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0. Introduction. In the theory of complex manifolds, it is a funda-
mental problem to study complex structures on a given differentiable
manifold. This problem is completely solved in the case of complex
dimension 1. In the case of complex dimension 2, K. Kodaira completely
classified complex structures on S'xS?® [10]. But little is known about
such a problem in the case of complex dimensions greater than 2.

For the case of dimension greater than 2, E. Calabi and B. Eckmann
constructed complex structures on the product of two odd dimensional
spheres [4]. More general complex structures on the product of two odd
dimensional spheres were constructed by E. Brieskorn and A. van de
Ven [3].

In this paper, we study complex structures on S® x S: In Section
1, we introduce a complex manifold M*(a, A, m) (resp. M~(a, A, m)) which
is diffeomorphic to a S3-bundle over a lens space and which generalizes
Calabi-Eckmann manifolds. To construct M*(a, 4, m), M (a, A, m), wWe
use a surgery of new type. In Sections 2, 3, we study tubular neigh-
bourhoods of a primary Hopf surface imbedded in a complex manifold of
dimension 3. We show the existence of multiplicative holomorphic func-
tions with the Hopf surface as divisor (Theorem 2.8) and the equivalence
of the tubular neighbourhood of the Hopf surface with a tubular neigh-
bourhood of the 0-section of the normal bundle of the Hopf surface
(Theorem 2.48). In Section 3, we compute some local cohomologies and
the irregularity of M*(a, A, m) for general a. In Section 4, we charac-
terize the complex structures M*(a, 4, m), M (a, A, m) by using the
results of Sections 2, 3. The key point of the characterization is the
possibility of the inversion of the surgery introduced in Section 1.

1. Constuction of M*(a, A, m) and M~ (a, A, m). A compact complex
manifold H is called a Hopf manifold, if its universal covering manifold
is biholomorphic to C*— O (O is the origin of C*, n = dim H). Moreover
if the fundamental group of H is an infinite cyclic group, we call H a
primary Hopf manifold.

For Hopf surfaces i.e., Hopf manifolds of dimension 2, the following
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facts are well known [10].
(1.1) (1) Every primary Hopf surface S has the following normal form:

S=8,,=C— 0/g)
9(z, 2,) = (2, + tz7, a,2,)

where a e (4*)* (4* is the unit punctured disk in C), te C, me Z™* satis-
fYIIIg 0< |a1| é Iazl < 17 (al - a;”)t =0.
(2) Every Hopf surface S satisfies:
HY(S, O5) = H'(S,C)= C, H'(S, 0%) = HY(S, C*) = C* .
In particular every complex line bundle on S,, has the following normal
form for some ge C*.

L, B), = (C* — O0) X C[<hg) ,  hy(2y, 22y 25) = (9(2,, 22), B2s)
and the bundle projection p: L(a, B), — S, is defined by
p([zu %y za]) = [zu zz]

where [ ] denotes the class in the quotient spaces. We denote by |L|
the number |g3| for a line bundle L = L(a, B),. And write L*(a, B8), for
L(a, B), — (0-section).

LEMMA 1.2. Let E(\) be a non-singular elliptic curve of the form:
EN)=ClZ +\Z, xe¢C, ImX\ > 0. Let n: C— E(\) be the natural uni-
versal covering projection. Then for every multiplicative holomorphic
function f on E(N), f* = n*f is of the form: f*(z) = r exp (sz) for some
7, s€C.

PROOF. Let Z be a nowhere zero vector field on E(\). Since f and
Zf are sections of a flat line bundle on E(\), they have no zero locus
or they are identically zero. Suppose f is not constant. Let f be a
holomorphic function defined on C such that f*(z) = exp (f(z)). Since
Zf has no zero locus, f is an automorphism of C. This implies the
lemma. q.e.d.

LeMMA 1.3. Let L*(a), L*(B) denote L*(at;, @, 0ts)ey L*(By, Bay Bs)o JOT
some (0, @, &), (B, Bay Bs) € (4*)® respectively. Then L*(a) is biholomor-
phic to L*(B), iff the following conditions are satisfied (log denotes the
branch of logarithm on C* — R~ such that logl=0). Set &=
(1/277) log a5, 1 = (1/277) log Bs.

