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A FORMULA IN SIMPLE JORDAN ALGEBRAS

ICHIRO SATAKE

(Received May 7, 1984)

0. In this paper, we give a proof of a formula ((14) in 3) which
gives a useful parametrization in reduced simple Jordan algebras. We
also summarize some relevant facts on Jordan algebras. This formula
and some of its consequences (e.g. Prop. 4, 5) were already used in [4b]
and [5]. For basic facts on Jordan algebras, the reader is referred to
[2], [3], [4a, c] and [6].

Let A be a Jordan algebra over a field F of characteristic zero. We
use the following notation:

{α, δ, c) = (ab)c + a(bc) — b(ac) ,

Ta(x) = ax , Pa(x) = {α, x, a] = (2Γα

2 - TΛt)x ,

(α D b)x = {a, b, x) = (Tah + [Ta, Tb])x (α, b,c,xeA) .

It is well-known that A has a structure of "JTS" with respect to this
triple product { }, i.e. one has

(1) {a, b, {x, y, z}} = {{a, b, x}, y, z] - {x, {b, a, y}, z} + {x, y, {α, 6, z}}.

Throughout this paper, we assume that A is simple (and semi-simple).
Then A has a unit element 1 and the following symmetric bilinear form
on A is non-degenerate:

(2) <x, y) = fctr(xπy) = κtr(Tay) (x,yeA) ,

where K is a fixed element in FX(=F — {0}).

1. Let e be an idempotent in A and let

Aλ = Aλ(e) = {x e A\ex = Xx} for λ e F .

Then one has the direct sum decomposition ("Peirce decomposition")

A. — J±o + Aχ/2 ~r A1

with

A\ = Aλ , AxAm c Am (λ = 0, 1) ,

( 3) \ AQA, - 0 , A\/2 c Λ + Λ ,

C Aχ_μ+U
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Moreover, A1 and Ao are simple subalgebras with unit elements e and
1 — e, respectively, (which are central if A is so), and the map a h-> 2Ta\ A1/2

gives unital Jordan algebra representations of Ao and A19 which are
mutually commutative. For aeA, we denote by aλ the A^-component of
a in the above decomposition. Then one has

aγ = 2e{ea) — ea = Pe(a) ,
αi/2 — 4(eα — e(ea)) ,

a0 = a — Zea + 2e(ea) = P^e(a) .

Now let xeA1/2. Then by the definition one has

[0 if y e A, ,

( 4 ) {e, χ,y} = \ e{xy) = (xy\ if ye Ai/2 ,

! xy( G A1 / 2) if yeA0.

I t follows t h a t e D a? is n i l p o t e n t a n d one h a s

2/ iiyeA19

y + e(α#) if y e A1 / 2 ,5 )} exp(e D x)y =

y + yx + —e(x(yx)) if 2/ e A o .

An element α e i is called "invertible" if Pa is invertible. If a is
invertible, then the inverse of a is given by a~ι = Pϊ\a) and one has
PaPa~ι = α D or1 = id; in particular, αα"1 = 1. For a given idempotent e,
we say a is invertible with respect to e if Pe(ά) is invertible in Aj.(e).

LEMMA 1. Let a = a0 + α1/2 + αx, aλ e Ax, and suppose that a is inver-
tible with respect to 1 — e. Then there exist uniquely determined elements
x e A1/2 and a[ e Ax such that

( 6 ) a = exp(e D x)(a0 + a[) .

PROOF. In view of (5), it is enough to show that the following
equations in x and a[ have a unique solution:

aox = am , a[ + — (x(aQx)\ = a, .

We denote the inverse of a0 in Ao by αί"1. Then, since ao\-^2Tao\A1/2 is
a unital representation, we obtain a unique solution given by

j x = 4α o " 1 α 1 / 2 e A 1 / 2 ,
{ a[ = at — 2e(am(ao1a1/2)) e A x . q.e.d.

