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1. Introduction. Let π: E —> (M, g) be a C°° Hermitian line bundle
over a C°° Riemannian manifold (n = dim M). Let us consider a
Schrodinger operator D with a vector potential and a scalar potential,
which operates on C°°(E), the space of C°° sections of E. The operator
D is a second order, self-adjoint, elliptic differential operator locally ex-
pressed with respect to a local unitary frame of E and local coordinates
of M as

D = - Σ 93'k(Vj + iaj)(yk + iak) + V

where V is the Levi-Civita connection defined by g, a = Σ α ^ 5 is a
locally defined real 1-form, and V is a real C°° function on M. The local
1-form ω = ia is regarded as the connection form of a linear connection
d on E which is compatible with the Hermitian structure (cf. [7]). Thus
we have a one-to-one correspondence:

D~(M,g;E,d;V).

When V = Q, D is called the Bochner-Laplacίan associated with d (and
g), and moreover if JB7 = MxC and d is a flat connection, then D = Δ
(the Laplace-Beltrami operator). It is interesting to investigate the
asymptotic distribution of large eigenvalues of D under the influences
of d and V.

Guillemin [4], Weinstein [12], etc. clarified how the scalar potential
V exerts an effect upon the spectrum for the case where (ikf, g) is the
sphere or the protective space with the canonical metric. In the previ-
ous papers [8] and [9] we made clear for a line bundle over the sphere
the relationship between the holonomies of the connection d and the
spectrum of the Bochner-Laplacian.

This article studies the effects of the connection d on the spectrum
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of D for a line bundle over the complex protective space CPn. Let
^(CPn) be the set of pure-imaginary closed C°° 2-forms Ω on CPn such
that [Ω/2πί] is integral. Then, one has the following (cf. Kostant [6]).

PROPOSITION. (1) The set of equivalence classes of C°° complex line
bundles over CPn is in one-to-one correspondence with Z = H\CPn, Z) =
{[Ω/2πΐ\; Ω e ^(CPn)} ([Ω/2πi] being called the Chern class of the line bundle).

(2) For each Ω e ^(CPn), (i) there exists a unique (up to the gauge
equivalence) linear connection d on the line bundle E with the Chern
class [Ω/2πi], whose curvature form is given by Ω, and (ii) there exists
a Hermitian structure h on E such that the connection d is compatible
with h. Conversely, if a 2-form Ω on CPn satisfies (i) and (ii), then Ω
belongs to ^(CPn).

(3) The Hermitian structure h in the above (2), (ii) is given uni-
quely (up to scalar multiple) on each line bundle E without depending
on connections on E.

Let {[Em];meZ} (m: the Chern number) be the set of equivalence
classes of Hermitian line bundles over CPn. On each line bundle Em

there is a unique harmonic connection dm whose curvature form is a
harmonic 2-form (Hodge's theorem). The purposes of this paper are

(1) to compute explicitly the spectrum of the Bochner-Laplacian
for the harmonic connection (Proposition 2.3),

(2) to describe for any connection the asymptotic behavior of the
spectrum of D in terms of its holonomies along closed geodesies (Theorem
3.1), and

(3) to show that the geometric structure (Em, dm; V = const.) is
characterized by its spectrum for CPn (n ^ 2) (Theorem 4.5, which is a
generalization of Guillemin's result [4]).

2. Spectra for the harmonic connections. In this section we con-
struct the harmonic connection dm on each line bundle Em (m e Z: the
Chern number) over CPn, and compute the spectrum of the Bochner-
Laplacian associated with dm.

Consider the complex vector space Cn+1 = {z = (z0, •••, zn)} with the
Hermitian inner product:

<z, z'> = Σ Z Z;
3=0

Cn+1 with the real inner product < , >Λ given by
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(Zj = Xj + iyjf zfj = xj + ίy'j), is identified with R2n+2. Let

Sftw = {z; |s|* = <z, z> = 4}cCn+1 = Λ2ra+2

be the 2n + 1 dimensional sphere with radius 2, and let gQ be the
Riemannian metric on it induced from < , >Λ in Cn+1. The circle group
S1 = {ε(ί) = eu; 0^t^2π} acts freely and isometrically on Sffi1 as s e(ί) =
euz, and we get the Hopf fibre bundle:

(2.1) S1 -» Sgf1 >̂ CP* .

