by means of the theory of the p-adic
unit ball by Kurihara [Ku] and Mustafin [Mus]. By the construction of
M, there exists an unramified Galois covering V— M of order eight.
More precisely, a simple group G of order 168 acts on V, and M is the
quotient of V by a 2-Sylow subgroup of G.

In this paper, we study the quotient surface Y =V/G. Since the
action has fixed points, Y has some singular points. We prove that the
minimal desingularization ¥ of Y is an elliptic surface. We also determine
the types of the singular fibers of the elliptic fibration.

Mumford’s surface M is given as a Z,-scheme. Hence it has a modulo
2 reduction M,. The normalization M, of M, is the blowing-up of P;, at
the seven F,-rational points. In Section 1, we describe explicitly how to
recover M, from IM,.

The author expresses his thanks to Professors F. Hirzebruch and I.
Nakumura for their interest and suggestion on this work. Some results
and techniques in Sections 3 and 4 are due to Nakamura in unpublished
notes.

NoOTATION. Let X be a scheme over an affine scheme Spec A. When
a ring homomorphism A — B is given, we denote by X, the fiber product
X Xspoca Spec B and by X(B) the set of B-valued points of X. If X is
of finite type and B is an algebraically closed field, then we sometimes
treat X(B) as a variety.
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1. The closed fiber of Mumford’s surface. We will recall some
notation in Mumford’s paper [Mum].

We always restrict ourselves to the case of the base ring Z,. Hence
the maximal ideal is generated by 2, and the quotient field is the 2-adic
number field @,. We denote by 7 and 0 the generic point and the closed
point of Spec Z,, respectively.

A matrix a = (a;,;);,j=0,1,. € GL(3, Q,) defines a linear automorphism of
the vector space Q.X, + Q,X, + Q,X, with indeterminates X,, X,, X, by

ale X, + ¢, X, + ¢,X,) = (X, X,y Xz)at(co, Cpy C) = g (glai,jci)Xi .

Hence the induced automorphism a” of P§, = Proj@,[X,, X,, X;] is given
in terms of the homogeneous coordinates (X,: X;: X;) by

aM Xy X: X)) = (X X;: X)a .
Thus the composite B"oa” is equal to (aB)".

The Z,-scheme 2 of Kurihara and Mustafin is defined as follows:

Let P, be the projective plane with the homogeneous coordinates
(X;: X;: X;). The closed fiber P}, has seven F,-rational points and seven
Frational lines. We first blow up Pz, at these seven F,-rational points,
and then blow up the resulting surface further along the proper transform
of the union of the seven F,rational lines. Let U be the union of the
generic fiber P, and a sufficiently small open neighborhood of the proper
transform of P}, in the blown-up scheme. For each a in GL(3, Q,) we
denote by U~ the Z,-scheme such that the generic fiber is equal to Py,
and that there exists an isomorphism U =S U* which induces a” on the
generic fiber. Then the union U,U* over all @ in GL(S, Q,) is patched
together to a regular scheme 2 with the generic fiber Pj,.

By construction, the action of GL(3, @, on P, is extended to 2%
Mumford found the following diserete subgroup I of GL(3, @,). I modulo
scalar matrices acts on the closed fiber 25 freely and induces a quotient
Z|I' as a formal scheme. 2°/I'" is algebraized to a projective regular
scheme over Z,, and its generic fiber is the fake projective plane.

I’ is contained in the group I', generated by

1 0 00 1
=10 0 -1}, z=|1 0 1+4+X)\{,
01 -1 01 A

10 -1 0 0
p=10 1 —2| and —-L=| 0 -1 of,
00 2 0 0 -1
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where A = + 0 + {* = (=1 + V' =7)/2 for { = exp(27i/T). » is embedded
in Z, so that A, = (unit)-2, while its complex conjugate X is a unit. There
exists a homomorphism z: I', > GL(2, F,) and I' is given as the inverse
image 77}(S) of an arbitrary 2-Sylow subgroup S of GL(2, F,).

By the matrices in [Mum, p. 243] which describe n, we see that the
subgroup of I', generated by {o, z, 0} is mapped onto SL(2, F;) by =.
Since — I, is a scalar matrix, the following change of notation does not
affect the construction:

MODIFICATION OF THE NOTATION. [, is replaced by its subgroup of
index 2 generated by {o, 7, ©}. The homomorphism = is replaced by one
from the new I, to PSL(2, F;,). More explicitly, =: I'; — PSL(2, F,) is
given by

2 0 10 1 4
E(U):[l 4:’: 75(7):[1 ].J and ﬁ(p)=|:0 1:{

(see [Mum, p. 243]). The group I" is also replaced by z~*(S) for a 2-Sylow
subgroup S of PSL(2, F,). In this case, the set of scalar matrices in I',
is {O2)I, = (zp)*; ke Z} (cf. [Mum, p. 241]).

From now on, we use this modified notation.

Let I', = Kerz. Clearly, I', is a normal subgroup of I",. The quotient
G = I'|/I", is isomorphic to PSL(2, F,) and hence is a simple group of
order 168. Since I', modulo scalar matrices is also a torsionfree cocompact
subgroup of PGL(3, Q,), the quotient formal scheme 2°/I', can also be
algebraized to a projective regular Z,scheme. We denote the algebra-
ization by V. Then the action of I", on the scheme 2 induces an action
of G on V. Since the scalar matrices in I', are contained in I,, the
induced action is effective. Mumford’s fake projective plane is the generic
fiber of the quotient M =V/S by the 2-Sylow subgroup S of G.

Since V, is an unramified cover of degree 8 of Mumford’s fake pro-
jective plane, the following facts are easily checked.

(1) V,is a surface of general type.

(2) XV, =T2.

(3) eV, =24.

(4) UVy)= X(Vr)) = 8.

(5) q(V,) =0 ([Mum, p. 238]).

(6) (V) =T.

In order to describe the closed fiber of M explicitly, we choose
the 2-Sylow subgroup S of G =TI,/I", to be the subgroup generated
by
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[1 1} 0 1}
and ,
1 2 6 0
where we identify G with PSL(2, F,) by the isomorphism induced by =.
S is isomorphic to the dihedral group of order 8. Indeed,

AR M R R R A R

in PSL(2, F,).

We denote by B the proper transform in 2 of the closed fiber
P;,CP;, = Proj Z[X, X, X,]. B is an irreducible component of .25 and
the projection p: B— Pf, is the blowing-up P7, at the seven F,rational
points. We denote by C(a, b, ¢) the proper transform of the line aX, +
bX, +c¢X, =0 on P, to B and let E(a, b, ¢):= p~*((a, b, ¢)) for each triple
(a, b, ¢) of 0 or 1 with not all being zero.

The natural morphism from B to the closed fiber M, = 25/I" can be
regarded as the normalization. Actually, we obtain M, by identifying each
of suitable seven pairs of C(a, b, ¢) and E(a/, bV, ¢) in B. More precisely,
we take {oo’r, Tpo7, 707, T°POTS, T' 00, TP0G?, T 0T} C T as the set of
representatives of S\ {1}. Then each element induces an isomorphism
of curves on B as follows:

(0o*t)*: E(0,0,1)=C(1, 1, 0) .
(zpar)*: E(1, 0, 0) = C(1, 0, 0) .
(zPo7)*: E(1, 1, 0) = C(0, 1, 0) .
(TPpor®): E(1, 1,1) = C(0, 0, 1) .
(z*po*c®)": E(0, 1,1) = C(1, 0, 1) .
(zpe®)": E(1, 0,1) = C(0,1,1) .
(zf00’c®)": E(0,1,0)=C(1,1,1) .

In Figure 1, we explicitly deseribe how these seven pairs are iden-
tified. The three points to which the same symbol among A, B, ---, G
is attached are identified to a triple point of M,. Here, by po’z, the two
rational curves E(0, 0, 1) and C(1, 1, 0) are identified in such a way that
symbols A, A*, B come to A*, A, B, respectively. Consequently, the
double curve obtained by this identification has a self-intersection point.
Figure 2 indicates the configuration of the double curves on M,.

We can check these results by ecalculating the corresponding action
of I', on the Bruhat-Tits building which is isomorphic to the dual graph
of the irreducible components of .25 [Mum, p. 235].
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2. Singularities of the quotient surface. Since V is projective and
G is finite, the quotient Y = V/G is also a projective Z,scheme. Although
V is regular, Y has some singularities, since the action has fixed points.
In this section, we study the singularities of Y.

Let @, be the algebraic closure of the 2-adic number field Q,. The
discrete valuation v of Q, with v(2) =1 is uniquely extended to a valuation

v:Q,—QU{} .