2. A non-zero idempotent β is called "primitive" if Ax(e) does not
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contain any idempotent other than e and 0. We call e "absolutely primi-
tive" if one has Aλ(e) = {e}F. A simple Jordan algebra A is called "reduced"
if all primitive idempotents in A are absolutely primitive. In what
follows, we assume that A is simple and reduced. (This implies that A
is central.)

As is easily seen, there exists a "primitive decomposition" of 1, i.e.
a set of (absolutely) primitive idempotents {eif •• ,e r} such that

r

Wj = 8^ , Σ βt = 1 .
i = l

The number r, which is uniquely determined, is called the rank of A.
We set dim A = n, rank A — r, and use the inner product < > defined
by (2) with K — r/n.

Let {et (1 ^ ί ^ r)} be a fixed primitive decomposition of 1 in A and
set

( 7 ) Λ « = " < ,n A I Λ f - ^
p 1 Π /I I Λ \ if ft —/- n

Όι) I I JΓl.ι/2\VjJ A-L ^ ~r~ J

Then one has the direct sum decomposition
— £D A

From (3) one obtains multiplicative relations between the A^/s. In parti-
cular, one has Ai5Au = 0 if {ί, j} Π {k, 1} = 0 , and AtjAjk c Aik if i Φ k.
For xφ yi3 e Aί3- (i Φ j), one has

( 8 ) xtiyiS = γ(Xφ VtsXet + e3) .

When ΐ, j , k, I are all distinct, one has

( 9 ) (XijVsJZki = XtAVskZki) ,

(fliiVti)Zik = XijiVijZjk) + VijiXijZjk)

where a?<y€A<y, etc.
It is known that there exists a positive number d such that dim Aίy = d

for all i Φ j . Thus one has

(10) n = r + ^r(r - l)d ,

which implies r|2w.
For i6 6 A, we write u — Σ<^y ̂ y with w<y 6 A<y. In general, the

symbols like α ίy, a?<y are meant to denote elements in A ίy. By (4) applied
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to e = eiy we obtain

LEMMA 2. Let xi5 e Atj (ί < j) and ykl e Akl (k ^ I). Then one has

%ijVki i f j = k o r I a n d i Φk,l ,

(11) {eif xίjf ykl} = if ί = k and j = I ,

0 otherwise .

This lemma implies tha t if the set of pairs of indices {(fc, l)\l ^k,
I <[ r} is ordered in the lexicographical order, then y' = {ê , a?̂ ., T/^J ^ 0
1/' e Awv (k' ^ Γ) implies ik\ V) < (fc, ϊ) (In fact, if j = k or it j = I and
i < k, t h e n kf — % <k\ a n d iί j = I a n d i ^ fc, t h e n k' = k, V = i < I.) I t

follows that Σ i < i ^ Π % is nilpotent.

3. For a; = Σϊ<y «iίf w β set

(12) T<+) = Σ e, D xts , p(a ) = exp Tx

+) ,

(13) ξi:i(x) = Σ — r Σ ίKijfê *!̂  <&*„_!,• for i < i .

We are going to prove the following

PROPOSITION 1. For x e Σn<j Ai5 and tt e F (1 ^ i <: r)

(14) vG»)(Σ *A) = Σ (*< + -f Σ ί*fα(

+ Σ tkζik(x)ξjk(x)) .
k>j J

First, we apply the result in 1 to e = 1 — er = ΣΓ=ί β*, setting ^ =
and a?i/2 = Σί=ί »<r Then a? = x1 + x1/2, Tg/2 - e D a?1/2 and one

has by (4) (e D x^A^e) = 0. It follows that

+ e D ^1

Therefore, to prove (14) (by induction on r), it is enough to show

(14a) v{x)er = er + - 1 Σ ξir(x)% + i - Σ £<r(a0
4 i<r 2 «r

+ Σ ί W ί W

Now, since T£ er = Σi<j<r {et, xij9 er} = 0 and (e D a?1/2)er = (l/2)x1/2 by
(4), one has
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v(x)er = exp(Tri+) + e D x1/2)er

