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A FORMULA IN SIMPLE JORDAN ALGEBRAS
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0. In this paper, we give a proof of a formula ((14) in 3) which
gives a useful parametrization in reduced simple Jordan algebras. We
also summarize some relevant facts on Jordan algebras. This formula
and some of its consequences (e.g. Prop. 4, 5) were already used in [4Db]
and [5]. For basic facts on Jordan algebras, the reader is referred to
[2], [8], [4a, c] and [6].

Let A be a Jordan algebra over a field F' of characteristic zero. We
use the following notation:

{a, b, ¢} = (ab)ec + a(bc) — blac) ,

T.(x) =azx, P,(x) ={a, z,a} = @T? — T,2)x ,

(aOb)x = {a, b, 2} = (T, + [T, ToDx (a,b,¢c,xcA).
It is well-known that A has a structure of “JTS” with respect to this
triple product { }, i.e. one has
(1) {a, b, {z, 9, 2} = ({a, b, 2}, 4,2} — {x, (b, @, v}, 2} + (&, 9, {a, b, 2}}.

Throughout this paper, we assume that A is simple (and semi-simple).
Then A has a unit element 1 and the following symmetric bilinear form
on A is non-degenerate:

(2) (e, y) = ktr@0y) =k tr(T,,) (v,ycd),
where k is a fixed element in F*(=F — {0}).

1. Let ¢ be an idempotent in A and let
Ay = A)e) = {we Alex = \x} for neF.
Then one has the direct sum decomposition (“Peirce decomposition™)
A=A+ A,,+ A,
with
A= A,, AA,,C A, a=0,1),
(38) AA =0, A, C A, + A,
{Ay Ay A} C As_py, -
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Moreover, A, and A, are simple subalgebras with unit elements e and
1 — e, respectively, (which are central if A is so), and the map a — 27T,|A4,,
gives unital Jordan algebra representations of A, and A4, which are
mutually commutative. For a € 4, we denote by a; the A;-component of
a in the above decomposition. Then one has

a, = 2e(ea) — ea = P,(a),

ay, = 4(ea — e(ea)) ,

a, = a — 3ea + 2¢(ea) = P,_,(a) .

Now let x€ A,,. Then by the definition one has

0 it yeAd,,
(4) {e, 2, y} =1 elwy) = (xy), if yed,,
| xy(€ A,p) if yeA,.
It follows that e O« is nilpotent and one has
Y if yed,,
(5) expleOa)y =1 ¥ T €@¥) if yedn,

Y+ yx + %e(x(yw)) if yed,.

An element a € A is called “invertible” if P, is invertible. If a is
invertible, then the inverse of a is given by a~ = P;'(a) and one has
PP, = aOa™* =id; in particular, aa™ = 1. For a given idempotent e,
we say a is invertible with respect to e if P,(a) is invertible in A,(e).

LEMMA 1. Leta = a, + a,. + a,, a; € A;, and suppose that a is inver-
tible with respect to 1 —e. Then there exist uniquely determined elements
xe A, and a;€ A, such that

(6) a = expled x)a, + ay) .

ProoF. In view of (5), it is enough to show that the following
equations in « and a; have a unique solution:

Ak = Qs a; + ‘é‘(x(aom))1 =, .

We denote the inverse of a, in A, by a;*. Then, since a,~— 2T, |4,. is
a unital representation, we obtain a unique solution given by

x = 4a5'a,, € Ay

6a
(6a) a; = a, — 2e(a,(a5'a,;) €A, . q.e.d.

2. A non-zero idempotent e is called “primitive” if A,(e) does not
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contain any idempotent other than e and 0. We call e “absolutely primi-
tive” if one has A,(e¢) = {e}r. A simple Jordan algebra A is called “reduced”
if all primitive idempotents in A are absolutely primitive. In what
follows, we assume that A is simple and reduced. (This implies that A
is central.)
As is easily seen, there exists a “primitive decomposition” of 1, i.e.
a set of (absolutely) primitive idempotents {e, ---, e,} such that
ee; = 0,:€; , ZT, e, =1.
=1
The number », which is uniquely determined, is called the rank of A.
We set dim A = n, rank A = r, and use the inner product {( > defined
by (2) with £ = r/n.
Let {e; (1 =17 = 7)} be a fixed primitive decomposition of 1 in A and
set
A €; if i = .r
(7) 4, =4 LY
A ple) N Ayple;) if 1#7.
Then one has the direct sum decomposition

14 = (}3 ziij.