The non-noetherian valuation ring Z, = {a €Q,; v(a) = 0} is equal to the
integral closure of Z, in @,. For the maximal ideal m = {a € Z,; v(a) > 0},
the residue field Z,/m is equal to the algebraic closure F, of the prime
field F,.

In order to describe the geometric points of V, and Y, it is convenient
to use the Z,valued points of the Z,-scheme 2%

Let & := 2°(Z,) be the set of Z,valued points of 3’ Since Q, is
the quotient field of Z, we have an injection

@’—»X(Qz) = Pz(Qz) ’

where P*Q,) is the projective plane with the coordinates (X,: X: X,).
Hence we use this coordinate system to represent the points of & through
this injection. As we see later, Mumford’s fake projective plane is set-
theoretically the quotient of & by I'CGL(3, Q,).

Let x:Spec(Z,) — 2 be a point of &. Then by composing it with
the inclusion Spec(F,) = Spec(Z,), we get an F,-valued point of Zc.27
We denote it by 2—red(x). Let y € 22 be the support point of 2-red(x).
Then we get the associated local homomorphism ¢, . — Z, By this ob-
servation, we see that & is equal to the sum

U {&: &, »— Z,; x is a local Z,-homomorphism} .
vez,

We would like to know which points of P*Q,) are in &2. Since 27
is a normal crossing divisor in 25 the points of 2 are classified into
the following three types: (1) Smooth points of 25. (2) Points lying
only on a double curve of 25. (8) Triple points.

Recall that the dual graph which describes the intersections of the
components of 25 is known as the Bruhat-Tits building. Each irreducible
component E of 27 corresponds to a free Z,-module McQ,X,+Q.X,+Q.X,
of rank three modulo the equivalence relation M~2*M. More explicitly,
Proj S*M=P;3, for the symmetric algebra S*M is dominated by .25 and E is
the proper transform of the closed fiber. For the detail, see [Mum, p. 235].
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(1) Let B be the irreducible component of .25 which corresponds
to the module M, = Z,X, + Z,X, + Z,X,. The smooth points of .27 which
are contained in B are exactly those points of P = Proj F,[X,, X, X,]C
Proj Z,| X,, X,, X,] which are not on the seven F,rational lines on it.
These lines are given by (X,=0), (X;=0), (X,=0), (X, + X, =0),
X+ X,=0, (X,+X,=0) and (X, + X, + X, =0). Hence, a point
x = (2 2,2 2,) € PY(Q,) is in & with 2-red(z) in this smooth part if and
only if

(@) = v(&,) = V(&) = (@, + @) = V(@ + @) = V@, + @) = V(@ + 2, + ) .

(2) Let C be the double curve which corresponds to the pair
zZ. X, + Z,X, + Z,X,2D07Z,X, + Z,X, + Z,X,. It can be shown easily that
2-red(z) of a point 2 € PXQ,) is on C and that it is not a triple point if
and only if

v(xy) — 1 < v(x,) = v(x,) = v, + 2) < V() .

(8) The triple point P which corresponds to the triple Z,X, +
Z,X,2 + Z,X,)20Z,X, + Z,X, + Z,X,/2D0Z,X, + Z,X, + Z,X, is the point
X./X, = X,/ X, = 2X,/X, = 0 of Spec Z,[X,/X,, X,/X,, 2X,/X,] (see [Mum, p.
234]). Then 2-red(x) is equal to P if and only if

v(x,) — 1 < v(xy) < v(x,) < v(xy) .

PGL(8, Q,) acts transitively on the sets of the irreducible components,
the double curves and triple points of 25, respectively. Hence we have
the following description of Z.

PROPOSITION 2.1. Let © = (x,: ,: %,) be a point of P*Q,). Then x is
in 2 if and only if there ewists acGL(3, Q,) such that (Yo, ¥y ¥,) =
(%o, X, Z,) satisfies either

(1) v@o) = v(¥) = v(¥) = v(¥+¥:) = v(Yo+¥.) = 0¥+ ¥2) =¥+ ¥, + 1),

(i) v — 1 <o) = v(¥) = v(Yo + ¥,) < v(y.) or

(i) () — 1 <o(yo) < v(¥) < v(¥.).

By the above criterion, it is easy to see that any Q,-rational point of
PXQ,) is not in 2. In fact, we have the following stronger result.

PROPOSITION 2.2. Let K be an arbitrary quadratic extension of Q,.
If x, 2, %, are elements of K, then the point (x,: x,: z,) € PXQ,) is mot
contained in 2.

PrROOF. Let a be an element of GL(3,Q,) and let (v, ¥, ¥, =

(@, @, ). Clearly, ¥, ¥, ¥, are also in K. Let <7« be the integral
closure of Z, in K. Since Z, is Henselian, &« is also a discrete valuation
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ring. Let u?x be the maximal ideal of ©~7x. Since the ramification index
e and the relative degree f satisfy the relation ¢f = [K: @,] = 2, we have
two possibilities: Namely,

(1) e=1and f=2, i.e.,, v(u) =1 and &x/uc’x = F,, or

(2) e=2and f=1, i.e., v(u) =1/2 and Px/u’x = F,.

We now show that in both cases none of the three conditions in
Proposition 2.1 is satisfied. We may assume ¥, %, ¥, €% and one of
them is 1 by dividing them by some y,, if necessary. Let %, ¥, ¥, be
the images of ¥, ¥, ¥, In x/u%, respectively.

Case (1). v(¥) = v(¥) = v(y,) = 0 implies ¥, ¥, . * 0. v(¥, + %) =
vy, + ¥,) = v(y, + ¥,) = 0 implies that ¥, ¥, ¥, are distinct elements of
F,. Since the sum of the three distinct non-zero elements of F, is
zero, we have v(y, + ¥, + ¥, > 0. Hence (i) of Proposition 2.1 is im-
possible. Both (ii) and (iii) are obviously impossible, since w(y,)’s are
integers.

Case (2). (i) and (ii) are impossible, since v(y,) =v(y,) and &Fx/u’x=F,
imply v(y, + ¥,) > v(#,). (iii) is also impossible, since v(y,)’s are half in-
tegers. q.e.d.

Although Z, is neither complete nor noetherian, we have the following:

LEmMMA 2.3. Let (A, m,) be a local Z,algebra essentially of finite
type with 2em,. Then, for the 2-adic completion i: A— A[2], the in-
duced map

i*: {f: A[2] — Z,; local Z,-homomorphism}
—{f: A— Z,; local Z,-homomorphism}
18 bijective.

PROOF. Let f, g9: A[2] — Z, be two local Z,-homomorphisms. Suppose
that their restrictions to A are equal. Then they induce the same ho-
momorphism A4/2"A — Z,/2"Z, for every n > 0. By taking their projective
limits, we have a homomorphism A[2] — Z,[2]. Since the natural ho-
momorphism Z, — Z,[2] is injective, f and g are equal. Hence 7* is
injective. We now show the surjectivity. Let f: A —Z, be a local Z,-
homomorphism. Since A is essentially of finite type, the image f(A4) is

contained in a finite extension of @, and hence it is a finite Z,-algebra.
Hence it is complete in the 2-adic topology. Hence the homomorphism

fi A— f(A)=>Z, can be extended to A[2] — f(A). q.e.d.

Recall that I', is a normal subgroup of I', such that G = I')/I", is
isomorphic to PSL(2, F,). For an element a of I',, we denote by a~ the
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induced automorphism of the Z,-scheme V = 2°/I",.
PROPOSITION 2.4. There exists a natural map
p: 2 —-V(Q,)

such that the action of I', on < and V(Q,) are compatible with this map,
1.e., for an arbitrary element a€l',, the diagram

ah
g — T

ol
V@) — V(@)
commutes. Furthermore, the induced map @: 2/I',—V(Q,) is bijective.

ProoF. Note that V(Q, =V(Z,), since V is proper over Z, By
Lemma 2.3, we have natural bijections

D~ U {&:2}+— Z,; local Z,-homomorphism}

ve,
and
V@)= U {&: &}, Z,; local Z-homomorphism} ,

yezg/Ty
where 7). (resp. & +r,) is the local ring at y (resp %) of 2 (resp.
Z|I',) as a formal scheme, i.e., the 2-adic completion of the usual
algebraic local ring. Let x: 7, »— Z, be an element of &. Then, for
the image ¥ of y in the free quotient 25/, we have a natural iso-
morphism
Oy eiry™= e
We define ¢(x) to be the composite
ﬁ?,z’/ro_’ 7’:2’/['02) ﬁy}:zx_)zz ’

where «’ is the homomorphism which satisfies :*(2") = « for the embedding
1. Py »— . Then it is obvious that ¢ satisfies the assertion of the
proposition since 2°/I", is the quotient of the formal scheme 2 with
respect to a free action. q.e.d.

