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1. Introduction and the statement of results. The purpose of this
paper is to study the relationship between the Stiefel-Whitney homology
classes of mutually transverse Euler spaces and their intersection in an
ambient PL-manifold. Besides manifolds, real analytic spaces are typical
examples of mod 2 Euler spaces (cf. Sullivan [11]).

Let (A, B) be a pair of a polyhedron A and a subspace B of A such
that rank H,(4, B; Z) < . Denote by e(A, B) the mod 2 Euler number
of the pair (4, B). If B# @, we write e(4) = e¢(4, ©).

Let X be a locally compact n-dimensional polyhedron. The polyhedron
X is said to be a mod 2 Eulder space (cf. [1], [5]), if the following hold
for the subpolyhedron o0.X:

(1) 06X is (n — 1)-dimensional or empty.

(2) eX, X —2) = {(1) Egggga 0X)

(8) if 0X# @, then ¢(0X,0X —2) =1 (x€oX).

Let K be a triangulation of a polyhedron X. Denote by K’ the
barycentric subdivision of K. If X is an n-dimensional mod 2 Euler
space, the sum of all k-simplexes in K’ is a mod 2 cycle and defines an
element s,(X) in H(X, 0X; Z,), which is called the k-th Stiefel-Whitney
homology class of X (ef. [1], [6]). We put s,(X)=8,(X)+s(X)+ -+ +8,(X).
We define the mod 2 fundamental class in H,(X, 0X; Z,) to be [X] = s,(X).
If X is a Z,-homology manifold, then we know that s,(X) = [X]Nnw*(X),
where w*(X) is the Stiefel-Whitney cohomology class of X.

Let X be an n-dimensional polyhedron and let K be a triangulation
of X. If the union of all n-simplexes are dense in X, the polyhedron
is said to be pure n-dimensional. If X is a mod 2 Euler space of pure
dimension PL-embedded in a PL-manifold M with ¢XcoM and X — 0XC
M — oM, then X is called a proper PL-subspace in M. Let a and b be
homology classes in H, (M, oM; Z,). We define the homological intersec-
tion by a-b = [M]IN{([M]N)"aU([M]N)™'D).

The main result of this paper is the following:

THEOREM. Let X and Y be mod 2 Euler spaces of pure dimension
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which are proper PL-subspaces in a PL-manifold M. Let f: X— M,
g:Y—>Mand h: XNY — M be the inclusions. If X is transverse to Y,
then XNY is a mod2 Euler space and the following holds:

f*s*(X)'g*S*(Y) = h*s*(Xﬂ Y)OW*(M) .

2. Transversality. Let X be a polyhedron and let K be a collection
of PL-balls in X. We write |[K| = U,ex0. The collection K is called a
ball complex structure on X if the following hold:

(1) X is the disjoint union of the interiors Int ¢ of all PL-balls ¢
in K.

(2) If gis a PL-ball in K, then the boundary oo of ¢ is the union
of PL-balls in K.

Now we recall the definition of transversality according to Buoncristi-
ano, Rourke and Sanderson [3]. Let K be a ball complex structure on a
PL-manifold M and let X be a subpolyhedron of M. We say that X is
collarable in M, if there exists a collar ¢: M, XNoM)xI— (M, X). The
polyhedron X is transverse to K if XN is collarable in ¢ for each PL-
ball ¢ in K. Let X and Y be subpolyhedra in M. The polyhedron X is
transverse (or mock-transverse) to Y in M, if there is a ball complex
structure K on 'M with a subcomplex L such that |L| =Y and that X
is transverse to K (cf. [3]). By McCrory [9], we know that for col-
larable polyhedra X and Y in an ambient PL-manifold, the polyhedron X
is transverse to Y if and only if Y is transverse to X. Other definitions
of transversality were given by Armstrong and Zeeman [2], Stone [12]
and McCrory [9]. These definitions are equivalent if subpolyhedra are
collarable in an ambient PL-manifold (McCrory [9]).

Let X be a subpolyhedron and N be a PL-submanifold in a PL-
manifold. The polyhedron X is block transverse to N if there exists a
normal block bundle v = (F, 7, N) of N such that the restriction (XNE,
1|/ (XNN), XNN) of v to XNN is a block bundle over XN N (ef. [10]).
Then by [3] we have the following:

PROPOSITION 2.1. The polyhedron X is block transverse to N if and
only if N is transverse to X.

