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1. Introduction. H Hopf [3] studied the problem of enumeration of
homotopy classes of maps of S® on S% His useful idea, the socalled
Hopf’s invariant was extended [4] for mappings of a (2# — 1)-dimensional
sphere into an #n-dimensional sphere, L. Pontrjagin [7] succeeded the
enumeration of the homotopy classes of maps of a 3-complex K?* on S2,
There Pontrjagin obtained the result that Hopf’s invariant only determines
homotopic classes of the maps of S* on S*. H.Whitney [9] reformulated
another Hopf's theorem [5] which is essential for the theory of maps,
where Whitney introduced two deformation theorems and the definition of
a standard map. In this paper we shall attempt the generalization of that
Pontrjagin’s theorem. We generalize Whitney’s deformations and standard
maps for this purpose. If two maps of a (4k — I)-dimensional sphere into
a 2k-dimensional sphere is given, the necessary and sufficient condition for
the homotopy of the two maps is that their Hopf’s invariant are equal each
other and they are satisfied by some conditions of homotopy. If we set
n = 2, Pontrjagin’s theorem follows as a corollary of last theorem by virtue
of the Eilenberg’s Homotopy Theorem [17.

2. Let K1 Ié” be simplicial subdivisions of S**-!, S” respectively and
70 are n-simplex of I?”.We may choose K" so that if p, is an interior point
of ¢ and p, is the antipodal point of S*, each great semicircle from p, to
pb intersects the boundary o7; exactly in one point. By pushing along these
semicircles, we define a deformation @; of the identity gy(p)=p into a map
6., where 6,(p) = p. for p in S* — 7. We now generalize the definition of
Whitney’s standard map.,

DEeFINITION 2.1, Let C* be a complex of K*-! and f a map of C* into
K, We say f is standard if f(p) =pip € C*) or f(p) = 0u(p) (b € CV),
where f is a suitable simplicial map of C* onto 7y,

DEFINITION 2.2, Let f be a map of K*-1 into K», We say f is standard
if K**~!is a sum of some complexes and f is a standard map on every
one of the complexes.

DEFINITION 2.3. 7j which is used in the definition of ¢, is called the
basic simplex for standard maps,

LemMA 2,1, Let f is a map of S**~! into S*, then there exists a standard
madp which is homotopic to f,
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PrOOF, f maps K**-! into K" and there is a simplicial approximation
7’ which is homotopic to f.

We set?zp) = Gy ;(p)) (pe K*-1). As @, is a deformation from the identity
&, into ¢, 60(;) ~ (91(;) =*; on ;’*‘(-r};), On the other hand, Go(f*) ~ el(f* =P, on
Km-1 — f"(q-’;). By Definition 2.2, ;’*is a required standard map,

Let f be a simplicial map of K**-! into Kt". Following Hopf’s notation
[3,4] we denote by ®Pgsm-1(p) the inverse image of p, for f. It is well
known that ®Psm-1(p,) is the sum of some triangulated manifolds M; (Z =
1.2, ....E). This triangulation depends on the triangulation K**-! of S§%"-1,
When M; is mapped on p, by f we denote the complex which is mapped on
72 by R; (by). If we assume that the subdivision K*"-! is sufficiently fine, it
follows that R; | R; = 0 (Z & j) by virtue of the relation M; N M; = 0(; %j).
Every (2n — 1)-simplex T,**-! of K?*~! which is mapped on 7% necessarily
intersects Pgm-1(p,). As we easily deduce, on account of the fact R; ()
R; = 0, that only one of M;'s interseicts a arbitrary preasigned simplex
T2t @em-i(py) N T-'= M; T, is an (n — 1)-simplex (ag,ag, ----,
a%_)). Any two of its n-simplexes mapped on 7§ have a common 1-simplex,
These 1-simplexes determine an (n — 1)-simplex which is a face of T2,
We denote it by (e?, %, - --,e%_;). Then {a§,a?, ----,a%""; e%, €%, .... e%_}is a