615

2 w=2 m\
e Π

In expanding (Γi^ + en XmT^x^, we denote by X{

μ

m) the sum of the
terms containing e Π x1/2 μ times. Then by (11) one has

Σ χiklχklk
< f c < r

^r ( e

i w ) - Σ

hence also Xj,"' = 0 for μ ^ 2 and Xim) = 0 for m ^ r. It follows that

(15) χ1Λ + Σ -^7 JQ"' = Σ ξiΛx)

On the other hand, by (11) one has

(16) (e π xυ2)Tί\)m2-ιxm = Σ »irOT2))ir + Σ ^fe r(Xr2 ))^) .
i,j<r i-l

LEMMA 3. For k < I < r, owe /̂ αs

(β* • »w)( Σ VirZjr + Σ et(yirztr))
\i,j<r ϊ=l /

(17) = Σ ((XkiVir)zjr + yjr(XkiZir)) + ek(ykr(xklzlr) + (xkιVιr)zkr) .

(β* Π a?«)(2/<r^>) =

PROOF. By (8), (9) and (11) one has for i, j < r, i Φ j

XkliVlrZjr) = (XklVlr)Zjr ί f I = h k Φ j ,

XkliVirZlr) = ViΛXklZlr) ί f 1= j , k φ ί ,

ek(Xki(VkrZir)) = ek(ykr(xklzlr)) i f h = ι,l = 3 ,

I β * G B « ( ! / i r 3 * r ) ) = ek((xklylr)zkr) i f k = j , l = ί .

On the other hand, putting <^/ίr, 2:ίr> = α, one has by (8), (9)

(e* • xkι)(et(yirzir)) =
— a x H if I = ί ,
4

, 0 if i ^ i ,

and for ϊ = i

—aXkl = XkliVlrZlr) = (XklVlr)Zlr + Vlr
4
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Summing up, one obtains (17). q.e.d.

By an easy induction on mlf one obtains by (16) and (17)

w i / m, — 1 \ f r-i )

where m = mλ + m2. Since ΣmΓi/™1 " i 1 ) = (m ~~ 1N), it follows that
1 \ S 1 / \ S /

Σ l γ(m) _ Y1 1 7'( + )wl-1/^ i-i r \7f( + )w2-l

^=2 m! »i. 2=i(w! + m2)!

= Σ Λ Σ 1 ^ " ^ JΣ(^S))ίr(Xr-S))ir + Σβi

= Σ 7i}-"(^i")*rOT)jr + Σ 7ί;
lSi<jS» - l ISiSi —1
lSs,iS>"-l ISsSίSi—1

where the coefficients Ŷ  " are given as follows:

/ 1 llm - 1\ , /m - 1\\ 1 .. . ̂  .
—r + = -r-v if Kj or s < t ,

(..« = J m I ^ s I U / / ! ί !
U^-^i- 1 if ί = i and s = t,

s ) 2 (si)2

where m = s + t. Thus one obtains

which, together with (15), completes the proof of (14a) and Proposition 1.

4. Next we prove the following

PROPOSITION 2. Let A be a reduced simple Jordan algebra over F
and let {et (1 ̂  i ^ r)} δe α primitive decomposition of 1 m A. Then
ue A can be expressed in the form

(18) u

with xe^ii<j Ai3 , tteFx (1 <; i ^ r), i/ απd onZi/ i/ ^ is invertible with
respect to ei+1 + + er for all 0 ̂  i ^ r — 1. WT̂ w ί/̂ is condition is
satisfied, x and t/s in (18) are uniquely determined.