Now, we study the ramification of the quotient V,— (V/H), with
respect to a subgroup HCG. We need the following elementary ring-
theoretic lemmas.

LEMMA 2.5. Let B be a Z.-algebra of finite type. Assume that a

finite group G acts on B as a Z,-algebra, and that a G-invariant maximal
ideal p contains 2. Then, for the local ring A = B,, the ring A% of G-
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invariant elements of A 1is essentially of finite type over Z,, and A°[2]
s equal to A[2]°.

PRrROOF. Since B is of finite type and G is a finite group, the subring
B¢ is also of finite type over Z, and B is finite over B®. Let »°= B°Np.
Then since p is G-invariant, B\ p is a G-invariant multiplicative set with
(B\\p)¢ = B\p°®. Since G is finite, A is equal to (B°\p*)"'B and A° =
(B%,s. Hence A° is essentially of finite type and A is finite over A°.
There is an exact sequence

0— A% — A 25 A%191/4(4)

of finite A°-modules, where 4(A) is the diagonal and d(a) = (9a),cq. Since
A°[2] is flat over A% and since A Q. A°[2] is equal to A[2], we get
A°[2] = A[2]¢ by tensoring this exact sequence with A%[2]. q.e.d.

LEMMA 2.6. Let A be a local Z,-algebra essentially of finite type with
2em,. Letpbe a prime ideal of A with 2¢p and A/p is finite over Z,.
Then, for A’ = A[2], we have A, [p] = A,[p].

PRrROOF. Since A/p is finite over Z, the finite A/p-module p*/p*** is
also a finite Z,-module for every n = 0. Hence A/p" is a finite Z,-algebra,
and is complete in the 2-adic topology. Namely, we have A/p"=(A/py")[2] =
A'[prA’.  Since (A/p"),m=A,/p"A, and (A'/Y"A"),s/ymar=A,0[P"A, 4, We have
A,/prA, = A, [y A,,. The lemma is just the projective limit with respect
to » of this equality. q.e.d.

Let H be a subgroup of G =1I/I,, and let I'; be the pull-back
7 (H)cTI',. Letxbe a point in & and let T = ¢(x) ¢ V(Q,). We denote
by I",, I', and I, the images of I', I', and ", in PGL(3, Q,) as in Mumford
[Mum, p. 240]. Since I',/I’, =~ H and since I, acts freely on &, the iso-
tropy groups

T(x, I'y) = {a"ely; a’(x) =x} and
Tx, H) = {a” € H; o~ (%) = 7}
are isomorphiec.
PROPOSITION 2.7. The singularity of the quotient of P, with respect

to T(x, I'y) at the image of x 1s formally isomorphic to that of the
quotient of V with respect to T(Z, H) at the image of T.

PROOF. Set T= T(x,y) and T = T(® H). Let y be the support
point of 2-red(x) and let 7 € V, be the specialization of the support point
of Z. Then by Lemma 2.5, we have
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(@) [2] = () ) = (P3) = (3,)7[2] .

Let p and p” be the kernel of the composite homomorphisms

P12V = Oy e oZ, and (55, — iy — 2,

respectively. Then (2, »)7), and ((¢%,,)"), are the local rings of the
support points of x and Z, respectively. By Lemma 2.6 and the above

equality, we have an isomorphism (7, »)7),[¥] = (Z..)))y [¥']. q.e.d.

Now, we study the case H = G and hence 'y, = I',, We denote by
Y the Z,scheme V/G. Since T(x, I') =~ T(% G)CG, each element of
T(x, I') is of finite order. Mumford [Mum, p. 241] has already shown
that every element of I', of finite order is conjugate to one of ¢z’ or
(oz)* for some 0 <7 =<2 and 0 <5 <6. Since {0, r} generates a non-
commutative group of order 21, they are conjugate to one of

100,717 -, 7 (c0), (z0) .

Since the fixed points of conjugate elements come to the same points
in Y, it is sufficient to determine the fixed points of ¢, z and zp in 23
or <7 in order to find out all the ramification points of f: V—Y.

Before determining the ramification points of f: V—Y, we have to
reformulate some of Mumford’s results in a different way.

REMARK 2.8. Mumford has shown the following in his paper.

(i) For the component B of 25 which corresponds to the module
M, = Z,X, + Z,X, + Z,X,, the stabilizer {a" €l',; a"(B) = B} is equal to
I, which is the group of order 21 generated by ¢ and 7 (cf. [Mum, p.
241)).

(ii) I, acts on the F,-rational points on B simply transitively (cf.
[Mum, p. 242]).

(iii) In particular, if a" eI, fixes B and one F,rational point on it,
then a" = 1.

We first determine the fixed points of ¢, 7 and o in the closed fiber
Z,. We can do so by looking at the corresponding action on the Bruhat-
Tits building as follows:

Let x, be a fixed point of ¢ on 2;. Then there exists an irreducible
component B’ of 25 which is stable under ¢ and which contains x,. Ac-
tually if x, is the triple point corresponding to the triple of distinet Z,-
submodules M, > M;D M, of Q,X, + Q,X, + Q,X, with M, 2 2M,, then since
dets = 1 we have ¢(M;) = M; for every i. If z, is not triple and is on
a double curve of 25, then ¢ fixes the two components of 27 which are
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adjacent along the double curve since ¢ is of order three. If x, is not
on any double curve, then ¢ stabilizes the unique component which con-
tains .

Let v be an element of I, with vA(B) = B’. Then (Yov™!)" stabilizes
B. Since the subgroups of order three of I, are mutually conjugate,
Yov~' is conjugate to ¢ or ¢°. Hence the fixed points of ¢ in B’ and B
give the same ramification points on Y,. It is easy to see that ¢ has
just two fixed points on B. One of them is on C(1, 0, 0) and the other
is on E(1, 0, 0), and they are identified by (zpoz)" in M,. The point on
C(, 0, 0) is mapped to the point defined by X2+ X, X, + X;>=0 on the line
X, =0 in P§, by the natural isomorphism. We denote by w the corre-
sponding ramification point of Y. Clearly, w is of degree two and splits
into two points in Y(F,).

Since 7 is of order seven, any fixed point of 7 in 2 is on a stabilized
component. Let M, be the module associated to a component of 2
stabilized by z. We may assume M,DM, and 2M,2M,. Since the group
generated by t acts transitively on (M,/2M,)\ {0}, we have M, =M, Hence
the fixed points of z are in B. Later we explicitly determine the fixed
points of r together with those in =.

Since detzp = A\}2, zpo stabilizes no component of 2. Hence it
stabilizes no double curve of .25 since it is of order three. It is easy
to see that Pe B is the unique triple point fixed by zp.

The fixed points of o, = and o in P*Q,) are calculated easily as
follows.

1 0
(1) c={0 0 —1|, det¢t,—o)=¢t"—1,
01 —1
eigenvalues 1 ) o’

eigenvectors (3, n, ) (0,1, w) (0,1, w?,
where @ = (—1 + 1/ =3)/2.

0 0 1
(2) =1 0 1+n]|,
01 »
dett, — )= — A — O+ Dt —1=( - — O —.
eigenvalues ¢ ¢ ¢

eigenvectors (1, (&) (1,85¢) 1,8,0),
where { = exp(2xi/T) .
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0 0 »¥Y2
(8) o=|1 0 0 |, dett, — 7o) =1t —\}2,
01 0
eigenvalues € we W’

eigenvectors (1, ¢ ¢") (1, wg, @) (1, W%, we?),

where ¢ = (\}/2)"2.

In case (1), since every component of the eigenvectors are in @,(1 —7)
or Q,(1'—3), the fixed points of ¢ in P*Q,) are outside = by Proposition
2.2.

In case (2), set §=(1, {, &*). Note that ¢"(@)= (1, &, &*) and (6")¥q) =
1, ¢, 0. Let &, be the image of { in Z,({)/(2) = F;. Then since {,€ F,\ F,,
we see that 1 + ¢, 1 +¢7 & + &2 and 1 + &, + {? are not zero. This
implies that v(1) = v({) = v({*) = v(1 +{) = v(1 + ) =v({+ ) =v(1+{+{*)=0.
Hence ¢ is a point of & by Proposition 2.1. We denote by ¢ the image
fop(d) € Y(Q).

Since 2-red(§) is a smooth point of .27 and is on the component B,
the isotropy group T(q, I,) is a subgroup of I", by Remark 2.8. Since ¢
does not fix 7€ 2, we have T(q, I',) = (). As we see later in Remark
2.10, the linear map 7 is given locally at ¢ by (¥, ¥, — (v, C’%,). Hence
the singularity of the quotient at this point is the cyclic quotient singu-
larity of type (7, 3). By Proposition 2.7, the singularity of Y(Q,) at q is
also a cyclic quotient singularity of type (7, 3).