¥
(2n — 1)-simplex which we denote by T2-%. Such (2% — 1)-simplex is obtained
from every simplex of M;. zw (eg,ef, ----, ex_)) constitutes a triangulated
manifold M;. We consider the following complex from n-faces of f;"“:
(att)v’ a‘I"? e '7“%-17 eg) + ( - 1)n_l(a?) A ',a5-1,33, e?)
+ (= 1POD(ag, ..., an 0808 e8) + . ..+ (— DD an_ emer .., e )
The sum of these complexes for every a«such that M; | T2-' % 0, is given
to constitute a #-manifold bounded by M; and M;. This manifold is denoted

by K. We replace (e}, ef, ----,e%_,) by (eg, e®,,, ---.,e%_,, €, ..., %_). Then
2. (@ a8, ar e + (—Dr-iaz, af, -, a8, el e,
+ ( - 1)2(”_1)(‘15, agv tetty :’/_17 e;: ez...li eg+2) + cece
132
+ ( - 1)(n D (0%_1, e:’ e:+11 ] eg-—l: ‘33”: elw' ct e:—l)]

constitutes. a similar #-manifold bounded by M; and M;, We shall denote
it by K. As M; ~ 0 in S-!, there exists an n-complex I?; bounded by A1,
Therefore K;p = Kip + I?, is n-complex bounded by M;. As p, is an interior
point of 7%, p, and vertices of each (» — 1)-face of 7} make #x-simplexes
Toop Top -+ - +» Toge 1f We replace 75 by 7, ..., 75, in 15', then the complex thus
obtained is more fine simplicial subdivision than ): We shall denote the
resulted complex by the same notation En for berevity. This notation will
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not throw us into confusion. Similarly we can consider a fine simplicial
triangulation of K?*-! by inverse image of K" by f and a suitable addition-

al subdivision. We shall also denote it by K**-!,
DEFINITIOIN 2,4, We paste some simplexes of a manifold in Euclidean
space and we say that the resulted complex is a manifold having some

singular simplexes.

LemMA 2.2. K;p, may be chosen as a manifold which has some singular
simplexes of at most one-dimension.

ProoF. Let us consider that a fixed point of S*»~! is a peint at infinity,
then S*#-1 may be regarded as the sum of the point at infinity and a (2n — 1)
dimensional Euclidean space, Of course, we don’t take the point at
infinity on Pgm-1py). Let T%' be any (n — 1)-simplex of M; and we project
every Ty ' from a suitable point and denote by P}, the resulted sets, We

shall prove that K;, + 3,P7, is an n-manifold which has boundary M; and
some singular simplexes of at most one-dimension, At first it is clear that

Kip + 3,P?, has these properties except for singularity of at most one-

dimension. Let T};' and T%;' be a pair of adjacent simplexes of M; and '
Ty, Tj;' be another adjacent pair. We may assume (T3 U Tigh N (Tt
UTi) =0, If P, U Pp, and P, U Pk, U Kip have a common #u-simplex
(@, @y, - . ..,a,), we replace the one in either of the two complexes as follows :
We consider an (2 + 1)-simplex (ay, ay, -- .., @,+1) which has n-face (aa;.-. ..
a,) and take an interior point & of the former. We shall replace (aya;. . . .as)
of P}, U Pl,by[(ba,---- an)—(baya,- - -.as) + -... + (— 1)baya, - - - -an_1)]. If
*.
K*-1 K are divided finely by &, f(b) respectively and K2?*-! isdivided suitably
moreover, / may be considered as a simplicial mapping., The resulted
*
complexes are also denoted by K#*-!, K#», However this notation will not
confuse us. Suppose that such process is done for every common #z-simplex
of Pk, U Py, and P}y U PJL, UKy, then they have simplexes at most of dimen-
sion # —1. If » —1 =1, theproof is complete, Hence we assume n —1 > 1.

We denote one of the common (# — 1)-simplexes by (aya; - - - -@,-1) and replace
it as follows: We consider n-simplexes (@a:- . - .a@,) and (@ya: . . . .a;) of P%, U

P, which have the (# — 1)-face (@ya:....a,-1) and take its interior peint &
and &', respectively. At first, we replace (@@ -- -.Gn-1a,) and {@ya; -+ ..a@,-1a,)
of P, U P, by

Cr=[(0a....an) — (bayas--an) + -+ -+ + ( — 1) (bapa:- - - -Gp-180)]
and
Cr=[(bar---a))—(baa,---a))+ ---- +(— 1" baya,-- ..Gs-1 a,)]

respectively. Secondly we can consider an #-dimensional regularly connected
complex C” bounded by
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[(ba,-. - @n-1) — (bBBy-- - -@n1) + .-« + (= 1)~ Ybaya;....an-1)]
and

[@ar....an-1) — (Vayas---au-1)+ -« + (=1 1(0aya: - --an-1)]
so that does not intersect P}, U Py, U K},