We need the following to prove our theorem.

LEMMA 2.2. Let X and Y be collarable subpolyhedra in a PL-manifold
M and V a proper PL-submanifold in M. Suppose that X is transverse
to Y and V is transverse to XUY in M. Then XNV is transverse to
Ynvin V.
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LEMMA 2.3. Let X and Y be collarable subpolyhedra in a PL-manifold
M and V be a proper PL-submanifold in M with a normal block bundle
y= (K, 1, V). Let XbetransversetoY and let XUY be block transverse
to v. Then XNV and YNV are transverse to YNE and XNE in E,
respectively.

PrOOF OF LEMMA 2.2. By assumption, there exists a ball complex
structure K which contains a ball complex structure of Y and there
exists a subdivision K’ of K which contains a ball complex structure of
XUY such that X and V are transverse to K and K’, respectively. Then
for each 4 in K, we see that VN4 is transverse to XN4 in 4. By the
symmetry of transversality, we see that XN 4 is transverse to VN4 in
4. Then there exists a subdivision L of K such that X is transverse to
L and that L contains the ball complex structures of Y and V. Conse-
quently we see that XNV is transverse to L|V and contains a ball
complex structure of YN V. Hence XNV is transverse to YNV in V.

g.e.d.

ProOF oF LEMMA 2.3. By Proposition 2.1, the PL-manifold V is
transverse to XU Y in M. Then, by Lemma 2.2, the intersection XNV
is transverse to YNV in V. In view of the definition of transversality,
there exist a ball complex structure K on V and a subcomplex L such
that |L| = YNV and that XN VNo is collarable in ¢, for each PL-ball
o in K. Let E(o) be the block over o of the block bundle v. Let K(X)
be a ball complex structure on E which consists of blocks E(s) and their
faces for ¢ in V. Define a subcomplex L(E) of K(E) by L(E)={4¢
K(E)|4cY}. Then |L(E)|=YNE and XN VN4 is collarable in 4 for
each PL-ball 4 in K(E). Hence XNV is transverse to YNE in E. We
see that YN V is transverse to XNFE in EF in the same manner. d.e.d.

TRANSVERSALITY THEOREM 2.4 ([3], [9]). Let X and Y be collarable
subpolyhedra of a PL-manifold M and let XNoM be transverse to Y NoM
in 0M. Then there exists an arbitrarily small ambient isotopy h, of M
such that h,|0M is the identity for all t and that h(X) is transverse to
Y in M.

The first half of our theorem is the following proposition:

PROPOSITION 2.5. Let X and Y be mod2 Ewuler spaces which are
proper PL-subspaces in a PL-manifold M. If X is transverse to Y, then
XNY s a mod2 Euler space with the boundary 0XNoY.

To prove this proposition, we rewrite the definition of mod2 Euler
spaces in the following form:
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LEMMA 2.6. Let X be a polyhedron and let 0X be a subpolyhedron
of X. Let K be a ball complex structure on X and let L be a subcomplex
of K such that |L| = 0X. The polyhedron X is a mod 2 Euler space
with the boundary X if and only if the following holds:

(1) ¥YzeK|r = o} is even for o in K — L.

(2) ¥HzeK|r = o} is odd for ¢ in L.

(83) ¥Y{reK|r = o} 18 even for o in L.

PROOF OF PROPOSITION 2.5. Let K be a ball complex structure on
M and let L be a subcomplex such that |L| =Y and that XNg is
collarable in ¢ for each PL-ball ¢ in K. By induction on the codimension
of o, we easily see that XNo is a mod 2 Euler space with the boundary
XNodo. This means that XNo = XNYNo is a mod2 Euler space for
each PL-ball ¢ in L. By Lemma 2.6, we see that XNY is a mod2
Euler space with the boundary XNoY = o0XNaY if Y is a mod 2 Euler
space. g.e.d.