(1.4)  There ewist A = (‘c” g) e SL2, Z) and m = (m,, m,) € Z* satisfying
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(1) y=0itb = explla— o loga + 2wimy)
cc+d B: = exp ((a — ¢n) log a, + 2wim,1)

or

() p = 5+ B, = exp ((a — ¢n) log a, + 2wim,)

ct+d ’ B: = exp ((@ — ¢n) log a, + 2wim,n) ‘

ProoF. Let p,: (C* — 0) x C— L*(a) and p,: (C* — O0) x C— L*(B) be
the natural projections defined by: (2, 2, ;)€ (C* — O) X C— [z, 2,
exp (2wiz,)] € L*(a) (resp. L*(B)). Suppose that there exists a biholomor-
phic mapping ¢: L*(8) — L*(a). Let @:(C* — 0) x C— (C* — 0) x C be
the lifting of ¢. We set @(p) = (2i(p), Pi(p), P*(p)) = (P (p), P*(p)) for
pe(C*— 0) x C. Letyg, g, be the automorphisms of C? — O defined by:
0,(2,, 2,) = (.2, AR,), 05(2,, 2:) = (B2, Be?,). Since ¢ is a biholomorphic

mapping, we can find 4 = (g’ Z)e SL(2, Z) such that:

0'(95(2,, 2,), 25 + ) = gD (24, 2,y 25))

(1.5) .
O (2, 2 25 + 1) = gD (2, 22 25))
and
(1.6) 0%(95(24, %), 2, + ) = Py, 2, ) + @& + b

0%(2,, 20y %y + 1) = OX(2,, 2, 2;) + £+ d

hold. By Hartog’s extension theorem, we can regard @ as an automor-
phism of C?. Since @(0, 0) x C is an automorphism of (0, 0) x C, we have
that %0, 0, z,) is a linear function of 2z, So we have from (1.6) that
7N = (a& + b)/(ct + d). Next differentiating (1.5) and setting (z,, 2,) = (0, 0),
we have

18.1'—8—@—(0’ 09 za + 7]) = % ad} (Oy 07 za)
0z; a;) 0%;
1.7 1 c 1
ad) (O, Oy za + 1) = “ a@ (O, O, zS) .
8z,- o 5

Note that (00}/02:)(0, 0, 2,) = 0. Since the Jacobian matrix of @ at (0, 0, 0)
is nondegenerate, we have that

(1.8) 950,000, 9Pi,0,0)0
0%, 0%,
or
1 1
(1.9) 9% 00,000, 9%, 0,00
0%, 0%,

holds. Suppose (1.8) holds. Since we can regard (69!/9z,)0, 0, 2;) and
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(003/02,)(0, 0, z,) as multiplicative holomorphic functions on E(n) = C/Z +
7Z, by applying Lemma 1.2., we can find two complex numbers s, s,
such that

(1.10) exp (2rmes;) = af , exp 2rwis;)) = o3B3, j=1,2.

From (1.10) by easy calculation, we obtain the condition (+). Suppose
(1.9) holds. By using the same argument, we obtain the condition (—).
The “if” part of this lemma can be proven by the reverse process of
the proof of the “only if” part easily. q.e.d.

Now we construct M*(a, 4, m). Let H(a) be a primary Hopf surface
of dimension 8 of the form:
(1.11) H(a) = C* — O/{hy (2, 2, 25) = (.21, Q2 O25)
where 0 < |a,| = |a,| <1, 0<|as] <1 and <{h) denotes the group of
automorphism of C® generated by h. We set S, = {[z,, 2., 2;] € H(a); 2, = 0}
and C = {[z, 2,, ;)€ H(); z, = 2, = 0}. Clearly S, is a primary Hopf sur-
face and C is an elliptic curve. Let us consider an open complex mani-
fold W = H(a) — S, — C. It is clear that W is biholomorphic to L*(«).
Then for any element A of SL(2, Z), if we take m,, m,€ Z sufficiently
large, there exists L*(B) satisfying the condition (1.4)(+) or (1.4)(—)
with respect to L*(a), A, m = (m,, m,). Now we consider a compactifi-
cation of L(B), as a P'-bundle over S, 4,0, We denote it P(8). Let
S.. be the infinity section of P(8). Note that L*(a) and L*(B) have
structures of rank 2 vector bundle over elliptic curves minus zero sections
by the projections: [z, 2, 2,]€ L*(a) (resp. L*(B)) — [z,] € C*/{a;) (resp.
C*/{B,;»). By the proof of Lemma 1.3, we can choose a biholomorphic
mapping ¢* (or ¢7): L*(B) — L*(a) of the form: ¢* (resp. ¢7): [z, 2,, 5] €
L*(B) — [ f((2:)2y, [o(20)2,, fo(2)] € L*(ct) (resp. [fi(2:)2s fio(25)2, fo(2)] € L* (),
where f,(z,), f.(2;) are multiplicative holomorphic functions on the elliptic
curve C. Then by identifying L*(B) C P(B) — (0-section) with L*(a) =
W c H(a) by ¢* or ¢~, we obtain a compact complex manifold. We denote
the manifold by M*(a, A, m) or M~ (a, A, m) according to the patching
ot or ¢=. M*(a, A, m) has the following structure:

(1.12) M*(a, A, m) = (H(a) — C)U U(S.) ,

where U(S.) is a tubular neighbourhood of S.. in P(B), i.e., M*(a, A, m)
is constructed from H(a) by the surgery which replaces the elliptic
curve C with S.. We shall study the topology of M*(a, A, m).

THEOREM 1.13. M*(a, A, m) is diffeomorphic to S* X S® if and only
if A is of the form: A =( . ]).
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Proor. Let us denote M*(a, A, m) by M. Because of the construc-
tion of M, M — S, and M — S.. have a structure of complex line bundle
over S, and S, respectively. We note that every primary Hopf surface
is diffeomorphic to S* x S® and in particular every complex line bundle
over a primary Hopf surface is differentiably trivial. So we obtain that
M — S, and M — S.. are diffeomorphic to S* x §8* x C. This implies that
M is diffeomorphic to a manifold constructed from two copies of S*' X
S® x C by gluing them along S' x S® x C*. We shall review the con-
struction of M. We can naturally identify M — S. and M — S, with
L(a), and L(B), respectively. Review that L*(a) and L*(3) have a struc-
ture of rank 2 vector bundle over an elliptic curve minus 0O-section by
the projection [z,, 2, 2,] € L*(a) (resp. L*(R)) — [2;] € C*/{a;) (xresp. C*[{Bs)).
By using the definition of ¢ (resp. ¢7), we see that ¢ (resp. ¢7) is a
restriction of an isomorphism between the above vector bundles over
the elliptic curves. Let us identify C* with S* x R™ by the diffeomor-
phism: ze C* — (z/|z], |2])e S* x R* and let us identify S® x R* with
R — O (O is the origin of R* naturally. Then we can identify S' X
S x C* with S* x §* X (R* — 0). Then M is diffeomorphic to a manifold
constructed from two copies of S*' X S® x C by gluing them along S* X
S x C* = (S* x 8Y) x (R* — O) by a diffeomorphism u: (S* x S*) X (R* —
0) — (8' x 8" x (R* — O) of the form: u(x, ¥) = (u,(x), G(x)y), where G(x)
is a differentiable mapping from S* X S* into SO(4). This implies that
M is diffeomorphic to a S*bundle over a manifold which is constructed
from two solid torus by gluing their boundaries, i.e., a S*-bundle over
a lens space (c.f. [6]). Hence M is diffeomorphic to S® x S® if and only
if M is simply connected, because S:-bundle over S*® is differentiably
trivial (c.f. [15]). By van Kampen theorem, one can easily see that M

is simply connected, if and only if A is of the form: ( icll g) q.e.d.

COROLLARY 1.14. M*(«, A, m) s diffeomorphic to a S*bdbundle over
a lens space. And there exists a complex structure on a Si-bundle over
any lens space.

2. Neighbourhoods of a primary Hopf surface. In this section, we
study complex analytic properties of tubular neighdourhoods of a primary
Hopf surface imbedded in a complex manifold of dimension 3. We use
the same notations as in Section 1.

DEFINITION 2.1. Let L be a line bundle over a primary Hopf sur-

face S.
(1) L is said to be of infinite type, if H'(S, O4(L™)) = 0 for v = 1.
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(2) L is said to be of tangentially infinite type, if H'S, 6;&
Og(L™)) = 0 for v = 1.

(8) L is said to be of smooth type, if H'(S, 25X 25 R Ox(L™) =0
for v > 1.

(4) L is said to be torsion free, if for any curve C in S, L;®
N{ s is nontrivial for any » = 0, and any p.

REMARK 2.2. Let L be a line bundle over a primary Hopf surface
S. If L is torsion free, L is also of infinite type, tangentially infinite
type and smooth type.