We replace (@y@; -« -+ -+ ++@n-10n) + (@1 - - - -@n-1a;) by C?+ C* + CZ Sup-
pose that such process is done for every common (z — 1)-simplex of
Pl U P, and Pl U P, U K.,, then they have common simplexes at most
of (n — 2)-dimensions. If we take care of the fact that every common (2 — 2)-
simplex is a common face of some z-simplexes (its number need not be
for the common (# — 2)-simplex necessary two), we can perform similar
process. By a repetition of similar processes, we can lower the dimension
of common simplexes of P}, U P/, and P}, U P%, U K} till at most 1.
Because the dimension of the last common simplex is calculated from the
dimensions of S**-!, P}, U Pk, and Pjy U P, U K2,

3. Whitney [8] gave us special deformations for a map of an #-sphere _
into another z-sphere. We generalize these deformations for our purpose,
Let &, be an interior point of 7, Z‘o be the antipodal point of S™ and K7,
be the complex constructed in Lemma 2.2.

We assume that o = (@ya,----a,), o' = —(a)a----a,) are oriented #-
simplexes of K7, with the common (# — 1)-face 7 = (@a;----a,).

Lemma 3.1. Let f be a standard map of K}, into S, and f(c) = =+ S,,

=E,, then there is a standard map g which is homotopic to f and glo) = &,,
go') = = S™ leaving the degree of K}, — (o + o) fixed.

LemMMA 3.2. Lot f be a standard map of K?, into S* and f(a) ="+ S”,
J(&') = —S* then there is a standard map g which is homotopic to f and

go) = &y g(a’) = & leaving the degree of K}, — (o + o) fixed.

Proor orF LeMMA 3.1. We consider the case where = has no singular
1-simplex at first. Its proof is equal to Whitney’s, but I recall it for
convenience of the case where 7 has singular simplex.Set = = (a1, ay, -. .., @),
o1= (), Qs -...,4n), 0= (ayas ----, ay).

Let & and &; be the affine maps of o, into 7 and o, sending g, into a,
and a) respectively. For each p in o, let a(p, #) be points which run linearly

along the segments p & (p) and &(p) Ep) as # run from 0 to 1 and from
1 to 2.

_ [fLa®,u—1t)] t <u)
et plLat(p, w)l = {fEa(P, 0)] t>u)
and ¢up) = f(p) in K%, — (o0 + o’). As f(p)=E, in 9o + 3¢’, ¢ is clearly a

deformation of ¢, =f into a map ¢;. The map ¢, in ¢’ is obtained from
the following relation :
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$ila(p, u)l= fla,1—u)] 1=w.

Hence ¢i(o’) = flo) = =S Also ¢i(o) = ¢La(p, u)]= fLa®, 0= & (1 > u).

Then ¢; is a required map g
Seconly, let + have some singular 1-simplexes. We assume that o o’

=, - n o = ; have common singular 1-simplexes. All passible cases are
classified essentially in the following three:

0 'szi% fie') = B
flx)= = 5m, fo') = &y,
) e - fio') =B
(11) * _ * _
f(o-) = EOr f(O‘l) = EO)
%f(a) - fo) = By
(iii) N .
flo)= =5, fid) = = Sn.

In (i), we may take the common one as the deformation for o + ¢’ and

* * . ’ ’ :

o + ¢’. In (ii), by the deformation for o + ¢’, o (| ¢’ = 7 is removed from
* —

a face of 77, to another face and this doesn’t contradict to f(:— +o')= &

We shall consider the case (iii) in the proof of Lemma 3.2. If another face
of o+ ¢’ has also a singular 1-simplex, the above deformation may be

done at will.
Proor or LEMMA 3.2. Whitney’s deformation must be modified a little

for the case that K}, has singular simplexes. At first, let + have no
singulsr 1-simpexes. We denote by A.\’ the affine maps of o and ¢’ into
77, respectively such that

D) = 6:0.9)) ®e€ o)

= (N (D)) € d).