1Sisjsr
From (3) one obtains multiplicative relations between the A,’s. In parti-
cular, one has A;;A, =0 if {3, j}Nn{k, 1} = @, and A;A;,C A, if © k.
For w,;, y;;€ A;; (i # j), one has

(8) TilYs; = %@%’, Yip(e: + e .
When 1, 7, k, | are all distinct, one has
(9) (@Y )2 = Tu(Yin2ia)
(@:Ye)250 = Cef(YiiZin) + Yui(@iR50)
= %@Qp Yii)Zie »

where ;€ A,;, etc.
It is known that there exists a positive number d such that dim 4,; = d
for all ¢ # j. Thus one has

10) n=1r-4+ %7‘(7‘ - 1d,

which implies 7|2n.
For ue A, we write w = >),;u; with u,;€ A4, In general, the
symbols like a,;, ,; are meant to denote elements in A,;, By (4) applied
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to e = ¢;,, we obtain
LEMMA 2. Let x,;€A; 0 <J) and yu€ Ay (K =1). Then one has

(11) (e @ijy Y} = { €:(@i;9s5) if 1=k and j=1,
0 otherwise .

This lemma implies that if the set of pairs of indices {(k, ])|1 =k,
Il < r} is ordered in the lexicographical order, then ¥y = {e, x.;, ¥u} # 0
y' eA,, (<Ul) implies (&,1") < (k,1). (In fact, if 7=k or if 7 =1l and
1<k, then ¥ =1 <k;andif j=landi=Fk, thenk' =k, ' =1<1.) It
follows that 3., e,0x;; is nilpotent.

3. For z = >, %; we set
(12) TS = > e,0%, v(x) = exp T\,

i<j

(13) &) = 5..11 1 Y Lok Cryky *** Lhpy_ys for 1<yj.

m=1 ) i<k < Thpy— 1<
We are going to prove the following
PROPOSITION 1. For x€>,;A;; and t,e F (1 <1 < r) one has

(14) ”(“0(2 tﬂi) = Z <ti + —1' Z tké:ik(x)Q)ei
i=1 i=1 4 k>
1
+ E‘Z_(tjéij(x) + 3 tkEzk(“')Ejk(“’)) .
1<j k>3
First, we apply the result in 1 to e =1 — e, = >Zle, setting x, =
Zi(jsr—l Zij and x,, = >,/o} %;,. Then x =2, + L1/2y Tij/; = e, and one

has by (4) (eO2,,)A,(e) = 0. It follows that
v(x)(i‘,ltieo = exp(T{" + eO x1,2)<§]1tiei>
1= .t i=1
= 1)(901)<§1 t,-e,) .
Therefore, to prove (14) (by induction on »), it is enough to show

(142) Mae, = e, + = 3 g (e)e + = 5 8(@)
5.5 @@ .

Now, since Ti’e, = 3. ;. (€ %y €,} = 0 and (e x.p)e, = (1/2)x,, by
(4), one has
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v(x)e, = exp(TsH + eDaype,

1 _
=e, + 5t + % Z‘Z %(Té;‘ " eOX,)" Ry

In expanding (T} + eO®,,)" "2, We denote by X the sum of the
terms containing e O, ¢ times. Then by (11) one has

) — ym—1 —
XM = szf Ly = < % - 7 R (e A,e) ,
1<K <se<Kp—1<T

Xm = 3 TP (eDa)TH ™ v, (e Ale);

my,mo21
mit+mo=m

hence also X™ =0 for £ =2 and X{™ =0 for m = ». It follows that

(15) tr + 3, X =38, (@) -
m=2 MM, ! i=1

On the other hand, by (11) one has

r—1
16) (0@ ™ w, = 5 2, (X, + 3 edea(X),) .
,3<r i=

i#J

LEMMA 3. For k<l <, one has

r—1
(e, O xkz)(_Z;, YarRir + 2 €Yir2sr )
%,5<r i=

i#)

am) = j<zr (@uYr)2ir + Yir@u2i,) + (Yrr@ui2ir) + @aYir)2er) -

%k

ProoF. By (8), (9) and (11) one has for 7,5 <7, 1 # j

( Tu(Yir2jr) = (XY1r)2ir if l=4,k+7,
Cu(Yurtir) = Yir(Tui2irr) it l=g,k+1,
e (T (Yir2ir) = e(Yir(@n2i,) if k=14l=7,
e @u(Yirzrr)) = e((Tulir)2iyr) if k=j,1l=1.