First, suppose u is expressed in the form (18) with x e Σt<i Aijf and
ί i e f ί l ^ i ^ r ) . We observe that, since v(x) belongs to the "structure
group" of A (see 5), one has
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(We sometimes write P(a) for Pβ.) Since v(x) is unipotent and so
det(v(x)) = 1, and since one has P(Σ& tkek)
follows that

= (ί,ίy) id for all i, j , it

(19) det(PJ =

Thus, if u is invertible, one has tteFx (1 <; i <^ r), and vice versa.
We put P ( i ) = P(ei+1 + + er) and

Aί4) = Aλ(ei+ι + ... +er) = Afci + + β4)

P ( i ) is the projection operator onto A^ in the corresponding Peirce de-
composition. Then, in view of (14), it is clear that

Pu)u = v{P{ί)x)( Σ

/ r

«) = ( Σ
2+d(r-ΐ-l)

and so by (19)

Therefore, if ^ e F x (1 ^ j ^ r), then P ( ΐ ) ^ is invertible in A^ for all
0 <£ i ^ r — 1. This proves the "only if" part of the Proposition.

Next, we prove the uniqueness of the expression (18) by induction
on r. The case r = 1 being trivial, we assume r > 1. Using the nota-
tion in 1 relative to e = e19 we write ux = wu, w1/2 = Σj=2 ^ϋ> ^o — P ( 1 ) ^,
and x0 = Pωx. Then by (14) one has

(20)

Σ

+ Σ (2 ^ i ^ r) ,

First, by the third equation in (20) and by the induction assumption
applied to u0, we see that x0 (hence all xtj with 2 5̂  i < j ^ r) and ί€

(2 ^ i ^ r) are uniquely determined. Then, by the second equation in
(20), ζlr(x), ξ^r-iiΦf "' 9 ζufa) a r e determined successively by ulrf ultr_lf

• , u12. Then x12, xiZ, , xlr are determined successively by ξ12(x), ζnix),
' •» ίir(^)> and finally ίx is determined by the first equation in (20). Thus
all xi5 and tt are uniquely determined.
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It remains to prove the "if" part of the Proposition. Suppose that
us A is invertible with respect to ei+1 + + er for all 0 ^ i ^ r — 1.
We will show by induction on r the existence of x and tt (1 ̂  i ^ r)
satisfying (18). The case r = 1 being trivial, we again assume r > 1 and
define ulf um, u0 as above. Then uQ satisfies the same condition as u for
1 <= i ^ r — 1. Hence, by induction assumption, there exists (uniquely)
x'o e Σ 2 ^ < i g r Atj and tteFx (2 ̂  i <ί r) such that

^o = »(&£)( Σ ̂ ) .
\i=2 /

Putting 2/ = 4ieί"1^1/2, one has ̂ 1/2 = uQy, and by Lemma 1

u = exp(eL D

with some ί x e F . Since det(PJ = t\ det(PMo | A^e,)) Φ 0 one has tteFx.
Since M^)l^eΣi</-4.<j} is a group (see 5), there exists xs^Σii<3 AiS such
that

(21) v(x) = exp(ex D

Then, since ι>{x[)eι = 0, one has

( r \

Σ tiβt ) ,

as desired.
REMARK. By the uniqueness of the expression (18), we see that

x'Q = χQ = Pωχ. By an explicit computation, it can be shown that

Hence, again by the uniqueness, we see that in (21) one has y =

-ΣS-2£iy(-aO.

5. For a (semi-simple) Jordan algebra A, we define the "structure
group" G and the "automorphism group" K as follows:

G = Str A = {g e GL{A)\P(gx) = ^P(^)^ for all x e A} ,

if = Aut A = {g 6 GL(A) | flf(a?y) = (gx)(gy) for all α, y e A} ,

where t denotes the adjoint with respect to the inner product < >.
These are algebraic groups defined over F acting on the underlying
vector space of A.