The tangent bundle of Sg]+1 is given by

ΓSgfJ = {(z, u); z e S&+1, ^ e C»+1, <«, u)R - 0} .

For seSgp1, let F, = (dfr.)"1^) c Γ ^ t 1 , and

F, = {(z, ixz);χsR} .

Let Hs be the orthogonal complement of Vz in TzSm+1 with respect to
the Hermitian product < , •>• Thus

(2.2) Γ.Sft+1 = fl.φV.

(iϊj being given by {(z, u); <z, u) = 0}). Let us define the Riemannian
metric g0 on CPn so that dπz: Hz -> T~{z)CPn is an isometry. Then, #0 is
the Fubini-Study metric of constant holomorphic sectional curvature 1, and
all the geodesies of (CPn, g0) are closed and have a common length 2π.

The fibration (2.1) is a principal S^-bundle, and the decomposition
(2.2) defines a connection on it (Hz: the horizontal space), whose connec-
tion form ώ on Ŝ V1 is given by

ώ2: uH> -A< w , Z ) G Λ («GSgi+\ u

or written as ώ = c*θ with

r: S[2]+1 —> Cπ + 1 being the inclusion map. The curvature form Ω = dώ is

given by β = c*Θ with

\Z\
z|2 Σ ^ i Λ cί^j — Σ ZjZjcdZj A dz"k) .

The real 2-form Θ is invariant under the natural action of C \ 0 on O + 1 \ 0,
and is regarded as a 2-form on CPn represented with respect to homo-
geneous coordinates.
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LEMMA 2.1. The 2-form Θ on CPn is harmonic with respect to the
metric g0, and [Θ/2π] is a generator for the second cohomology group
H\CP\ Z) ^ Z.

PROOF. (CPn, gQ) is regarded as a Riemannian symmetric space
U(n + ϊ)l(U(n)x Z7(l)), and Θ is invariant under the action of U(n + 1).
Hence Θ is harmonic (see [11, p. 26]). Next, consider a 2-dimensional
closed submanifold CP1(zCPn. By straightforward calculation using the
coordinates ζ, = Zj/z0 (j = 1, , n) we obtain

(2 V — [ Θ = — [ d^ Λ d ^ = 1
y ' J 2π Jcpi 2πi

[ Θ [ 1
2π Jcpi 2πi Jc (1 + |ζj2)2

Thus the lemma is proved.

For each integer m, let pm be the representation of S1 on C defined
by pjβ(t))w = ε(t)~mw (weC). Let π:Em->CPn denote the line bundle
associated with the principal bundle (2.1) by the representation pm, that
is, the quotient manifold of Sf^xC with respect to the equivalence
relation (z, w) ~(z-ε, εmw)(e e S1). For each z e Sf?D

+1, define qz: C-*π~\π(z))
by w\-+[(z, w)]. Let C%(Sm+1) be the set consisting of every C°° function
/ on S22n]+1 such that

(2.4) /(z ε) - εmf(z)

for every z e S ^ 1 and e e S1, which is called an equivariant function with
respect to pm. For 8eC°°(EJ, define a C°° function q*ms on Sĵ f1 by
(QmS)(z) = q7\s{π(z)). Then q*ms belongs to CZ(S%Ί

+1) and ql gives a one-
to-one correspondence between C°°(Em) and C%(Sl?}

+1). Let dm be the linear
connection on Em associated with the connection (2.2) on the principal
bundle (2.1), which is defined as the covariant derivative:

s e C"(EJ, X being a vector field on CPn and X* the horizontal lift of
X to Sgf1. We calculate the curvature form Ωm(X, Y) = [V^m), Vlm)] -
V^y] of dm and get βm = —imθ. Thus we have the following by
Lemma 2.1.