(er O %) (Yir2jr) =

On the other hand, putting {(y,, z,,» = «a, one has by (8), (9)

Low, it 1=1,
(er O r)(e(Yip2ir) = 4
0 if 1#1,

and for l =+

1
Iaxkl = Tu(Yir2ir) = @ulir)2ir + Yir(Xri21,)
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Summing up, one obtains (17). q.e.d.
By an easy induction on m,, one obtains by (16) and (17)

m ym,
Ta(o:r) v (erUz)Tx:- 2" 96/

=1
= 2< o ){2 (X (X$0),, + S e (K)o (X “)")} :

R

where m = m, + m,. Since Z;;8<7ZI__11> = <m s_ 1), it follows that

&1 ) = 1 4ymp—1 ymo—1
Z _m X" = 1_——_—(7)% Tm )' Ta(:l ' (6 O ®,.) Ta(c_f Ty
m=2 MLm= 1 2

m—1

=3 < " ){z (X)X + 3 e (X X))}

i#J

= <ZS VX)X + 3 TP (X)) (X))

1< _7_ <isr—1
1Ss,t<sr ISsStS’r 1

where the coefficients 7{y* are given as follows:

A f(fm =1\ m—1>:_1 if i<j or s<t,

50 m! s m — s/) slt!

i =
1 /m-—1 1 1 e ..
- == _- if 7= and s=1¢,
m!< s > 2 GIy !

where m = s + ¢t. Thus one obtains

X = S @) o S elul@))

m=2 m) 115
which, together with (15), completes the proof of (14a) and Proposition 1.

4. Next we prove the following

PROPOSITION 2. Let A be a reduced simple Jordan algebra over F
and let {e, 1 <1 =< r)} be a primitive decomposition of 1 in A. Then
ue€A can be expressed in the form

(18) u= »(x)(é tiei>

with €Ay, LLeF* 1 =1 =), ¢f and only if u is invertible with
respect to e, + - + e, for all 0 =1 =r —1. When this condition 1is
satisfied, x and t's in (18) are uniquely determined.

First, suppose u is expressed in the form (18) with ¢ > ; 4,;, and
t,eF 1 =<t1=7r). We observe that, since v(x) belongs to the “structure
group” of A (see 5), one has
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P, = v(w)P(iZ:‘; tie,->‘u(x) :

(We sometimes write P(a) for P,.) Since y(x) is unipotent and so
det(v(z)) = 1, and since one has P> t,e,)|A;; = (¢;t;)id for all ¢, 7, it
follows that

(19) det(P,) = (13 ti>2"/' .

Thus, if w is invertible, one has t,e F* (1 £ ¢ < r), and vice versa.
We put P = P(e;,; + --+ + e,) and
Af = Ay + -+ +e,)=Afe, + -+ + e:);

P® is the projection operator onto A" in the corresponding Peirce de-
composition. Then, in view of (14), it is clear that
Py = »(P‘“x)(i‘, t,e,-)

j=i+1
and so by (19)
. X r 24+d(r—i—1)
det(P(PPu)| AS") = (z t,.) .
j=i+1

Therefore, if t;e F* (1 <j =), then P“y is invertible in A{"’ for all
0=<17=<r—1. This proves the “only if” part of the Proposition.

Next, we prove the uniqueness of the expression (18) by induction
on r. The case » = 1 being trivial, we assume » > 1. TUsing the nota-
tion in 1 relative to e = e, we write u, = Uy, Uy = Doy Uy, Uy = PPu,
and z, = PY¢. Then by (14) one has

w = e + 3 te(En@?)
4 r>1

(20) Uy; = %(t;’&j(“’) + kg‘; tkElk(x>Ejk(x)> 2=sj=m,

Uy = v(wo)<§ tiei) .

First, by the third equation in (20) and by the induction assumption
applied to u, we see that x, (hence all z,; with 2=<7¢<j <) and ¢,
(2 £ 1 £ 7) are uniquely determined. Then, by the second equation in
(20), &,.(®), &,,.4(®), -+, &x(x) are determined successively by .., %, ,_i,
«++, Uy, Then x,, 2 -+, 2, are determined successively by &,(x), &:(x),
o, &,.(x), and finally ¢, is determined by the first equation in (20). Thus
all x,; and ¢, are uniquely determined.
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It remains to prove the “if” part of the Proposition. Suppose that
u €A is invertible with respect to e¢;,, + -+ + ¢, forall 0 7= r — 1.
We will show by induction on = the existence of # and ¢, A1 =71 = 7)
satisfying (18). The case r = 1 being trivial, we again assume » > 1 and
define u,, .., %, as above. Then u, satisfies the same condition as u for
1<i¢<r—1. Hence, by induction assumption, there exists (uniquely)
X0 € Dpgicjsr Ay and t,€ F* (2 <4 < r) such that

Uy = 1)(90{,)(2_‘,2 tiei> .
Putting y = 4us'u,,, one has u,, = u,y, and by Lemma 1

u = exple, OY)(te, + uy)

with some ¢, €F. Since det(P,) = t;det(P,,|A/e)) # 0 one has ¢ e F™~.
Since {v(x)|xe>.; A} is a group (see 5), there exists z€ >}, ; A;; such
that

(21) v(x) = exp(e, O Y)v(wo) .