PROOF. Let L be a torsion free line bundle over S = S, .. and let
L = L(a,, a,, a;);. It is easy to verify that every curve in S is biholo-
morphic to C*/{afat) and its normal bundle is the restriction of L(«,,
o, aiey) for some a, b, ¢, de Z. Hence there exists no triple of integers
(p, q, r) such that af = a’af and 7 = 0. First we prove that L is of
infinite type. Since S is diffeomorphic to S* x S*, Riemann-Roch theorem
implies that

(2.3) dim H'(S, Oy(L™)) = dim H*(S, O4«(L™)) + dim H*(S, Og(L™)) .

So it suffices to prove that dim H'(S, Og(L™)) = dim H*S, Ox(L™)) = 0
for vy = 1. Since every line bundle over S is flat, we can identify every
global section of Og(L™) with a multiplicative holomorphic function on
S. Suppose that there exists a nontrivial section ¢ of O(L™) for some
vy>=1. Since L~ is not trivial by the assumption, ¢ has zero locus.
Let C = ¥m,C; be the zero locus of g, where C; is an irreducible reduced
curve in S. Since every line bundle over S is flat, there exists a multi-
plicative holomorphic function ¢; with divisor C; for each j. Then
(lle}9)~'¢ is a multiplicative holomorphic function with no zero locus.
Hence it is a constant. Let us denote L(a, a, ) (k=1,2) by L,.
Since [C;]= L, or =L, [10], we conclude that a;* = a’af for some
p,q=0. This contradicts the assumption. Hence we obtain that
H'(S, Ogy(L™)) =0forv =1. To prove that H*S, O4(L™) =0 for v = 1,
we note that Q% = L} ® L} [10]. Then by Serre duality, we have that
dim H*(S, O4(L™)) = dim H*(S, O4(L* ® L} Q L})). Then by the similar
argument to the case of H° we can prove that dim H*(S, O4(L™)) =0
for v = 1.

Next we shall prove that L is of tangentially infinite type. Since
the tangent bundle Ty is of the form:

(2.4) Ts=0Cx(C"—=0)/<wy , ulty, ts, 21, 22) = (b, + MERI 't Wby, 9(2,, 25))
by (1.1) (1), the following exact sequence holds:
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(2.5) 0 — Os(L,) — 05— Og(L;) — 0 .
Then we have the exact sequence of cohomology:
(2.6) — H'(S, Os(L, ® L™)) — H'(S, 605 Q O(L™))

— HY(S, Os(L, @ L™)) — .
By the similar argument to the proof of the case of infinite type, we
obtain that H'(S, O(L,Q® L) =0for k =1,2and vy = 1. This completes
the proof of the case of tangentially infinite type.
The proof of the case of smooth type is similar to that of the case
of tangentially infinite type. Hence we omit it. q.e.d.

For the later use, we need the following lemma.

LeEmMMA 2.7. Let S= S,, be a primary Hopf surface and let w: C* —
O — S be the natural covering projection. Then we have the following

table:

type (a,, a,, t) Dbasis of 7*H(S, O5) dim H'(S, 6y)
I (e, a, 0) 2,0/02, , 2,0/02,

2,0/02, , 2,0/0%, 4
2.8) II (a™, a, 0) 2,0/02, , 2,0/0%, 3
m > 1 2r 0/0z,
III (a™ a, t) mz, 0/0z, + %, 0/02, 9
t=0 27 0/0%,
VI  otherwise 2,0/02, , 2,0/0%, 2

Proor. The proof of this lemma is easy calculation. Hence we
omit it. q.e.d.

Now we study tubular neighbourhoods of a primary Hopf surface
imbedded in a complex manifold of dimension 3.

THEOREM 2.8. Let S be a primary Hopf surface imbedded in a
complex manifold M of dimension 3 and let N be the normal bundle of
S. If N is of infinite type and |N| < 1, then there exists a multipli-
cative holomorphic function u defined on some tubular neighbourhood of
S with divisor S.

Proor. We divide the proof of this theorem into several steps.