LEMMA 2.2 (1) The set of equivalence classes of complex line
bundles over CPn is {Em;meZ}.

(2) dm is a unique harmonic connection on Em, whose curvature
form is Ωm = —imθ.

REMARK. dm is the canonical connection (cf. [13, pp. 77-84]) with
respect to the holomorphic line bundle structure and the Hermitian
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structure uniquely given on Em.

Now we study the Bochner-Laplacian associated with the harmonic
connection dm, and compute its spectrum denoted by Spec(Lm). Consider
a set of C°° vector fields {Xv , X2n} defined on a neighborhood of w e CPn

such that gQ(Xd, Xk)(w) = δjk. Then,

(Lms)(w) = - Σ C

( 2n

Σ

If we set Li = (Λ)Lm(gi)~1, Li is a differential operator acting on
C5(S8T) and

holds for s e C£(S§]+1), where n; = ττ(2;), Δ is the Laplace-Beltrami operator
on (Sg]+1, ô)> and Z e F , is the infinitesimal generator of the action of
S1 = {ε(ί)}. For s eCSCStW1) we have Zs = ims from (2.4), hence,

(2.5) L*ms == Δ ϊ - — s .
4

Thus, if Lms = λs, then Ums = xs (s = qis) and As = (λ + m2/4)s, that
is, s is an eigenfunction of Δ.

Let 3?VΛ be the space of homogeneous polynomials of degree p in
zeCn+1 and of degree q in z (p, q = 0, 1, 2, •••), and let ^gς,g be the
subspace of &VΛ consisting of harmonic ones, i.e., Pe^Ptq such that

4 i=o d^yd^y

We denote the space of restrictions of elements in &VΛ (resp. ^ , f f ) to

Sgi+1(cCw+1) by ^, , f f (resp. ^ > 9 ) . It is easy to see (cf. [1, pp. 159-160])

that each element of Jg^>g is an eigenfunction of Δ on (Sgf1, £0) with

the eigenvalue (p + q)(p + q + 2w)/4. Since we have P(euz, "i"z) =

eUp-q)tP(z,z) for P ( β , β ) 6 ^ ι f , ^ , > f belongs to CZ(S^+1) if and only if

p — q = m. Therefore, for

(2.6) P β F Γ
l«^,»+ι-ι ( m < 0 )

we have from (2.5)
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(&= 0,1, 2, . . - ) . Noting that

^ ^ Θ ^-i.,-i = θ ^-i.,-ι (r = min(p,
Z0
θ
Z=0

(cf. [1, p. 160]), we see that φ p _ ί = m &fVΛ is L2-dense in C tfSgf1), and

dim ^ j ( 7 = dim ^ t f f - dim ^-^g.x

+ p\/n + q\ fn + p — l\fn + q — V

V ) \ • q I ~~ \ p - 1

Noticing that g*m: C
0 0 ^ ) -> C£(SgJ+1) is L2 bi-continuous, we get the fol-

lowing.

PROPOSITION 2.3. Let Em -> (CPn, g0) (m eZ) be a complex line bundle
with the harmonic connection dm whose curvature form is Ωm = —imΘ,
and let Lm be the Bochner-Laplacian associated with dm. Then, Spec(Lm)
consists of eigenvalues

> j - = (fc + J |L)(fc + J | L + n ) - ^ , k = 0,l,2, ,

where the multiplicity of xim) is equal to

fk + \m\ + n\/k + n\ (k + \m\ + n - l\ίk + n - V

k+\m\ )\ k j ~ \ fc + | m | - l J \ fc-1

and the space of eigensections associated with x^ is {s = (qD~ιP\ P being

given by (2.6)}.

REMARK. This result is a generalization of Theorem 5.1 in [7] where
we considered the case of line bundles over CP1 — S2

3. Holonomies and spectrum. Let E-> (CPn, g0) be a Hermitian line
bundle with a linear connection d compatible with the Hermitian struc-
ture, and let V be a real C°° function on CPn. We will study the
asymptotic distribution of large eigenvalues of the operator D associated
with (E, d; V), and derive a result similar to that in [9].