Set 7y = (bob1-+ - -ba), Na:) = be;, and N(@)) = by, N(a:) = by, (i >0). As flo)
=—flo’) and dfo)=dAaa - @) = —dlc") = d{ — o) =d{aa..-. a),
bz biy++ - by, is an even permutation of &, B..--bu,. Applying Whitney's
Lemma [8], we find a deformation A, of ¢’ in 7§, such that Ag=2N', A\’ is
affine, and

M) = (@), Aa(a) = Nar) (G >0) 1
If we put
_ [6.(u(D)) (n € d)
D) {f@) (¢ € K3, — o), @
then ¢; is a deformation of ¢, = f into ¢,.
Set T = (ar,a, ...., (ln), oy = ((10, as, -.. .,an) and o-i = (a(;,a,, e -,d”). Let &,

and 8, be the affine maps of 7 into o, and o sending @, into g, and a;
respectively. For each p in r, let B(p,#) and B(p, ) be points which run
linearly along the segments &;(p) p and 8,(p) » as # run from 0 to 1 respe-
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ctively. Then (1) and (2) give us

¢1EB(P; u)] = ¢1[B’(p) u)]'

We set ¢, = ¢* and consider the following deformation :

¢zEB(P, )] = - BB D, uy] = $LBB, (1 — thu)]
$dp) = ’g'o @ eKj — (o + )

* —
As g(p) =& (pE€ o + o), qS] is a required map g of Lemma 3.2. Secondly,
let ¢ N ¢’ = T have some singular 1-simplexes. We assume that o ¢’ =17
* * *
and ¢ () ¢’ = T have some common singular 1-simplexes. As we may prove

analogously the similar cases of (i), (ii) of Lemma 3.1, we shall investigate
only the following case:

flo) = =8, fe) = &,

f(o) =+ 5", fla') = = Sm.
When o [ ¢’ = + receive the deformation of Lemma 3.1 and ;— n ;’ =tr
receive the deformation of Lemma 3.2, + and 7 are removed in the same
state by above deformations. The common 1-simplexes of + and : don’t

contradict to two deformations. When another faces of ¢ + ¢’ have singular
simplexes, the deformation of Lemma 3.2 may be done at will.

4. We introduce following several definitions. Definition 4.1 is used
by Hurewicz [6] already. Let f;, f; be continuous mappings of $*#-! into S™.
DEFINITION 4.1. If 1 and f, are homotopic on the m-dimensional skeleton

of K*-! then we say that f; is homotopic to f; in m-dimension and we
denote f; ~ f2

DEFINITION 4.2, If fl f2 follows from f; ~ L, we say that (f,f;) are

raised by one dimension from m-dimensional homotopy

DEerFiNiTION 4. 3. If f ~ 0 follows from f ~0 we say that f is raised by
one dimension from mz- dlmensmnal 0- homotopy

We shall consider a map f of S*-! into S*. In order to characterize it
by Hopf’s invariant, we assume that # is even according to Hopf’'s remark

L83

THEOREM 4.1. Let f be a map of S*-! into S*. If f|R*X(p,) can be raised
by 2k — 1)- dimensions from (2k)-dimensional 0-homotopy leaving f~*(p,) fixed
and its Hopf’s invariant equal to 0,then f is homotopic to 0.

Proor. By Freudenthal’s Lemma [2], ¢s«-1(P,) may be considered as
only one triangulated manifold M*-!, There is a manifold K% bounded by
M?-! which has at most some singular 1-simplexes by Lemma 2.2,

The map f can be considered as standard map without any loss of
generality by Lemma 2.1, when we use Lemma 3.1 and Lemma 3.2.

As Hopf’s invariant is equal to zero, there are a set of 2k-simplexes
G1,0, -+, T3 01,0 v.., o, on K* where o; and o are mapped on S*
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positively and negatively, respectively. For oy ando’; (i =1,2, --..,s), there
are regularly connected chains o;+ oy + 0o+ .... + 0y +0o; on K¥F. It
may be supposed that dAc;)= + 1, dios,) = di(own) = dloy) = -...0,d(a’;)

= —1, Using Lemma 3.1, we deform f in o; + o, then in oy, + o4, etc;
then using Lemma 3.2, we deform the map in o, + ¢’;. The new map f’
has as its degree d;/(c;) = dr(o1,)--.. = dp(o;) = 0. We continue in this manner

till no simplexes are mapped positively and none are mapped negatively
over S*. Then

f1 K2 >~0. rel. ~1(py).
By Definition, K* and K2 have no common 2k-simplex for any p. When f
is a simplicial mappmg, we consider the state where K% are mapped on

7. As we have deﬁned in §2, the part of K% which are faces of T*‘“-
is the following complex:

(a3, a?, ....,ag‘,h._l,eg) + ( — 1)*Ya% a3, .. -, a%_,e%,e%.))
+ (- 1D»#=(a%, af, :..,a} % e%, ,e%.)+ ...
+ (= 1)es-D¥ge Y1 €8y e 5 el e, ... el ).
If (a3,_,, ez, e, ., -..., €5 _ 1,e'o,el, ....,e%_,) is mapped on 7}, other simplexes

are mapped on faces of 7% and thelr dimensions depend on numbers of

. (a%_,e; e, ..eg‘k_l,eo,el, ....,e%_ ) is mapped on 7§ in the same manner
for each p except for orientation.