These r-invariant points of P*Q,) are Q,({)-valued and they are iden-
tified to ¢ in Y(Q,) by o¢. Since the action of ¢ on these three points is
compatible with the automorphism of Q,({) defined by {+ {* we see that
q is a Q,-valued point. Since Y is proper over Z,, there exists a Z,valued
point q: Spec Z,—Y such that g(n) =q. We see easily that g(0)e Y, is
also a cyclic quotient singularity of type (7,3). We can see similarly
that the fixed points of z on Bare only (1, {, {2, (1, {3 &Y and (4, &, o).
Since B is the only component of 25 stabilized by z, we see that gC Y
is the unique ramification locus given by <.

Finally in case (8), set B,=(1, ¢ &), 7, =(, we, w’c*) and P,=
1, w%, we?). Since v(\}/2) = 1, we have v(¢) = 1/3, while v»(w) = 0. Hence
these points are in & by Proposition 2.1. In this case, 2-red(%,)’s are
the same triple point Pe.25. At this point P, the three components of
&, which correspond to Z, X, + Z,X,/2 + Z,X,/2, Z,X, + Z,X, + Z,X,/2 and
Z, X, + Z,X, + Z,X, meet together. In particular, the component B con-
tains P. Suppose a”el’, fixes P. Then since 7o cyclically permutes
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the three components, (70)~'a” stabilize B for ¢+ = 0,1 or 2. By (iii) of
Remark 2.8, we get a" = (zp)’. Since the isotropy group of p,’s are
contained in that of P, we have T(p, I',) = {tp).

No acl', maps P, to another P; since a’(P,) = P; implies a € {zp).
Hence, the points 7, 7, D, are mapped to distinct points in Y(Q,). Let
them be p,, p, and p,, respectively. As in case (2), we see that Y(Q,) has
cyelic quotient singularities of type (38, 2) at these points.

The points P, P, D, are solutions of the system of equations (X,/X,) =
(X,/X) = (X,/X;). Since the local ring of 2 at P is Z[X,/X,, X,/X,,
&X,/X;]. for the maximal ideal m = (X,/X,, X,/X,, ¢£X,/X,), the equations
give a Z,[¢]-valued point » of Y such that 7(0) = P and that the image
of p(») in Y is a Q,(¢)-valued point which splits into the three points
Dy Dy D, in Y(Q,). Since P is the unique fixed point of 7o in 235, we see
that p is the unique ramification locus of f:V —Y caused by zp.

Thus we conclude:

THEOREM 2.9. The morphism f:V —Y is ramified along q, p and at
the point we Y, of degree two. The restriction to the geometric fibers
f6,:V(Q) = Y(Q,) is ramified at the point p, p, p, and q. p, p, and p,
(resp. q) are cyclic quotient singularities of type (8, 2) (resp. of type
(7, 3))-

REMARK 2.10. Let R be the étale finite ring extension Z,[¢, w] of
Z,. We can describe the minimal resolution of the singularities along @
and p after the étale base extension Y, — SpecR of Y —SpecZ, as
follows:

By the coordinate change

( 1 ¢ &
(Y, Y,Y):=WX, X, X,) 1 ¢ ¢ ,
1 & ¢
of P;, 7 is diagonalized as
¢ 0 0
0 ¢ 0
0o o ¢

and the eigenvectors are (1, 0, 0), (0,1, 0) and (0, 0, 1). Hence the local
ring of Y, at g(0) is formally isomorphic to the localization of the ring
of invariants R[Y,/Y,,Y,/Y,]° in the polynomial ring R[Y,/Y, Y,/Y,] with
respect to the action of z defined by Y,/Y,—{Y,/Y, and Y,/Y,—(Y,/Y..
One can resolve it minimally by the standard method. For any geometric
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fiber, the exceptional set is a chain of nonsingular rational curves with
the self-intersection numbers —3, —2, —2.

The local ring of Y, at »(0) is formally isomorphic to the localization
of the ring of invariants R[X,/X,, X,/X,, éX/X,|*CR[X,/X, X,/X,, ¢X,/X,]
with respect to the automorphism zp given by X,/X,— X,/X, X,/X,—
X/ X, &X/X,— X,/X,. Note that ¢ = \*/2 is a generator of the maximal
ideal of the discrete valuation ring R. By the coordinate change

r--1 1|
(T, T, T, = (X, X,, X,/ X,, € O/Xz)[l 0 ‘,
1 w a)2J
we have
1 0 0
t0=1|0 w O
0 0

Then the ring of invariants is R[T, T2 T2 T.T,] with the relation
T + T2+ T — 8T, T\T, = 27¢*. We see easily that this is a complete
intersection of a regular ring. In particular, this is a Gorenstein ring.
This singularity is resolved by the blowing up along the prime ideal
(T, Tg T,T,). For the geometric fiber Y(Q,), this is the blowing-up at
{ps, P, P.}. Since these are cyclic quotient singularities of type (8, 2), this
blowing-up gives the minimal resolution of these singular points and each
exceptional set is the union of two nonsingular rational curves with the
self-intersection numbers —2 intersecting each other at one point.

Thus we minimally resolved the singularities of Y, along ¢ and 7.
Since this resolution is canonical, it descends to a scheme Y’ over Z,.
Clearly, Y'(Q,) is the minimal resolution of Y(Q,).

3. The plurigenera of the quotient surface. In this section, we
study pluri-canonical line bundles on V and its quotients.

The component B of .25 is a smooth rational surface, and the fourteen
rational curves C(a, b, ¢)’s and E(a, b, ¢)’s form a divisor A= U, ;(C(a, b, ¢)U
E(a, b, ¢)) with only normal crossings in B. For the unramified covering
&, —V, we denote by B, C(a, b, ¢),, E(a, b, ¢),, P, and A, the image of
B, C(a, b, ¢), E(a, b, ¢), P and A in V,, respectively. Note that the fixed
point P€.2; of zp, is the intersection point of C(0, 0, 1) and E(J, 0, 0).
One can check that B, has no self-intersection. Hence B, is isomorphic
to B.

From now on, we mainly treat V and its quotient with respect to a
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subgroup of G. Hence, for simplicity, we denote also by o, z, 0 their
images in G. For an element ac€ G, we denote by a~ the associated
automorphism of V as in Section 2.
Since M, =V,/S consists of only one irreducible component, we have
V,=U B, where B,=a (B).

aesS

Here B,’s cross each other normally and the normalization V, is equal to
the disjoint union [.cs B.. Let @:V,—V, be the natural morphism.
Since the induced action of G on the set of double curves is transi-
tive, and since the stabilizer of the double curve D, = C(1, 0, 0), is {1, g, 0%},
we see that the union D of the double curves is
D= U Dp ’

BeG/a>

where G/{o) is the set of left cosets {{o)g; g € G} and D,:= B~ (D).
Similarly, the stabilizer of P, is {1, zp, (z0)*} and

{P, = p(Py); reG/{ro)}

is the set of the triple points of V,. Note that the set of F,rational
points of V, is exactly equal to this set.

For the union D of the double curves of V, let o: D—V, be the
natural morphism from the normalization D = Ic¢oy Ds of D to V.

Since the double curves arise from the identification of (—1)-curves
and (—2)-curves [Mum, p. 236], there exist morphisms ¢, 7: D—V, such
that e(D;)*= —1 and (D, = —2 for every component D, of D and
@og = q@oy =§. The union ¢D)U(D) is equal to [[,c5 A, Where A4, =
a (A,)CB,.

For any line bundle L on V,, the following diagram is exact:

HY(V, L)% H\(V, 9*L) = H'D, 6*L) .
T‘

For an equidimensional Gorenstein scheme Z, we denote by w, its
canonical invertible sheaf. As is well known for varieties with normal
crossing singularities, we have

P*wy, = oy (e(D)Ur(D)) = D w5,(A.) -
Hence we get the exact diagram
(1) H(V, of) — EBS H’(B,, ®87(mA,)) :i HD, 5*w¥r)
ae T‘

for every integer m.
On the other hand, @..s P« (—A.) is equal to the ideal I,Cc,
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defining D. Hence by the projection formula, we have
o Q@ I, = §S¢*w§’2‘((m —1DA,) .
Hence we get an exact sequence of <7, -modules
(2) 0= @ Py ((m — DA) = 0F = 0 Q@ 75— 0.

Now we analyze the sections of w¥"(mA) and @w§™((m — 1)A) more
precisely.