3. Characterization of Stiefel-Whitney homology classes. Let & =
(E, i, A) be a block bundle over a polyhedron A. Denote by E the total
space of the sphere bundle associated with 2. Let B.(E, E) be the
bordism group of compact mod 2 Euler spaces. We can define a homomor-
phism e.:B,(E, ) — Z, by using the transversality theorem. (See [6]
for details.) Let U, be the Thom class of & and let w(£) be the dual
Stiefel-Whitney cohomology class of &.

We have the following proposition ([6; Lemmas 3.2 and 3.3]):

PROPOSITION 3.1. For every map ¢: X — E in B (E, E), we have
CUUT*'0(8), Pusu( X)) =e(p, X). Furthermore, the dual Stiefel-Whitney
cohomology class w(g) is completely characterized by this identity.

Let M be a PL-manifold and let M and I be codimension zero sub-
manifolds of oM such that oM = MU M and MN I = oM = oM. Let X
be a mod 2 Euler space PL-embedded in M such that 6Xcif and X — 6XC
M — oM. We denote by f: (X, 0X) — (M, i) the inclusion. Let N,(M, M)
be the differentiable unoriented bordism group and let B,(M, M) be the
bordism group of compact mod2 Euler spaces. We have a natural
homomorphism b: N(M, M) —B,(M, M). Now we define homomorphisms
e, B, (M, M) — Z, and e, = g,0b. Let ¢:V — M be a map in B,(M, M).
Then there exists a PL-embedding +: (V, dV) — (MxD* MxD* for k
sufficiently large, such that + ~ @x{0}. By using the transversality
theorem, we may assume that (V) is transverse to XxD* in Mx D"
Define ¢; by (@, V) = e(y(V)N X x D¥), where e takes the mod 2 Euler
number. The homomorphism &, is well-defined by the transversality
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theorem and Proposition 2.5.

PrOPOSITION 3.2. Let f: X— M be as above. For every map o:
VoM in R(M, M), we have {([M]N)"'(fusx(X)NBDM)), Pys (V) =
e;(p, V). Furthermore the homology class f,s.(X) is completely charac-
terized by this identity.

PROPOSITION 3.3. In the same situation as in Proposition 3.2, for
every map @:V—M in B.,(M, M), we have {([M]N)(Ff8x(X)Nw(M)),
¢*S*(V)> = é‘,-(g), V).

PROOF OF PROPOSITION 3.2. Let +: —>MXxD* be a map such that
¥ = @x{0}. Then {([M]N)7(fis:(X)NB(M)), v¥rs84(V)) = {([MXD*]N)™
((fxid)x84(X x D¥) N w(M x D¥), 4r,8,(V)>. Therefore we have only to give
the proof for the case where ¢:V — M is a PL-embedding and (V) is
transverse to X in M.

Let v = (E, @z V) be a normal block bundle of ¢: V— M and let U,
be the Thom class of . Then [E]NU, = @z V]. Since s, (V) =[V]n
w*(V), we have

IMIN) " (fesu(X)NW(M)), Pyss(V))

= LIM]IN)fas«(X)Nw(M)), P ([VINw*(V)))

= (U, U@ 'o*w(M) U ' w(V), [E]N@E '@*([M]N)7fi8.(X)) .
If we define f;: XN E—E by fz(x)=1(x), then [E]N @ '@*([M]N)7f8:(X)=
FexSx(XNE). On the other hand, we know that ¢*w(M)Nw*(V) = w(v).
Hence <([M] M) (fe8(X) NW(M)), Px8u( V)> =<(U,U PE ' w(), Fee$:(X N E)> ’
which is equal to e(XN@(V)) by Proposition 3.1. In view of the defini-
tion of e;, we have e;(®, V) = e(XN@(V)). Thus we obtain the formula.
The uniqueness of f,s,(V) is clear (cf. [6, Lemma 5.3]). q.e.d.

PrROOF OF PROPOSITION 3.3. We can inductively construet a eohomolo-
gy class O(f) = O(f) + O f) + -++ + ®(f) in H*M, M; Z,) satisfying
(D(f), Pus(V)) = &4(p, V) for each (@, V) in B,(M, M). We define 9°(f)
in H'(M, M; Z,) by 0°(f)(@.sy(V))=e4(p, V) for (@, V)in By(M, M) and 0*(f),
k=1, in the same way as in [6]. The uniqueness of such a cohomology
class is also obtained and we have O(f) = ((M]N)"(fis«(X)Nw(M)) by
Proposition 3.2. q.e.d.