We may neglect this orientation when we take care of this similar

property for all a. If (@%x-1,€%,€5,,, ----,€}_,, €3, ef, ....,e5_ ;) is not mapped
on 745, we may neglect T4-!, In other words, we may consider that
(a%a?,....,a%_,) contract to a point and T%~! is empty. By Lemma 2.2, K is

not mapped on 7% then we may consider only K, for the 'degree based on
7¢» On the other hand, deformations of Lemma 3.1 can be introduced
leaving th_e degree of K 2 fixed. If we deform f to the standard map by
Lemma 2.1, f maps 3,K% on &, and f maps K* — 3, K" on &, by the above
remark. Hence f | K#~ 0. rel. JFY(py), where K*® is 2k-dimensional skeleton
of R*=Y(py). ~

By the assumption of this theorem, f | K#-1~0 rel. S U(dy), where K1
is a (4% — 1)-dimensional skeleton of R**-1(p,). Therefore f =0

THOREM 4.2. Let fi aid f, bz continuous mappings of S*-* into S** and
Ji | RE=Y(py), fLIR¥X(by) b2 raised by (2% — 1)-dimz2nsions from 2k-dimensional
homotopy leaving f-X(bo) and f~Xby) fixed respectivzly zmd Hopf's invariant y(f1)
be equal to y(f}), then fi = /..

Proor. We consider Cartesian (# + 1)-space €7+! and its subsets

n+1

S ={xe G D=1}

i=1
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E,’:_ = {x € S*: Xna1 2 0}7
LZ:{xé St x,.+1§0},
Spl={x€ S": Xnar = 0},

We define ¢, as follows :
¢; maps E¥-'onto S#-!
¢: is a homeomorphism on E#-! — Sgt-2,
$1(Sgk-2) = P, where P is a fixed point on S*-1,
d(¢]) = ].

We also define ¢, as follows:
¢, maps E%*-? onto S¥-1,
¢. is a homeomorphism on E#-1 — S#-2,
¢o(SE-2) = P,
d¢:;) = —1.

We may assume fi(P) = fo(P) = Q without any loss of generality.

Let R, S (+=Q) be different points on S%*. From (f,) = y(f), it follows
that o(f7(R),f7(S)) = o(f5(R), f7%(S)), where v means the looping coefficient.
Secondly we construct a map F of S*-! into S# as follows:

{f 1 on E4-1
F=\fy s on E%-1,
Then y(F) = v(F-Y(R), F~X(S)) = v(fT (R), T(S)) — v(f7Y(R), /;*(S)) = 0. If we
denote by [F1,[f1],[f.] the homotopy classes respectively, [F] =[fi]—
22 »

By the assumption of this theorem, F| R*-(p,) is raised by 2k — 1)-

dimensions from 2k-dimensional 0-homotopy. Therefore, by Theorem 4.1,
F~0, then fi >~ f,.

Pontrjagin’s theorem [7] may be obtained from Theorem 4.2 as its special
case we shall prove it in the following line:

THEOREM 4. 3 (Pontrjagin’s theorem). If fi and f, are maps of S° on S* and
(1) is equal to y(f,), then f; is homotopic to f,.

Proor. We use Eilenberg’s homotopy theorem [17],
Let K be a locally finite complex, K’ be a closed subcomplex of K, and
Y be n-simple. If the cohomology group H?, , (K — K')= 0 and f,,f, € Y,
then ‘
f1IK + K~ f,|K + K»! rel. A
implies
filK + K~ f,|K + K rel. A
for any subset A of K’. In our case, we replace K, K'(= A) by Ru(py) U
Ru(D0), T4 (0) U f5' (Do) Tespectively. We construct a map F of S° into S*
similarly as the proof of Theorem 4.2. Then Ry(5,) N Ry (by) = 0 and Ry (py)
(¢ = 1,2) is homeomorphic to S'x E?, where Ry(p,) and Ry (p,) are the inverse
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images of 7, for f; and f, respectively. As «(f1) is equal to (y(f:),fi|K*~
f2| K* rel. f7(po) U7 (po). On the other hand we can calculate that H? .,

CRu(Po) U Ry (Do) — [ (Do) U f51(bo)] is equal to zero. Then fi|K? > f,| K? rel.
FDo) U f7(by), therefore fi =~ f,.
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