For the projective plane Pj, with the homogeneous coordinate system
(X,: X2 X,), we set y = X /X, and 2z = X,/X,. Then the rational 2-form
w, = (dy Adz)/yz vanishes nowhere and has a pole of order one along the
divisor (X, X,X, = 0). Let p*w, be the pull-back of w, with respect to
the natural morphism p: B— P;,. Then, the divisor (p*w,) is equal to

E1,1,1) - CQ, 0, 0) — C(O, 1, 0) — C(0, 0, 1)
— EQ, 0, 0) — E(0, 1, 0) — E(0, 0, 1) .

Hence p*w, is a section of wz(A) with the zero divisor

F,=C{1,1,0) + Ca,0,1) + CO,1,1) + CQ, 1, 1)
+ EQ1,1,0)+ EQ1,0,1) + EO,1,1) + 2EQ, 1, 1) .

Let F be a divisor on B which is linearly equivalent to F,. Then
the images p(F,) and p(F') in P}, are also linearly equivalent. Since
p(Fo) = (u, = 0) for wu, = (X, + X)X, + X)X, + Xp)(Xy + X, + X)), we
see that p(F') is equal to (f = 0) for a homogeneous quartic polynomial
feFlX, X, X,].

Since p*(u,=0) — Fy=>,,. Ela, b, ¢) should be equal to p*(f =0)— F,
the divisor (f = 0)CPf, contains all the seven F,-rational points of Pj,.
Conversely, if f is a quartic homogeneous polynomial with f(a, b, ¢) = 0
for all triple (a, b, ¢) of 0 or 1, then p*(f =0) — >, ;. Ela, b, ¢) is effective
and linearly equivalent to F,. Hence (f/u,)p*w, is a section of wz(4).

Thus the space of section of wz(A) is described as

(3) Hi(wy(4)) = {L(2L A 22},
Uo \ Y z
where f runs over the homogeneous polynomials in F,[X,, X,, X;] of degree
4 such that f(a, b,¢) =0 if a, b, ¢ =0 or 1.
Similarly for general m € Z, we get the following:

(4) HY(w3™(mA)) = {_J;_(iyﬁ A %>®m} |

0
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where f runs over the homogeneous polynomials in F,[X,, X,, X,] of degree
4m which has zero of multiplicity at least m at each of the seven F;,-
rational points of P%,.

Let @ = (f/um)(dy/y Ndz/2)®™ be an element of H'w¥"(mA)). Then
w is in HY(w%™((m — 1)A)) if and only if f has the factor v = X, X, X(X, +
X)X, + X)X, + X)X, + X, + X,) and f has zero of multiplicity at least
m + 1 at every F,-rational point of P;,. Since u has zeros of multiplicity
three at these points, we see that
(5) HY(03"((m — DA) = {2( 2 A d2))

ur\ y z
where g runs over the homogeneous polynomials in F,[X,, X,, X,] of degree
4m — 7 which has zeros of multiplicity at least m — 2 at the seven F,-
rational points of Pj,.

Let m be an integer greater than one. Since ¢*(V,) =72 and
X(&y,) = 8, we have P,( Vv, = X°(a)§;“) = 386m(m — 1) + 8 by the plurigenus
formula for surfaces of general type. Hence H'(V, w®™) is a free Z,-
module of rank 36m(m — 1) + 8. By Grothendieck’s base change theorem,
we have a natural injection

int H(V, @%™) z® F,= HY(V,, of"

More generally, let H be a subgroup of G acting freely on V and let
V'=V/H. Then we have an injection

in: H(V', 0FF) @ F, = H(V, oFF) .
2

Note that the left hand side is of dimension (36m(m — 1) + 8)/|H|, since
V, is also of general type. ,

PROPOSITION 3.1. The above homomorphisms ¢, and t. are 1Somor-
phisms for m = 2 and 3.

PrOOF. We give the proof only for %,, since the proof for general
i, is similar. Suppose m = 2. By (5), we have

®2
HO(wgz(A)) — { (a X, + bu)(12 + e X)u <_(.i_y?./_ A %) ;a, b, e €F2} .

This is obviously three-dimensional. Hence @,.s H(w%:(4,)) is of
dimension 8x3 = 24. On the other hand, V, has fifty-six F,-rational
points {P,},cq/c0»» Hence there exists a natural homomorphism
(6) I HY(V,, o)) > D PP, .

reG/rp)

Here the right hand side is an F,-vector space of dimension 56. Hence
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it suffices to show that the kernel Ker j, is contained in @,.s H (0§:(4.)),
because then the dimension of H(V, w$’) is at most 24 + 56 = 80 which
is the rank of H(V, w$).

Let @ be an element of Kerj,. We have to show that w[,, =0 on
each double curve D;,. Set M; = 6*wy,|p,. Since 0*Wyyln, = V*@5,(Ad)l,
for some a€S, and since ¥(D,) is a nonsingular rational curve with
Y(Dp)? = —2, we have

deg Mp = deg‘ wBalT(Dﬂ) + ’Y(Dp)'Aa =0+1=1.

Since D; ~ P*(F,) has three F,rational points and w is zero there,
w|p, € H (M$* should be zero.

We now consider the case m = 3. By (5), H(w®(2A4)) is isomorphic
to the module of homogeneous quintic polynomials which have zeros at
all the seven F,rational points of P;,. It is easy to see that this is of
dimesion 21—7=14. Hence @, .s H(0$:(24,)) is of dimension 8 x 14 =112.
Let L be the kernel of the homomorphism

(7) Joe H(V,, 0f) > @ of(P,) =F&*.
07 peGleoy °

Clearly, L is of codimension at most 56 in H(V, w¥’). Let D; be a
double curve of V,, and let 0, 1, - be its F,-rational points. We consider
the restriction map L — H°(M$®). Since deg M®* =3 and since each
element we L has zeros at {0, 1, o}, the image of this map is in
H(M$(—0 — 1 — o)) = F,. Hence the kernel of the natural homo-
morphism

(8) L— @ HAMP(—0—1— )= FP"

BeG/a)

is of codimension at most 56. Since the kernel is contained in
@Dues H(0F(24,)), we see that the dimension of H(V,, wf;) is at most
112 4 56 + 56 = 224 which is the rank of HYV, w%). Hence i, is an
isomorphism. q.e.d.

REMARK 38.2. This proof implies that the homomorphisms (6), (7) and
(8) are surjective. This is also true for the homomophism %,.

PROPOSITION 8.3. Let H be a subgroup of G, and let @ be an element
of H(V,, o) for m =2 or 3. If w is H-invariant, then there exists
an element &€ H(V, o¥™) which is H-invariant and @, = @.

PrROOF. Let S, be a 2-Sylow subgroup of H. Then since S, is con-
tained in a 2-Sylow subgroup of G, S, acts on V freely by a result of
Mumford. Let V' be the quotient V/S,. Since w is S,iinvariant, it
descends to an element of H'(Vj, w?g"). By Proposition 3.1, there exists
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@' e H(V', wy:) with @'y, = . We regard @ as an Si-invariant element
of H(V, w%*). Let H = S, + -+ + S, be the left coset decomposition
of H with respect to S,. Let @ = >, a}(@’). Then & is H-invariant,
and @|,, = nw = w, since n = [H: §;] is an odd number. q.e.d.

THEOREM 3.4. Let H be a subgroup of G and let m be 2 or 8. Then
the homomorphism

H(V, o¥™)* Q@ F,— H(V,, 0¥
Zy
induced by i, is an isomorphism.

PrOOF. Since the quotient H(V, w$™)/H(V, w$™)" is contained in
the @,-module H*(V, o®)/H(V, w®)", it is a free Z,module. Hence
HY(V, ¥™)% is a direct summand of H(V, ®®™). In particular, the homo-
morphism is injective. Since m = 2 or 3, it is surjective by Proposition
3.3. q.e.d.

The following shows that the bigenus P, of the desingularization of
the quotient surface V,/H is calculated only in terms of the closed fiber
V..

PROPOSITION 3.5. Let H be a subgl'oup of G, and let Z be the mini-
mal resolution of Z=V,/H. Then P,(Z) = dim H(V, o%)".

Vo

ProOF. By Theorem 3.4, we have dim H(V,, »®)” = dim H(V,, oF})".
By Theorem 2.9, Z may only have at most cyclic quotient singularities
of types (8, 2) or (7, 3), and the morphism V, — Z is ramified only at these
singular points. Hence an element se H(V,, »%)" can be regarded as
a section of w®, where Z’ = Z\ {singular points}. Note that Z contains
Z' as an open subset. It suffices to show that the rational section s of
3% has no pole along the exceptional divisors. This is the case over the
cyclic quotient singularities of type (8, 2), since they are rational double
points. Let y€ Z be a cyclic quotient singularity of type (7, 3) and let
D, D, D, be the exceptional curves for the resolution of y with D} =
-3, D*=D!= -2, D;+D,=D,-D, =1 and D,-D, = 0.