4. Proof of the theorem. In order to prove the theorem, we need
the following Halperin type formula ([4], [7]), whose proof can be found
in [8].

PROPOSITION 4.1. Let & = (E, i, X) be a block bundle over a mod2
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Euler space X. Then 1,8,(X) = (s,(E)N U)Ni*""w(8).

PROOF OF THE THEOREM. The case where X and Y are collarable
implies the general case. Thus we may suppose that X and Y are
collarable in M. Let p(f, 9) = (IM]1N){(fe8+(X)-948:(Y) NwW(M)) Nw(M)},
P«8x(V)>. We will prove that p(f, g) =ei®, V) for each (@, V) in
N.(M, M). This implies our theorem by Proposition 3.2.

Let ¢: V— M be a map in N, (M, M). We can choose a PL-embedding
G V— MxD* for a sufficiently large that + is homotopic to @ x{0}:
V— MxD=* and (V) is transverse to (XUY)xD* in MxD® Hence
we give the proof only when @: V — M is a PL-embedding such that (V)
is transverse to XU Y in M. We thus assume that @:V—>M is a PL-
embedding with a normal bundle v = (E, ¢z V). We have the following
commutative diagram:

XTXQE*;XHQD(V)
7 a

M- E \«5"‘— 1%

QT ) QET \

Y VYNEZ Yno(V)

Here all maps except ¢;: V — E are inclusions and v(py) = (XN E, @y,
XNe(V)) and v(py) = (YNE, @y, YN@(V)) are block bundles. Let U, be
the Thom class of the normal block bundle v = (E, ¢z V), that is, [E]N
Uy, = @z[V]. Let w() be the dual Stiefel-Whitney cohomology class of
the normal block bundle y. Note that w(v) = @*wW(M)Uw*(V) and s, (V) =
[VINw*(V). Then we have

p(f, @) = {AM]IN)H{(fu8x(X) 9s8:(Y) NB(M)) N (M)}, Pu8i(V))
= {(IM]IN)"fe8:(XDU([M]N)'gu8:(Y) U (M)
Ua(M), e VINw*(V)))
= (UgU@t " w() U ' @*([M]N)7'g48,(Y)
Ut 'o*o(M), [E1N @3 9*([(M]1N) " Fisu(X)) .

By the naturality of the Stiefel-Whitney homology classes and simple
calculation, we have

PE P*([M]N)7'9484(Y) = ((E1N) ' gras(Y N E)
and
[EIN@E "@* ([ M]IN) " fi8:(X) = feusu(XNE) .
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Let Uy, be the Thom class of the block bundle v(@y) = (YNE, @y, YN@(V)),
that is, [YNEIN Uy = @[ YN@(V)]. Then

UzUot 'w(v)U et @*((M]N)7g484(Y)
= UzUps W) U(E]IN)"'gexs(Y N E)
= (E]1N) " (Ges3:(YNE)N{U Ut "w(»)})
= ([E1N)7'gex({s:(Y N E) N U} Nt " w((ey)) -

By Proposition 4.1, we have (s,(YNE)N Uy) N@s "Wp(Py) = Pre8(Y N
@(V)). Noting that % 'o*w(M) = j*w(M) = w(E), we have

o(f, 9) = KIEIN) " 9uxPras«(YNP(V) UB(E)), fs84(X N E))
= LEIN)grx (Y NP(V)) NWB(E), frss:(XNE)) .

Since YN(V) is transverse to XNE in E by Lemma 2.3, we have
KLETIN)'gra(sx(Y NP V) NW(E), fexs+(X N E))) = &,,(fz, XNE) by Pro-
position 3.3. In view of the definitions of &,, and e,, we have &, (fz,
XNE)=eXNYN@(V)) =e,(p, V). Hence p(f, 9) =elp, V) for each
(@, V) in N, (M, M). By Proposition 3.2, we have (fi8,(X)-g.8.(¥Y)N
W(M) = hys,(XNY). q.e.d.
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