Let Qd(c) denote the holonomy of d along a closed curve c in CPn.
Each element (x, ξ) of the unit cosphere bundle S*CPn = {(a?, ς) e T*CPn;
If I = ( Σ 0o*(aOfif*)1/2 = 1} corresponds to a closed geodesic 7 of (CPn, g0).
Hence we have a C°° map

Q2i S*CPn -> S 1 = {e2πίθ; 0 ^ θ < 1}

by Qi(x, ζ) = Qϊ(7). On the manifold S*CPn there exists the volume form
d vol induced from the symplectic volume form dxt Λ Λ dx2n Λ dft Λ
• Λ df2n on T*CP\
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For 0 <̂  a < b < 1, we set

J[α, &] = {e2πiΘ; α ^ ^

and

Jk[a, &] = [λfc + aCk> χh + bCk] , k = 0, 1, 2, ,

where

and Cfc = λfc+1 — λ& = 2k + n + 1. Let

Spec(D) = {(0^)μ0 ^ ft ^ • ^ jKi ^ • •} .

Then we have the following.

THEOREM 3.1. Suppose γo\{Q7~Ke2πίa)} = volfζh'V™6)} = 0.

» { f t e φ , 6]} = (2τr)-2"vol{Qr1(J[α, δ])}^" 1 + oCfc2-1)

as fe-» oo, where # denotes the cardinality.

REMARK. The highest order term in the above expansion does not
depend on the scalar potential V.

We prove this theorem as an application of the theorem by Colin de
Verdiere [2].

First we note the following.

LEMMA 3.2. For the harmonic connection dm on Em,

Qΐm(χ, ξ) = ( - i r

holds for every (x, ξ) e S*CPn.

PROOF. The group U(n + 1) acts transitively on the space of all
closed geodesies in (CPn, g0), and the curvature form Ωm = — imΘ of dm is
invariant under the action of U(n + 1) on CPn. Therefore we see that

(Σ: a surface with 3Σ = 7) takes constant value for every closed geodesic
7 of (CPn, flf0). From (2.3) we get Q?Jy) = eπίm = ( - l ) m .

On the other hand, the spectrum of the operator associated with
(Em, dm) 0) consists of

(|m| = 2j>)

(3.i) x r = -I ' *'
 2

\ 4 2/
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with k = 0, 1, 2, , where λi = \k + (CJ2).
We set

P. = ( L . + «£±j£)-.

Then Pm is a self-adjoint elliptic pseudo-differential operator of order 1
operating on C°°(J?m) with the principal symbol

and eigenvalues of Pm are k + {(|m| + n)/2} (k = 0, 1, 2, •). Suppose
the operator Z) is defined on Em, and we put

D = Lm + Q .

Let {e,} be a family, associated with an open covering of CPn, of local
sections of Em such that \eκ\ = 1. Let {ωκ = iα*} (resp. {α>im) = iα£m)}) be
the system of connection forms of d (resp. dm) with respect to {eκ}. Then
βκ = (XK — αiw ) does not depend on /c and defines a global real 1-form β
on CP71, and Q is represented locally as

2n 2n

Q = -2i Σ

where β = Σ feidίc3 and α£m) = Σ a^dx*. Consider the averaged operator
of Q:

Qav = 7r- Γ β x p C - i ί P J Q θ x p ί i ί P J Λ ,
2ττ Jo

which is a self-adjoint pseudo-differential operator of order 1 and the
following lemma is obtained.

LEMMA 3.3. (1) The principal symbol σ(Qav) of Q&Ύ is homogeneous
of degree 1 in ξt and satisfies

(3.2) (-1Γexv{-πiσ(Q& y)(x, ξ)} = Qi(x, ζ)

for (x,ξ)eS*CP\
( 2 ) [Pm, Qav] = 0.
( 3 ) Let Spec(Lm + Q&Ύ) = {μ'j}?=0. Then there exists a constant C

not depending on j such that

(3.3) \fή - μά\ ^ C .