We now assume, as always, that A is simple and reduced. Then
one has

(22) K={geG\gl = 1} .
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I n f a c t , i t is c l e a r t h a t geK impl ies gl = 1, g = ιg~ι a n d geG. Con-
v e r s e l y , s u p p o s e t h a t geG a n d # 1 = 1. T h e n o n e h a s

g(xy) = g{x, y, 1} = {gx, *g'% gl} = (gx){ιg-ιy) .

Putting x = 1, one has # = tg~ι. Hence one has geK. Note that the
condition geG and ιg~x = g imply P(gl) = 1 and so #1 = ± 1 . Hence one
has

(23) {geG\tg-1 = g} = Kx {±id} .

Let g = Lie G and ϊ = Lie K. By (1) one has a D 6 e g for all α, b e A;
in particular, Ta e g and [Tα, Γ6] e f for all a, be A. Actually, it is known
that g and ϊ coincide with the linear closure of {a D 6 (α, 6 e A)} and
{[Γβ, ΓJ (a, be A)}, respectively (see e.g. [4a]). For xe^Lt<sAφ Tx

+) is
nilpotent element in g and so one has v(x) = exp Tx

+) e G.
We set

(24) p = {Γα (αe A)} , α = {Γei (1 ^ i ^ r)}F .

Then it is easy to see that one has g = f + p (direct sum). Clearly, α
is an abelian subalgebra of g and, as is easily seen, it is "relatively
maximal" in p, i.e. there exists no (abelian) subalgebra α' of g such that
α ξ α ' c ) ) . Let α* denote the dual space of α and let (fJ be a basis of
α* dual to (Tu). Then, by an easy computation, it can be shown that
for any pair (i, j) with i < j

is

{T^lxeAΛ

the "root space" in g relative to a corresponding to the root (1/2X& — ςd)
ee [1] [4c]) Therefore

p g
(see [1], [4c]). Therefore

is a nilpotent subalgebra of g normalized by α, and so

exp π+ = {v(x) = exp Tx

+) \ x e Σ AtΛ

is a unipotent subgroup of G normalized by the subgroup corresponding
to α. (It is clear that α and xt+ are algebraic subalgebras of g.)

6. In this section, we consider the case where F — R. A Jordan
algebra A over JB is called "formally real", if a2 + b2 = 0 (α, b e A) implies
a = b = 0, or equivalently, if the inner product < > (with tc > 0) is
positive definite (see [2]). This condition implies that A is semi-simple
and does not contain any (non-zero) nilpotent element. It follows that,
for any primitive idempotent e, one has Ax(e) — {e}R. Thus any formally
real simple Jordan algebra is reduced.
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LEMMA 4. Let A be a formally real simple Jordan algebra over R.
Then, for any α e i , there exists a primitive decomposition {e } of 1 in
A and ateR (1 S i ^ r) such that a = Σί=i aie'u aι ^ * ' ' ^ «r 2%e ^ / s

are uniquely determined by a.

This follows immediately from the fact that the minimal polynomial
of a in A has only simple real roots (see [4c]).

Now let A be a formally real simple Jordan algebra over R. We
denote by G° and K° the identity connected components of G and K.
From the definition it is easy to see that g e G implies *geG and, for
geG°, one has geK° if and only if *g~1 = g. Therefore, by a theorem
of Mostow, G is reductive and K° is a maximal compact subgroup of G°.
Note that G and K themselves may not be connected even in the sense
of Zariski topology.

In the present case, the decomposition g = f + p is the Cartan de-
composition of g associated to K° and hence r = dim α coincides with the
(real) rank of g. (Thus r is certainly independent of the choice of {et}.)
Moreover, the conjugacy of relatively maximal subalgebras in p implies

LEMMA 5. Let {ej and {e[} be two primitive decompositions of 1 in
A. Then there exists k e K° such that e\ = ket (1 ^ i ^ r).