-3 -2 -2
o —O- —O
D]_ Dz D.!

We can write the divisor (s) on Z as aD, + bD, + ¢D, + F, where the
support of F' contains none of D,’s. Let d, be the intersection number
D,-F for ¢ =1, 2,3. Since (s) is linearly equivalent to 2K3, we have
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2=()D,=—8a+b+4d,,
0=()D,=a—2b+c+4d,,
0=(©)D,=b—2¢c+d,.

By these equalities, we calculate easily that
Ta = 3(d, — 2) + 2d, + d, ,
T = 2(d, — 2) + 6d, + 3d, ,
T¢ = (d, — 2) + 3d, + 5d; .

Since a, b, ¢ are integers and d, d, d, are nonnegative, we have
a,b, ¢ =0. Hence s has no pole on Z. q.e.d.

Recall that I', = (g, v) stabilizes the component B of .25. We denote
by G, the injective image of I', in G. G, is a group of order 21. Since
G,NS = {1}, G is equal to the disjoint union U,.sG,a. If an element g
is in G,a, then B induces an isomorphism (8| ): B, — B,.

The action of G on V, induces an action on the diagram (1). An
element (@,)ees € Pues H'(B,, 0Er(mA,)) is G-invariant if and only if
(Blz)*w. = w, for every fe€G, where a is the element of S with g€ G,a.
This is also equivalent to the condition that w, is G,-invariant and
, = (alz)*w, for every aeS.

Suppose (w,) is G-invariant. By the diagram (1), (w,) is in
H(V, o¥™° if and only if ¢*((w.)) = Y*((w.)). Since the action of G on
the set of double curves of V, is transitive, this equality holds if they
coincide on a component of D. Recall that, for a = rpozr, C(1, 0, 0)CB
and a*(E(1, 0, 0))Ca”(B) form a double curve of 225. The isomorphism &
of the identification E(1, 0, 0) — C(1, 0, 0) is given by (X: X,) — (X,: X)).

We set

L, = {we H(B, o§™(mA))"; ’f*((l)lcu,o,m) = w|E(1,0,0)} .

By the expression (4) for H(B, w€™(mA)), we see easily that L, is natu-
rally isomorphic to L, CF,[X, X, X;] consisting of I',-invariant homo-
geneous polynomials f of degree 4m such that f(1, X,, X;) has no terms
of degree smaller than m and f(0, X,, X))/ XXM X, + X)) = [fQ, X, X)]n
where [g],, denotes the homogeneous part of degree m of a polynomial
g. Note that f has zero of multiplicity at least m at (1, 0, 0) if and
only if f(1, X, X;) has no terms of degree smaller than m. By the above
observation, we have the following:

PropPOSITION 3.6. H'V, o¥™® is isomorphic to L, by the corre-
spondence (@Wao)ees— w; where w: s the pull-back of w, by the matural
1somorphism B B,. Hence it is also isomorphic to Ln,.
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For any a € GL(8, F,), we have a*(f/ur(dy/y Adz/z)®™) = (a* )/ur(dy/y
Adz/z)®™ for flum(dy/yAdz/z)®" e H(B, o¥"(mA)), where f is a homo-
geneous polynomial of degree 4m. Hence, in order to determine the I',-
invariant elements of H(w§™(mA)), we have to know those of F,[X,, X, X,].

Recall that »=(—1+1"—7)/2 is embedded in Z, so that » =0 (mod 2).
Hence, for { = exp(2ri/7), Q,(§) is a cubic extension of @, with the re-
lation & —2\— (A +M{—1=0. We denote by &, the modulo 2 reduction
of {, i.e., {, is a root of the equation X* + X + 1 =0 in F,[X].

The following method to find I',-invariant polynomials in F,[ X, X,, X,]
is due to Nakamura.

We set

Yo = Xo =+ C02X1 + Co-Xz ’
Y1 = Xo + C04X1 + C02X2 ’
Yz = Xo + &X, + C04X2 .
Note that this is the modulo 2 reduction of the coordinate change in
Remark 2.10, since
1 1 1 1 ¢ ¢
C02 Co4 Co =11 C02 Co4
& & & 1 40 &
Then we have
7(Y,) = CoYo ’ 'Z'( Y1) = C02Y1 , T( Yz) = C04Y2 ’
a(Y,) = Y,, oY) =Y, and o(Y,) =7,.
Thus, if a polynomial f in F,[Y,,Y,Y,] is r-invariant, then it is a sum
of r-invariant monomials in Y,, Y, and Y,.
A monomial Y'Y,#Y,* is r-invariant if and only if ¢ + 25 + 4k =0
(mod 7). If it is z-invariant, then
F 4,k — Yo‘ Ylj sz + Yok Ylt Yzj + Yoj Ylk th
is I'invariant. Conversely, every I',-invariant polynomial in F|[Y,,Y,, Y]
is a linear combination of F;,’s.

PROPOSITION 8.7. For any 1, j, k with ¢ + 25 + 4k =0 (mod 7), F,;,

18 in F[X, X, X;]. Conversely, every I -invariant polynomial in
F[X, X, X,] is a sum of F,;,’s.

Proor. Clearly, F,;,c F,({)[X, X, X;]. Let u be the automorphism
of F,({)[X, X, X,] defined by u(X;) = X, for ¢ =0,1,2 and u(,) =
Then, a polynomial f in F,({)[X, X, X,] is in F,[X, X, X,] if and only
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if w(f) =f. Since w(Y,) =Y,, w(Y,)=Y,, w(Y,) =Y, we have w(F,;,) =

Suppose FeF[X, X, X,] is [yinvariant. Since F,[X, X, X,]C
F)Y,Y,Y,], F is written uniquely as a linear combination of F;,’s
with coeflicients in F,({,)\{0}. Since u(F,;,) = F,;, the coefficients are
in F,\ {0} = {1}. q.e.d.

We denote by Inv, the F,-vector space of I'-invariant homogeneous
polynomials of degree » in F,[X, X, X,]. By the above proposition, we
can easily find bases for Inv, for small n’s as follows:

Inv,=(Q1).

Inv, = Inv, = {0} .

Inv, = (¢5), ¢ =Y,Y,Y,.

Inv,=(¢), ¢, =Y, Y?+Y, Y} +Y,Y’.
Inv, = (¢), ¢ =YY +Y'Y?:+Y}?Y7>.
Inv, = (¢, @), s =Y Y, + Y'Y, + Y,°Y, .
Inv, = (¢spy, 00), & =Y, + Y, + Y.

Inv, = (/% dsps) -

We can also show that Inv,, is generated by {Fy .0 Fie0 Fsem Frs
F,,.}. Hence

Inv,, = (5, 35°de, Ds0sPsy PsPrs #") »

TABLE 1
f J0, X,, X1) fQ, X1, X,) mod(X;, X,)*
s X+ XX+ X 14+ X2+ X Xo+ X2 4 X0+ X2 X+ X
¢4 )(14"|'X.12)(22‘*'X24 1+X12+X1X2+X22+X12X2+X1X22
¢5 X15+X1X24+X25 1+X12X2+X1X22
¢6 X16+X14X22+X26 1+X12+X1X2+X22
b7 X+ XA X3+ X XS+ X X8+ X7 1+ X34+ X2 X+ X2
TABLE 2
f f(o: X2y Xl) f(ly X[, Xz) mod(Xl, Xz)"
Pe? X124 X8 X4+ X1 1
57 X2+ X0 X 4 X8 X+ X0 X8+ X XA+ X X+ X |14+ X3+ X X2+ X8
G3buPs X2+ X2 X+ X8 X+ X0 X + Xt X+ X3 X+ X2 |14+ X8+ X2 X+ X°
gt X, X X+ Xt 1
Pohs® X124 X 10X 4 X8 X 4 XA XS+ X X8+ X0 2 X0+ X2 | 14+ X2+ X X + X?
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since Fm,z,o = ¢62’ Fs,s,o = ¢spr + ¢62 + ¢32¢6) F5,6,1 = Pspss + ¢34 + ¢32¢6’ F7,a,2 =
¢32¢6 and F4,4,4 = ¢34-

In order to determine L., for m = 2, 3, we provide the Tables 1 and
2 of f(0, X,, X,) and f({, X,, X,) for f = ¢, and each element of the basis
for Inv,. In the tables, we omit the part of degree greater than 3 of
f@, X, X,).