PROOF. (1) Let (a?(ί), ξ (ί))(0 ^t^2π) be a closed orbit of the
Hamiltonian flow associated with σ(Pm), which is just the geodesic flow,
on T*CPn through (a?, ξ). Let ω - ia = i(α ( m ) + /3) be the connection 1-



SCHRODINGER OPERATOR ON A LINE BUNDLE 207

form of d with respect to a unitary frame of Em over a neighborhood
of the closed geodesic 7 = {x(t); 0 ̂  t ^ 2π}. By Egorov's theorem we
have

av)(ff, f) = -±- \σ(Q)(x(t), ς(t))dt
2π Jo

= ^ L P Σ b>Xx(t))-&-(t)dt
π Jo i |£|

Φj = Σ 9okbk). On the other hand, by virtue of Lemma 3.2, we have for
(a?, ξ) 6 S*CPn,

Q2(x, ζ) = exp(-\ω) = exp(- i ^(α ( w ) + /3)) = ( - l ) - e x p ( - i j ^ ) .

Hence we get (3.2).
(2) and (3) are the same as [12, Lemma 1.1] and [9, Lemma 3.2].

We carry out the proof of Theorem 3.1 along the same line as in
[9] by applying the theorem of Colin de Verdiere [2] to the commuting
operators (Pm, QΛΎ). Let A = {(λft\ /ckJ)} be the set of eigenvalues of
(Pm, Qav), where

T(m) _ . . . _ _ r<»> _ T(m) — jU i N l + n
&k,l — — AjktNk — Λ fc — fC -\ —

(Nk being the multiplicity of λΓO Then, for Spec(Lm + Qav) = {μ'kJ}, we
have

μ'kj = λiTy} + it*,/ (where λ ^ = λim)) ,

icfcfi being the difference between μkιj and λim).

LEMMA 3.4 (see [9, Lemma 3.3]). Let

M= Max σ(Qaτ)(a?, f) ( ^
(ar,ί) eS*CPn

Then we have

\κhfJ\ ^

M' being some positive constant.

For 0 ̂  α < b < 1 we set

α (resp. 6) if m is even ,
α'(resp. 6') = J i / i \ .

α — — resp. b ) if m is odd .
I 2\ 2/

For sufficiently small ε > 0 we consider the following conic subsets of
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B2 = {(fiu *2)}:

Cψ = {{xυ x2); 2(α' + s + N)x1 ^ x2 ^ 2(6' ± e + iVX, «, > 0} ,

for N= 0, ±1, ±2, •••. By virtue of (3.1) and (3.3) we have

#1 u (Λn(VnK = λi-V})} ̂  #{Λe J4[o, 6]} =g #{ u (ΛncpnR =

for sufficiently large k, where q is an integer satisfying 2q > M for the
constant M in Lemma 3.4. Let

p = (σ(PJ, <r(Qaτ)): T*CP"\ 0 - Λ2 ,

and let vol denote the volume on the hypersurface σ(Pm)(x, ξ) = \ζ\ — const,
induced from that on Γ*CPn. If a' ± ε + N and V ± ε + N (-? ^ iV ^ g)
are regular values of α (Qav)ls*cpn, then by the theorem of Colin de Verdiere
[2, Theorem 0.8] we have

u

= (2τr)-2>ι Σ vol{(«, ί) 6 S*CP*; 2(α' + e + N) ^ σ(Qaτ)(a;, f) ^ 2(6'

= (2π)~2n τ

where J±ε = exp(2πi[α + ε, 6 ± ε])cS\ and the last equality is derived
from (3.2). Now, instead of ε we choose a sequence {εv(>0); v = 1, 2, •}
such that a' ± εv + N and b' ± εv + N are regular values of_<7(Qav)|,s*cpn,
and εu [ 0 as p -> oo (Sard's theorem). Note that vo\{Q2~\e2κia)} =
volfQ^"1^2^6)} = 0 by assumption, and we obtain Theorem 3.1 by v—> <*>.

REMARK. In general, for a vector bundle over a C2Jr-manifold we
have in [10] a formula similar to that in Theorem 3.1 about the asymptotic
distribution of the spectrum.