From Lemmas 4 and 5 one obtains the following

PROPOSITION 3. Let A be a formally real simple Jordan algebra
over R and let {ej be a {fixed) primitive decomposition of 1 in A. Then
for every ueA there exist ke K° and ateR such that

( r \

Σ aiei) f «i 2̂  * * ^ ocr .
i=l /

The α/s in this expression are uniquely determined by u.
It is clear that u is invertible if and only if in (25) one has at e Rx

for all i. We say that the signature of u is (p, r — p) if ap > 0 and
ap+L < 0. We denote by Ax the set of all invertible elements in A and
by A{i} the set of all elements of signature (r — ί, i) in A. Then one
has

(26) Ax = Π A{i) ,
i=0

Since Ax is stable under G° and all Au)'s are open, it is clear that each
A[i) is also stable under G°.

PROPOSITION 4. Let A be a formally real simple Jordan algebra
over R. Then the G°-orbit decomposition of Ax is given by (26).
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It is enough to show that, for each ί, G° is transitive on Aω. Let
ueA{ί); then by proposition 3 one has the expression (25) with ar_t >
0 > ar_i+1. Hence it is clear that there exists g e G° such that u =
0(Σj=ί βy — Σi=r-i+i βy) This proves our assertion.

7. In this section, we assume F — C. Then all simple Jordan algebra
is reduced. By the classification theory, one has

LEMMA 6. All simple Jordan algebra A over C has a real form
which is formally real.

It follows, in particular, that G is reductive, since it has a reductive
real form. Therefore, the same is also true over any field F of charact-
eristic zero. (An analogue of the "unitary trick" in the theory of Lie
algebras.)

LEMMA 7. Let Abe a simple Jordan algebra over C. Then, for any
invertible element u in A, there exists a primitive decomposition {eΊ} of
1 in A such that u is invertible with respect to e'i+1 + e'r for all
0 S i ^ r - 1.

PROOF. We prove the Lemma by induction on r. The case r = 1
being trivial, we assume r > 1. Take a real structure on A such that
AR is formally real (Lemma 6) and write u = vl + V — In" with u\ u" e AR\
then one has u' or u" Φ 0. By Lemma 4 there exists a primitive idem-
potent e'r in AR such that ur or u", and hence u, is invertible with
respect to e'r. By Lemma 1 there exist yr e A1/2(l — e'r)f u[ e Ax(l — e'r) and
α'eC x such that

u = exp((l - e'r) D y')(u[ + a'e'r) .

Since u is invertible and a! Φ 0, one has that u[ is invertible in A[ =
AiQ. — e'r). By induction assumption, there exists a primitive decomposi-
tion {el (1 ^ i ^ r — 1)} of 1 — ej. in AJ such that u[ is invertible with
respect to e'i+1 + + βr-i for 0 ^ ΐ ^ r — 2. Then by Proposition 2
there exist a?' e Σ κ i < r Aijy α e Cx(l ^ ΐ ^ r — 1) such that

where i/ denotes the mapping v defined with respect to {e'i}. By what
we mentioned in 5, there exists xf e Σί<y Ai3 such

Then one has
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u = exp((l - e'r) Ώ y>''(ai)(g α β + a'e'r

Therefore, again by Proposition 2, u is invertible with respect to
Σi= i +i e'j for 0 ^ i ^ r - 1. q.e.d.

PROPOSITION 5. Lei 4 ί>e α simple Jordan algebra over C. Then
G° = (Str^4)° is transitive on Ax.

PROOF. For a primitive decomposition of unity E = {ex, , er)
(considered as an ordered set), we denote by AE the set of all elements
in A which are invertible with respect to ei+1 + + er for all 0 ^ i ^
r — 1. Then Proposition 2 implies that, for a given i?, the group
(expα)(exp rt)(cG°) is transitive on AE. Clearly, for any two primitive
decompositions of unity E, E', one has AE Π AE> = 0 , and by Lemma 7
one has Ax = \JEΆE'. Hence one can conclude that G° is transitive on
Ax. q.e.d.
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