Step 1. We choose a biholomorphic mapping i(¢): S,,, — S and identify
S with S,,. If t+#0, since for any ¢ <0, i.:8S,,— S, defined by
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[2,, 2.] — [2., €2,] is a biholomorphic mapping, we can choose ¢ arbitrary
near 0. Let w#:C* — O — S be the natural covering projection defined
by zn(z, 2,) = [#1, 2.]. Then there exist »,7; >0 (:1=1,2,3,4) andd > 0
satisfying the following conditions: '

0< <1, <1, <7y, O<r<rm<r<r:, o= laylr,,
r; = |a,|r; and the domains U, 1 <7 <6) in C* defined by:
Ui = {(Zl, zz)ecz; r, — 0 < |21| < Tt + 5, [zzl < ’I‘Z + '2—} )
1=1238,
@9 v={ewecylal<n +%, v =0 <zl <7+ o},
1=4,5,6
satisfy

(1) U, is biholomorphic onto its image by = for each 1,
(2) =m(U)Nz(U)Nw(Uy) = ¢, n(U)N7(Up) N (Uy) = ¢.

By the property (2.9) (1), we can identify each U, with its image
w(U,). Hereafter we denote U, instead of w(U,;). Clearly % = {U,;} is
a Stein covering of S. By replacing 6 by slightly larger one, we obtain
another Stein covering Z* = {Uf} of S such that U, is a relatively
compact subdomain of U* for each 1.

Now we consider a Stein covering of S in M. Since every Stein
submanifold admits a Stein neighbourhood [15], we can find a Stein
neighbourhood V;* of U in M for each 7. We define complex manifolds
Uk, (resp. Vi) for (¢, 4, k) = (1,2, 3), (4,5, 6) by gluing disjoint unions
of Ux, U}, UF (resp. V¥, V¥, V¥ naturally on U*NUF and UFN UF
(resp. V¥XNVF and VN V}F). Clearly Uf, is a closed Stein submanifold
of V}%. We take a Stein neighbourhood V¥ of U in V3. Replacing
V¥, VE VE by VN Vi, ViN Vi, VNV respectively, we may
assume that V% and V% are Stein manifolds. Then we can find defining
equations w;;, € H(V,;, O) of Uf, in Vi, for (3, 4, k) = (1, 2, 3), (4, 5, 6).
We set w, = w |V for hefd, j, k). Then t,; = (w/w)|UXNUF, 1=
i, § < 6 (i # j) define the normal bundle of S. Since H'(S, 0%) = H(S, C*),
modifying w;;,, if necessary, we may assume that ¢,; is constant for each
(4, 7) from the beginning.

Next we construct local coordinates. We note that we can naturally
identify Up, with a domain in C* by its construction. We restrict the
standard coordinate of C* to U}, and obtain a local coordinate z;; of
U.. Since V3% is a Stein neighbourhood of U, we can extend z,; to
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a vector valued holomorphic function defind on V3%, and we denote it by
Zi;, again. We set z, = 2,;, |V for he{i, j, k}. Shrinking V* (without
shrinking U}), if necessary, we may assume that (z;, w,): V¥ —C? is a
local coordinate of V* for each i. Again we shrink U} and V* so that
the following conditions are satisfied:

(1) Uy is of the form (2.9), if we identify U* with a domain
in C? naturally. In particular U* is a Stein manifold.

(2) VX is a Stein neighbourhood of U>*.

(8) U} contains U, as a relatively compact subset.

(4) (z;, w,) is defined on the closure of V}*.

(8) z(V¥) = 2,(U).

The existence of such shrinking is clear. So we may assume the condi-
tion (2.10) from the beginning.

(2.10)

LEMMA 2.11. If we choose t sufficiently close to 0 at the beginning
of this step, we may assume that the Stein coverings Z = {U;} and
Z* = {U}} satisfy the following condition:

Every holomorphic function defind on W,; = (UXNU;) U(U,N U)
has an analytic continuation to a holomorphic function defined
on a domain which contains U,NU; as a relatively compact
except for (3, J) = (1, 2), (2, 3), (4, 5), (5, 6).

Proor. First we consider the case: ¢ =0. Since each W,; is identified
with a Reinhaldt domain in C? in this case, every holomorphic function
defined on W,; can be expanded into a Laurent power series by the
theorem of H. Cartan (c.f. [7]). Since the domain of convergence of a
Laurent power series is logarithmically convex (c.f. [7]), we can prove
this lemma only by writing the figure of W,;. Details are left to
readers.

In the case: ¢ #0, W,; is not necessary a Reinhaldt domain. But
as t goes 0, every W, approaches to a Reinhaldt domain. Then it is
clear that, if we take ¢ sufficiently near 0, the same assertion as in the
case: t = 0 holds. q.e.d.