ProrosiTION 3.8. We have L;=(¢42+¢3¢5) and L;:(¢5¢7+¢34; ¢a¢4¢5+¢62)~
In particular, dim H(V, o%)° =1 and dim H(V, o)’ = 2.

PrROOF. The second assertion follows from the first by Proposition
3.6. In Inv,\{0}, only ¢+ 4,6, has zero of multiplicity 2 at (1, 0, 0).
For f = g2 + ¢:¢5, we calculate easily by Table 1 that [f(1, X,, X)), =
[0, X, X))/ X2 XXX, + X,)*= X+ XX, + X;>. Hence L;is generated by
¢+ Gaps.

From Table 2, the F,-vector space {f € Inv,,; f has zero of multiplicity
8 at (1,0, 0)} is of dimension 3 and is generated by {¢: + ¢, dsb: +

&5, dspudhs + 6,'}. Hence it is easy to see that L; = (gsp; + &5, ¢s0us + o).
Actually, we have

O, X,, X))/ XXX, + Xy =[fQ1, X, Xpl: = X + X, X" + X?
for f = ¢s6, + &', and
O, X,, X))/ XX (X, + X, =[fQ1, X, Xp): = X + XX, + X}
for f = gupuds + ¢5". q.e.d.
We now prove the following:

THEOREM 3.9. For the minimal resolution Y, of Y, =V,/G, we have
P(Y,)) = P(Y,)=1. We can choose as generators of H'(Y,, w‘YX’Z) and
HY(Y,, a)@ﬂ?), the elements which corresponds to the I',-invariant polynomilals
b+ Gsps AN b* + Gspuds + bsb; + ¢ bY the modulo 2 reduction, respectively.

Proor. We have P,(Y;) =1 by Propositions 3.5, 3.6 and 3.8. By
Proposition 3.8, H(Y,, co?g) is generated by the lifting of the element of
H(V,, ®%%)° which corresponds to ¢ + g:ps.

By Theorem 2.9 and Remark 2.10, Y has ecyclic quotient singularity
of type (7, 3) along ¢, and it is minimally resolved simultaneously in Y.

Let s be a section of %), where Y is the smooth part Y\{p, q, w}
of Y. For the resolution of Y, at ¢, we define the exceptional divisors
D, D, D, in Y, and integers a, b, ¢ and d,, d,, d, = 0 similarly as in the
proof of Proposition 3.5. Then we have

Ta = 3(d, — 3) + 2d, + d, ,
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7 = 2(d, — 3) + 6d, + 3d,,
Tc = (d, — 3) + 3d, + 5d, .

Hence b, ¢ =0 and ¢ = —1. In other words, s is regular at the divisors
D,, D, and may have a pole of order at most one along D,.

Let L, be the intersection of the closure of D, with Y; for1=1, 2, 3.
Then L = L,U L,U L, is the exceptional curve of g(0)e Y,. Let UCY, be
a smooth neighborhood of L and let @, be a rational section of @w%® which
is regular outside L. Then, as in the case of the generic fiber, w, may
have a pole of order at most one along L, When w, is represented by an
element of H°(B, w%(8A))™, its regularity at L, is examined as follows:

Let f(Y,,Y,,Y,) be the corresponding I',-invariant homogeneous poly-
nomial of degree 12 in Y.s. We take the local coordinate (y, ¥, =
(Y)Y, Y,/Y,) of the point (1:{;: (') € P*, = Proj F[X, X, X,]. Then the
action of 7 is given by (v, ¥, — (¥, &’y,) (cf. Remark 2.10). In the
resolution, L is covered by four affine open sets with coordinates (v,", ¥:*v,),
Wiy vy, (Wlyed, yi'y”) and (y,9:° ¥,), where the second and the
third coordinates are of the neighborhoods of L,NL, and L,N L, respec-
tively. The divisor L, is described as the line (s = 0) with respect to the
coordinate (s, t) = (¥, ¥7°¥,). @, is equal to v-f(1, vy, ¥.)(dy, \dy,)®® for a
non-vanishing regular function v on U. In view of the equality dy,Ady, =
1/7)s™*'ds Adt, we see that w, has a pole at L, if and only if s™*g(s, t)
has a pole along (s = 0), where g(s, t) = f(1, ¥, ¥.).

Among r-invariant monomials of degree 12 in Y,’s only s™*g(s, t) for
Y,Y? has a pole along (s =0). Hence w,’s which correspond to ¢y, + ¢,* =
Flo,z,o + F3,9,0 + F7,3,2 + F4,4,4 and Pspups + ¢62 = FlO,Z,O + F5,e,1 + F7,3,2 + F4,4,4
have a pole along L,, while w, for ¢, + @upuds + dsp: + ¢ = Fspo + Fyp,
does not.

Let w, be an element of H(Y)’, a)?f/) which has nontrivial reduction
®, to Y;'. Then w, has a pole at D,, if so does w, at L,. Hence, by
Theorem 3.4, there exists we H(Y,', w‘f?g/) with a pole along D,. Since
D, is a nonsingular rational curve and D?= —3, we have w®¥(D,)|,, = 7,
Hence H(Y;, w®}) is of codimension one in H(Y;, w@i(Dl)), which is iso-
morphic to H(Y,, a)%), since the other singularities p, P, p, are rational
double points. Since H(Y, w$}) =~ H(V,, w@j)" is of dimension two by
Theorem 3.4 and Proposition 3.8, we have dim H(Y,, ®) = 1. q.e.d.

REMARK 3.10. The I',-invariant polynomials f, = ¢, + ¢, and f, =
b5t + Pududs + dspr + g5 are equal to F,,, + F,,, and F,,,+ F,,,, respec-
tively. By expressing these polynomials in terms of the coordinates at
L,NL, and L,NL, in the proof of the above theorem, we see that gene-
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rators of HYY,, w¥y) for m = 2,3 and their modulo 2 reductions have
no zero along D,’s and L,’s, respectively.

4. The minimal resolution of Y(Q,. In this section, we denote by
X the normal surface Y(Q,). By Theorem 2.9, X has cyclic quotient
singularities p,, »,, P, and ¢q. Let z: X— X be the minimal resolution of

these singularities. Hence X =Y’(Q,) for Y’ in Remark 2.10. We denote
by D, ---, D, the irreducible divisors of X such that z~(q) = D, + D, + D,,
nYp,) = D, + Dy, n7(p,) =D, + D, and 7 (p,) = Dy + D,, We assume
D?= —8and D,ND, = @ as in Section 3. Hence we have D= —2 for
2<1<9. Let K; be a canonical divisor of X. Since X has only cyclic
quotient singularities, K, is a @Q-Cartier divisor. In fact, 21K, is a
Cartier divisor.

PROE’OSITION 4.1. ~The Chern mumbers of the monsingular surface X
are ¢.X(X) =0 and ¢,(X) = 12.

PrROOF. Let K3 be the canonical divisor of X which is equal to K,
on X\{p, P, P, q}. Then 7n*K, — Kz is a @Q-divisor supported in
D\U-.--UD,, ie., n*Ky — Kz = a,D, + +++ + a,D, for some a, *--, a,€Q.
Since D,’s are nonsingular rational curves, we have (#*K; — K3)-D, =
—K3-D, =2 + D} for every 7.

Then we see easily that

*Ky — Kz = (8/7)D, + 2/T)D, + (1/7)D, .
In particular, we have
(1) K" — K3*= (n*Ky — K3)-Kz = 3/7.

On the other hand, by Theorem 2.9, there exists a finite morphism
f: V(Q,) — X of degree 168 ramified only at {p,, », P, q}. Since ¢A(V(Q,)) =
72, we have ‘
(2) K;* = 72/168 = 3/7 .

Hence ¢X(X) = Kz* = 0 by (1) and (2).

For cz(g? ), we may let @, = C and calculate it as the topological Euler
number e¢(X). By Theorem 2.9, f(p,) for 1 =0,1, 2 and f*(q) consist
of 168/3 = 56 and 168/7 = 24 points, respectively. Since c,(V(Q,)) = 24,
we have

el X) = (e V(@) — ¥ ({s, Py Py 0)))/168 + e(x™*({Dy Py P G})
= (24 — (3-56 + 24))/168 + (3-8 + 4) = 12. q.e.d.

REMARK 4.2. The above proposition implies X(~z) = 1 by Noether’s
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formula. In fact, we have p,(X’ )y=¢q(X)=0, since X has a finite covering

M(@Q,) — X from Mumford’s fake projective plane M(Q,) ramified only at
finite points.

PROPOSITION 4.3. X is a minimal elliptic surface, i.e., the Kodaira
dimension of X is equal to one.