4. Cluster theorem. We give the following definition for the
spectrum Spec(D) = {μs} of the operator D.

DEFINITION. The spectrum of D is said to make dusters of type {a}
(0 5̂  a < 1) if there is a constant M such that

Spec(J9)c U[λΛ + aCk - M, Xk + aCk + M] .
fc=o

Noticing (3.1) and that V is regarded as a bounded operator, we see
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that the spectrum of D = Lm + V makes clusters of type {0} if m is
even, or of type {1/2} if m is odd. Moreover, we have the following.

THEOREM 4.1. Let D be the Schrodinger operator associated with
(E, d; V) over CPn. A necessary and sufficient condition for the spectrum
of D to make clusters is that d is a harmonic connection if n ^ 2, and
is that the curvature form Ω of d is an odd 2-form, i.e., τ*Ω = —Ω for
the antipodal map τ: CP1 —> CP1 if n = 1.

PROOF. By virtue of Theorem 3.1 if the spectrum of D makes
clusters of type {a}, then Qτ(x, ξ) = e2πia for every (x,ξ)eS*CPn. Note
that Qd(%, —ξ) = (Qd(%, f))~\ and a must be equal to 0 or 1/2. Moreover,
a is equal to 0 (resp. 1/2) if D is defined on Em with even m (resp. odd
m). Indeed, consider a one parameter family d{s) (0 tί s ^ 1) of linear
connections with d(0) = dm and d(l) = df which are defined by the con-
nection forms {ω£m) + is/3}, ωim) being the connection form of dm and β
a real 1-form (cf. § 3). It follows from the continuity of the holonomies
Q?(.)( ) w ί t h respect to s that the types of clusters for dm and d coincide.
Thus, if the spectrum makes clusters, then

(4.1) \β = 0

holds for every closed geodesic 7 of (CP71, g0). The proof of the theorem
for the case of n — 1 has been carried out in [8, Proposition 4.4 and
Theorem 4.5]. In the case n ^ 2 the theorem is derived from the follow-
ing lemma proved by Gasqui and Goldschmidt [3].

LEMMA 4.2. / / a 1-form β on CPn with n^2 satisfies (4.1) for

every closed geodesic 7 of (CPn, g0), then β is exact.

Next, the distribution of the eigenvalues in the fc-th interval Ik =
[χk + aCk — M, λj. + aCk + M] is studied in the same way as that by
Colin de Verdiere. For a real C°° function V we define a C°° function
on S*CPn by

x ' w 2π

where x(t)(0 ^t^ 2π) is a closed geodesic of (CPn, g0) with the initial
condition x(0) = x, *(0)* = ξ (*: TCP71-* T*CPn being the bundle isomor-
phism defined by g0). For a < b we set

Iίm)[a, b] = [λiw) + a, λίβ) + b] .

PROPOSITION 4.3 ([2]). Let Svec(Lm+V) = {μj}γ=Q. Suppose vόl{γ-\a)} =
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vol{ V-\b)} = 0. Then we have

#{Λ6 Jie)[a, 6]} = (2πΓnvόl{γ-\[a,

a s & —> oo.

Concerning the function V, the following is known [5, p. 128].

LEMMA 4.4. Let V be a C°° function on CPn(n ^ 2) and c be a con-
stant. Then, V = c if and only if V = c.

As a consequence of the above results we have:

THEOREM 4.5. Let D be the Schrodinger operator associated with
(E, d;V)jover CP\n ^ 2). Then, Spec(D) = {μ, }~=0 makes clusters if and
only if d is a harmonic connection. Moreover when d is harmonic,

Max l/i, - μό\

(Ik = [xk + aCk — M, χk + aCk + M]: the k-th cluster) tends to zero as
k-^ oo if and only if V is a constant function.

COROLLARY 4.6. Let cbe a constant. (Em, dm; V = c) over CPn(n ^ 2)
is characterized by the spectrum {\k

m) + c; k = 0, 1, 2, •} of the associat-
ed operator D.
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