2.12)

We set W} = (the holomorphic envelope of W,;) except for (i, j) =
1, 2), (2, 3), (4,5), (5,6) and W5 = Uxn Uy for (1, 5) = (1, 2), (2, 3), (4, 5),
(5, 6).

Step 2. First we construct the desired multiplicative holomorphic
function as a formal power series. We write the transformation of local
coordinates on V*N V;* as follows:
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(2.18) wi(P) = 5:(2:(D), wi(p)) = t;wi(P) + % 501 (2:(D))w(D)

2;(p) = ¥;i(z(D), w(p)) .

The construction of the formal power series given below in entirely the
same as in [17]. But for the next step, we repeat the construction.
To prove Theorem 2.8, it suffices to construct a system {u,} of holo-
morphic functions defined respectively on a neighbourhood V! (C V*) of
Uy satisfying the conditions:
(1) Each wu, is of the form:

w,(p) = 9.2:(0), wi(p))
= w,(p) + (terms of order = 2 with respect to w,)

(ii) U, = tiju,- on Vln Vj.
We shall determine each u; = ¢,(z,, w;) as an implicit function defined by
the equation:

(2.14 we = £k ) = w+ 3 falz)u,

where f,(z,, u;) iS a power series in u, whose coefficients f;,(z,) are holo-
morphic functions of the variable z,. By (2.13) the condition (ii) is
equivalent to:

(2.15) 952y [i(2iy ) = [i(¥ii(2 Fi2iy wa)), Eiiuts)
We expand the left-hand side of (2.15) into the power series:
216)  puley filao 1) = tiw + 3 Faeur) + b 3 bz
where
(217 tio 3 Wgueout = 3, giae)(w + 3 fazout)
The right-hand side of (2.15) is expanded into the form
ke + 33 Fouiza Filzo w)E)"

Letting

£tz 0)) = Faabiday 0) + 3 Fraunlzwt
we have
(2.18)  filvi(zi filzey wa)), tyiks)

=ty + 3 Fiubieo O)tau) + b S hiju (e
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where
@.19) b 3 hineou = 3 3 Fan@)(w o+ 5 futeud) [ty

We infer from (2.17) and (2.19) that if f,, ---, fi, (1 <1 < 6) are deter-
mined, then hAj;,,, and hij,,, are determined independently of f;,.,,
Ffitvizs -+ +. The proof of the following lemma is [17].

LeMMA 2.20. (1) fi(z;, uw) (1 =1 < 6) satisfy (2.15) as formal power
series, if and only if the equations
(2.21),  finn(2(D) — 67 finn(Pi(z(p), 0)) = by (2:(p)) for pe UXNU}
are satisfied for any 1 <1,5=<6 (1 # J) and v =1, where we have set
hijlu = _h£j|v+1 - h:;’lu+1-

(2) Suppose that f,, -+ -, fu, satisfying (2.21), ---, (2.21),_, respec-
tively are already determined. Then {h;,} is an element of Z (Z*,
Os(N™)).

Since N is of infinite type, Lemma 2.20 completes the construction
of the formal power series.

Step 3. Let a(w) = D2, a,u” and A(u) = D2, Au*, 4, =0 be two
power series of u. We write a(u) < A(u), when |a,| < A, hold for all
vy = 0. To prove the convergence of the power series fi(z;, uw;) = u; +
S, fa(z)uz on some neighbourhood V! (< V*) of U* respectively, we
shall show that there exists a power series A(u) = u + D>, A,u* with
constant coefficients and positive radius of convergence satisfying:

(2.22) fiz(p), w;) K A(u;) for peUr 1=:1=6).

If we write fX(z, u) = u; + Xiee fup(zouf and A*(uw) = u + Do, A,
then (2.22) is equivalent to the conditions:

(223)v fiy(zi(p), ui) < Av(uz) for pe Uz* (1 =1 = 6) y Y= 19 2’ Tt

Suppose that f¥(z,, u;) and A*(u) satisfying (2.23), are already determined.
We shall estimate |hi;,..], |Rl},4.] In terms of A,, ---, A,.

Let R be a sufficiently large number such that |g,;.(2z:(p))] = R* for
peUNU#, 1514,j<6 (1+#J), £ =2,8,---. From (2.17), we obtain

e RY(A"(w,)): .
tjipzzz hi:‘m(zi(p))uf <L —1—_‘(7‘(4%‘ for pe U*n Ur.