Then, since v(xg)e, = 0, one has

U = 1)(90)(2I tiei> ,
as desired.

REMARK. By the uniqueness of the expression (18), we see that
2, = 2, = PYz. By an explicit computation, it can be shown that

v(w)(ig tiei) = exp( —g e, O &( ~x)>v(x0)<§ tie,-> .

Hence, again by the uniqueness, we see that in (21) one has y =

_Z§=2 Eli( —‘x)-

5. For a (semi-simple) Jordan algebra A, we define the “structure
group” G and the “automorphism group” K as follows:

G = Str A = {ge GL(A)|P(gx) = gP(x)'g for all xc A},

K = Aut A = {ge GL(A)|g(xy) = (9x)(9y) for all », y € A},
where t denotes the adjoint with respect to the inner product { ).
These are algebraic groups defined over F acting on the underlying
vector space of A.

We now assume, as always, that A is simple and reduced. Then
one has

(22) K={geGlgl =1}.
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In fact, it is clear that ge K implies gl =1, g =g~ and geG. Con-
versely, suppose that ge G and gl = 1. Then one has

9(xy) = 9{z, y, 1} = {9z, ‘97'y, 91} = (92)(‘'97'y) .
Putting x = 1, one has g = ‘g~'. Hence one has gc K. Note that the
condition g€ G and ‘g~* = ¢g imply P(gl) =1 and so g1 = x1. Hence one
has

(23) {9eGl'g™ = g} = K x {£id} .

Letg =LieGand t = Lie K. By (1) one has atbeg for all a,be A4;
in particular, T,eg and [T,, T;]€t for all @, be A. Actually, it is known
that g and f coincide with the linear closure of {a Ob (a, b€ A)} and
{[T,, T}] (a, be A)}, respectively (see e.g. [4a]). For xe>),; A, TV is
nilpotent element in g and so one has yv(x) = exp T:" € G.

We set
(24) p={T, (@acA)}, a={T,Q1=1i=n)}r.

Then it is easy to see that one has g =t + p (direct sum). Clearly, a
is an abelian subalgebra of g and, as is easily seen, it is “relatively
maximal” in p, i.e. there exists no (abelian) subalgebra a’ of g such that
a&Ea cp Let a* denote the dual space of a and let (&) be a basis of
a* dual to (7,). Then, by an easy computation, it can be shown that
for any pair (s, 7) with ¢ < j

(T |we Ayl

is the “root space” in g relative to a corresponding to the root (1/2)(¢, — &;)
(see [1], [4c]). Therefore

n, = {T\"|xe ZAij}

1<j
is a nilpotent subalgebra of g normalized by a, and so
expn, = {v(x) = exp T\V [x e >, Ay}

i<g
is a unipotent subgroup of G normalized by the subgroup corresponding
to a. (It is clear that a and n, are algebraic subalgebras of g.)

6. In this section, we consider the case where F'= R. A Jordan
algebra A over R is called “formally real”, if a* + b* = 0 (a, b € A) implies
a =b=0, or equivalently, if the inner product { ) (with £ > 0) is
positive definite (see [2]). This condition implies that A is semi-simple
and does not contain any (non-zero) nilpotent element. It follows that,
for any primitive idempotent e, one has A,(¢) = {e}r. Thus any formally
real simple Jordan algebra is reduced.
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LEMMA 4. Let A be a formally real simple Jordan algebra over R.
Then, for any ac A, there exists a primitive decomposition {e;} of 1 in
A and a;e R 1 =<1 =) such that a = >, ae;, ¢, = ++--=a,. The a;'s
are uniquely determined by a.

This follows immediately from the fact that the minimal polynomial
of @ in A has only simple real roots (see [4c]).

Now let A be a formally real simple Jordan algebra over R. We
denote by G° and K° the identity connected components of G and K.
From the definition it is easy to see that ge G implies ‘9 G and, for
g€ G°, one has ge K° if and only if tg~* = g. Therefore, by a theorem
of Mostow, G is reductive and K° is a maximal compact subgroup of G°.
Note that G and K themselves may not be connected even in the sense
of Zariski topology.