PROOF. Suppose X were of general type, and let X’ be its minimal
model. By the plurigenus formula, we have P,(X) = (m(m — 1)/2)Ky? +
X(~z) for m = 2. In particular P,(X)=>=2. This contradicts Theorem
3.9.

If X were of Kodaira dimension zero, then X is either a K3 surface
or an Enriques surface, since ¢(X)=0. These are impossible since
p,(X) =0 and P,(X) =1 by Theorem 3.9.

Hence X is an elliptic surface and it is minimal by K3*=10. q.e.d.

Recall that the Z,scheme Y’ is regular outside the point w in the
closed fiber. For each integer m, we denote by »w®" the maximal torsion-
free extension of w¥"\{w} to Y'. We fix sections F, and F, of w¥ and
0¥ with non-trivial modulo 2 reductions, respectively, which exist by
Theorem 3.9. Let E’ and E” be the effective divisors (F,) and (F,) of
Y’, respectively. Clearly, 3E’ and 2E" are linearly equivalent.

LEmMA 4.4. E' and E" are disjoint.

Proor. Let 7,:Y;—Y, be the natural morphism. We denote by E;
and EY the images by x, of the divisors E, = E'NY, and Ef = E"NY},
respectively.

By the definition of E’ and E” and by Theorem 3.9, £ and £ correspond
to the I',-invariant polynomials f, = ¢,2 + ¢s¢s and f, = @s* + sduds + dsb: + Bo°
respectively. Let £’ and E! be the pull-backs of £, and EY, respectively,
by the natural surjective morphism h: B—Y,. By Tables 1 and 2, the
restrictions of E’ and E? to the rational curve C(1, 0, 0)C B is defined by
X+ XX, + X;? and X X,(X, + X,), respectively. In particular, they do
not intersect each other on the curve. Since G acts transitively on the
set of double curves of V,, and since B is isomorphic to the component
B, of V,, E; and E” do not intersect each other on the fourteen rational
curves in Figure 1 in Section 1. Since the complement of the union of
the curves in B is an affine open set, £} and E; have no common com-
ponents. E; and Ei also have no common components, since they do not
contain L, for ¢ = 1, 2, 3 by Remark 3.10, and since E; does not have any
zero on the other exceptional curves of =,.

On the other hand, f, and f, have zeros of multiplicities 2 and 3, re-



394 M.-N. ISHIDA

spectively, at the seven F,-rational points of P;,. Since B is the blowing-
up of P}, at the seven F,rational points, the intersection number ;- &Y
is deg f,-degf, — 7-2:83 = 96 — 42 = 54. Since Y, \h(C(@, 0, 0)) is smooth
except at the eyclic quotient singularity g(0), we can consider the inter-
section number E-E} = 54/21 = 18/7, since h is of degree 21. As in the
proof of Proposition 4.1, we have

ay By — Eqy = 2(3/TL, + (2/T)L, + (1/T)Ly) ,
ny By — Ei = 3(B8/T)L, + (2/T)L, + (1/T)L,) and
E,-EY — Ey-EY = 2-3-3/7 = 18/1.

Hence E,-Ey =0. We have E;NE) = @, since they have no common
components. This implies E'NE" = &. q.e.d.

Let £:Y' — P;, be the morphism defined by (F}, Fy).

PROPOSITION 4.5. The induced morphism £'g,: X— P, of the geometric
fibers 1is the elliptic fibration of X. It has just two multiple fibers 3E'g,
and 2E";, where E's, and E'g, are the restrictions of E' and E” to X,
respectively.

PrOOF. Let f: X — P'§, be the elliptic fibration, and let m,C,,- - -, m,C,
be its multiple fibers. By Kodaira’s canonical bundle formula [Ko2, Th.
12], we have

Ky ~ f7(—a) + 3 (m, — 1)C,,

where z, is a point of P'G,, since deg Km + X(<73) = —1. Since 2Kz ~
n — 2)f X&) + Dy (m; — 2)C,, we have dim [2K3z| = n — 2. Hence n = 2
by Theorem 3.9. Since E';, is a unique effective bicanonical divisor, we
have E'g, = (m,—2)C,+(m,—2)C,. If m, m,=3, 8Kz~ f~(x;)+(m,—3)C,+
(m,—8)C, and hence dim |3K3|=1. This contradicts Theorem 3.9. Hence
we may assume m, = 2. Since (m,—2)C, = E';,, we have m,>2. Hence
8Kz ~ E"g, = C, + (m, — 3)C,. Since E'g,NE";, = @ by Lemma 4.4, we
have m, = 3.

Thus we have E';, = C,, E", = C, and f~'(x,) ~ 3E', ~ 2E";,. Hence
f is equal to £g, up to automorphism of P',. q.e.d.

The connected curves D,UD,, D,UD,, D;,UD, and D;UD, are unions
of (—2)-curves. Hence they are mapped to points in Py, by k5. We
denote ¥y = k5,(D,UD;) and 2; = k5,(DyypU Dyyy;) for ¢ =0, 1, 2.

PROPOSITION 4.6. E'g, E"3, D,UD,, D,UD;, D;,UD, and D,UD, are
mapped to distinct points in P'G, by kg,.
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PROOF. By definition, £g,(E's,) = (0:1) and £g(E"3) = (1:0). " By
Remark 38.10, the modulo 2 reduction L,UL, of D,UD, is contained in
neither Ej; nor Ei’. Hence the specialization of y in Pj, is neither (1:0)
nor (0:1). As we saw immediately before Theorem 2.9, there exists a
Z,-morphism Spec Z,[¢] — 2 which is fixed by zo, and the induced Q,[¢]-
valued point in Y splits to p, p, P, in Y(Q,) and the image of the closed
point is the triple point P of :25. As we saw in the proof of Lemma 4.4,
the pull-back of E’ and E” to C(1, 0, 0) is defined by X? + X, X, + X,? and
X, X,(X, + X,), respectively. Hence we have Pc E” and P¢ E’, where P
is the image of P in Y. Since D,UD,, D;,UD, and D,UD, are the ex-
ceptional curves of p,, », and p, respectively, the specialization of z,’s
are all (1: 0). We get the following diagram after the base extension in
Remark 2.10:

Spec K[e] = Spec R[e] — V), = V,

| !
ﬂi YR\-E_'I(’,C)YR(_YI’Z
Fsz/anl ’CRl

Speec K[t]=>Spec R[t] = A, = Pi.

Here K is the quotient field of R = Z,[{, w], V% a neighborhood of P, € Vg,
E} the image of E, in Y, and A% = Pi\«kz(E;). It suffices to show that
the K-homomorphism p*: K[t] — K|[e] is surjective, since then the image
of p is a separable point of degree 3 while (1:0) is the K-rational point
t = 0. By the notation in Remark 2.10, we get the following sequence
of formal completions of local rings:

RIt] —RIT, T2, Ty, T, — RIT, T, T.] >R[] ,

where T, T, T, have a relation T3+ T2+ T,*—3T,T,T, = 27¢*. lis given
by UT,) = 8¢ and UT) = UT, =0. The image of ¢t in R[T, T, T,] is
equal to F}/F2. Since Y is a Gorenstein scheme and since F, and F’ are
sections of @w®" for m = 2, 3, respectively, we may regard F), and F, as
elements of R[T, T& T2 T.T,]. By the restriction of the polynomials
f. and f; to C(1, 0, 0)C B, we see that F,e (T, T, T)\(T, T, T, and F,
is a unit. Hence F, has a unit coefficient for 7,, and hence FJ/F; has
a unit coefficient for T This implies that the image of ¢ in Rl[e] is
outside BR. Hence p* is surjective. q.e.d.

Now we can determine the types of the singular fibers:

THEOREM 4.7. The elliptic fibration kg,: X — P'G, has singular fibers
at {(1:0), (0:1), y, 2, 2, 2,)CP'G, and smooth elsewhere. The singular
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fibers over z, z, 2z, and Yy are not multiple and are of type I, in the
notation of [Kol, Th. 6.2]. The fibers over (1:0) and (0:1) are 2E"G,
and 3E';,, respectively, where E';, and E's, are smooth elliptic curves.

Proor. Each of the fibers over 2z, z, 2, and y contains a union of
two (—2)-curves intersecting each other transversally at one point. Hence
they are not of type II nor III. Hence the Euler number of the non-
elliptic fiber is at least three and is equal to three if and only if it is of
type I,. Now we apply Kodaira’s formula for the second Betti number
of an elliptic surface [Kol, Th. 12.2]. Since ¢,(X) = 12 by Proposition
4.1, all these fibers are of type I, and the other fibers are elliptic curves.
The multiple fibers are only 2E"G, and 3E’;, by Proposition 4.5. q.e.d.
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