In the present case, the decomposition g =f + p is the Cartan de-
composition of g associated to K° and hence r = dim a coincides with the
(real) rank of g. (Thus » is certainly independent of the choice of {e;}.)
Moreover, the conjugacy of relatively maximal subalgebras in p implies

LEMMA 5. Let {e;} and {e;} be two primitive decompositions of 1 in
A. Then there exists k€ K° such that e; = ke, 1 <1 < 7).

From Lemmas 4 and 5 one obtains the following

PROPOSITION 3. Let A be a formally real simple Jordan algebra
over R and let {e;} be a (fixed) primitive decomposition of 1 in A. Then
for every we A there exist ke K° and «; € R such that

25) w=h(Zae), az--za.

The a.s in this expression are uniquely determined by u.

It is clear that w is invertible if and only if in (25) one has a,€ R*
for all 7. We say that the signature of w is (p, » — p) if @, > 0 and
a,., < 0. We denote by A* the set of all invertible elements in A and
by A® the set of all elements of signature (r — 4, t) in A. Then one
has

r

(26) Ax — H A(i) ,

i=0
Since A* is stable under G° and all A“’s are open, it is clear that each
A" is also stable under G°.

PROPOSITION 4. Let A be a formally real simple Jordan algebra
over R. Then the G°-orbit decomposition of A* is given by (26).
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It is enough to show that, for each 7, G° is transitive on 4. Let
u € A"”; then by proposition 3 one has the expression (25) with «,_; >
0> a,_,.,.. Hence it is clear that there exists g€ G° such that u =
g>5zhe; — 2i-r_ir1€;). This proves our assertion.

7. In this section, we assume F' = C. Then all simple Jordan algebra
is reduced. By the classification theory, one has

LeMMA 6. All simple Jordan algebra A over C has a real form
which is formally real.

It follows, in particular, that G is reductive, since it has a reductive
real form. Therefore, the same is also true over any field F' of charact-
eristic zero. (An analogue of the “unitary trick” in the theory of Lie
algebras.)

LEMMA 7. Let A be a simple Jordan algebra over C. Then, for any
invertible element w in A, there exists a primitive decomposition {e;} of
1 in A such that w s invertible with respect to e;., + -+ e, for all
015 r —1.

ProOF. We prove the Lemma by induction on ». The case r =1
being trivial, we assume 7 > 1. Take a real structure on A such that
Apg is formally real (Lemma 6) and write u = «’ + 1/ —1u” with «/, "’ € Ag;
then one has %' or 4’ # 0. By Lemma 4 there exists a primitive idem-
potent e, in A such that «’ or #”, and hence u, is invertible with
respect to e,. By Lemma 1 there exist y' € 4,,1 — e,), u; € A,(1 — e;) and
o’ € C* such that

u = exp((1 — e;) DY )(u; + a'e;) .

Since w is invertible and a’ % 0, one has that w; is invertible in A; =
A,(1 —¢;). By induction assumption, there exists a primitive decomposi-
tion {e; 1 £1=7r—1)} of 1 —e¢, in A; such that u; is invertible with
respect to e, + -+ +e_, for 0 =<1 <r —2. Then by Proposition 2
there exist &' € >, <, Ay, ;e C*(1 <1 < r — 1) such that

r—1
u = va)(Sae)

where V' denotes the mapping v defined with respect to {e;}. By what
we mentioned in 5, there exists 2’ € >}, ; A;; such
V(x') = exp((1 — e;) Oy W () .

Then one has



622 I. SATAKE
’ ’ =t ’
% = exp((l — e) O y')ﬂ(xJ(Z e + a'ei)

r—1
= v'(w’)(Z ae; + a’ei) .
i=1

Therefore, again by Proposition 2, % is invertible with respect to
Shouefor0=i=r—1. g.e.d.

PROPOSITION 5. Let A be a simple Jordan algebra over C. Then
G° = (Str A)° s transitive on A*.

PrROOF. For a primitive decomposition of wunity E ={e, ---, e}
(considered as an ordered set), we denote by A} the set of all elements
in A which are invertible with respect to ¢,,; + -+ + ¢, forall 0 =7 =
r — 1. Then Proposition 2 implies that, for a given FE, the group
(exp a)(exp n)(CG°) is transitive on A%. Clearly, for any two primitive
decompositions of unity E, E’, one has AX N A% = @&, and by Lemma 7
one has A* = Uy A,. Hence one can conclude that G° is transitive on
AX, q.e.d.
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