Let C be max,; {/t;|}. Then we have:

@220 S ruGo)ul < C_RL‘ML for pe UrNUf .
= — RAuy)
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Since each U, is relatively compact in U*, we can choose sufficiently
large number @ such that, for every point p in UX*N U;, the closed
disk; D, = {ge V*; 2,(q) = 2.(p), |w(q)| = 1/Q} is contained in V}. By
the assumption and the condition (2.10) (5), we have:
(2.25) | fiul¥i(2@), wi(@)| = Ay, qeD, CVIOVF, 1£=28,---.
Then we have:
(2.26) Ifijl#l(zi(p))l < ARQY, peUXn U;,

#22’3""’”, A=1,2, -
Therefore, by (2.19), we have:

@2T) b3 Wia o)t < 3| 3 AQAWY [ty for p UINT; .
p#= p= =1
Then from (2.24) and (2.27), we get the following estimate:

(2.28) min {| ki, (2(0)) |, | hj01.(2;(0)) [}

R(A*(u)) QA" (w))* )
= [Cl —RAW) 1o QA" (w) Ll for pe W,

where W,; = (U*NU;)U(U;NU}#) and [ 1,,, denotes the coefficient of
u**' in the power series. Let P be max {R, R? Q}. Then we have:

@29)  min (@), hate@))) = | ZEEE ] for pew,.
Let L be a line bundle over S. We introduce a norm on ZY(Z*,
O4(L)) as follows:

(2.30) {7V} m = max sup {min {|7,;|]|7;: W%} for {v;}e Z'(z*, OsL))

where (1, §) runs all pairs such that 1< ¢ < j < 6.
Then since h;, = 0 for (4, 5) = (1, 2), (2, 3), (4, 5), (5, 6) because of the
construction of the local coordinates, by Lemma 2.11, we obtain:

B(A*(w))* ]
2.31 hes(2)} I < [__._
(2.31) (st = | 25 00|
where B = 2CP and [ ],,, denotes the coefficient of u**' in the power
series.

Step 4. In this step, we shall estimate the operator norm of the
coboundary mapping d: C(Z*, Os(N™) —> ZX Z*, O4(N™*), v=1,2, ---
by modifying the method in [5] appendix. Let L be a line bundle over
S. We introduce a norm on CYZ*, Ox(L)) by



COMPLEX STRUCTURES 363
(2.32) I{%H = m;ax sup {|7]1| v}, {771}6 C(zr*, Og(L)) .

LEMMA 2.38. Let E, L be line bundles on S. Suppose that |L| # 1
and 0: C(zz*, Os(E Q L™)) — ZNz*, Os(E @ L™)) is an isomorphism for
v =1. Then there exists a positive constant K independent of v such
that the operator norm [6| of the coboundary mapping 6: C(Z*, Os(E &
L™) — Z (z'*, Os(EQ L™)) is equal or lower than K, i.e. for every
{pi}e C(z*, O(E Q L™)) the inequality

(2.34) [{n:}| = K|6{:}|m
holds, (where we take the tramsition functions {e;}, {l;;} of E, L to be
constant and e; =1l; =1 for (3, 5) = 1, 2), (2, 3), (4, 5), (5, 6)).

PrOOF. Let Z be a holomorphic vector field on the Hopf surface S.
We define a linear endmorphism of CY(Z*, O,(F ® L™)) by
(2.35) Z: 7] = {n”:of"yiq} - Zﬂ = {Z’?{O,...,iq} .
Since F and L are flat line bundle, this mapping is a cochain mapping,
i.e. 8(Zn) = Z(6n), since the transition functions e¢;, [,; are constants for
15476 (1#7. Wenote that the Silov boundary of U, (1 <17 < 6)
is its edges. Then by Lemma 2.7, we can take two holomorphic vector
fields Z,, Z, such that the zero loci of Z,AZ, do not intersect the Silov
boundary of U, for every ¢. We introduce another norm on Z(Z*,
Os(E® L™)) by
(2.36) it = max sup {min {[74], [7i[}: U0 Uyl

%
for {vite Z(zr*, O(E® L™)) .
Then Cauchy inequality implies that there exists a positive constant d
such that
(2.37) | ZPZY | < d?H9 7|, for e ZNz*, Oy(E Q L™)),
v=z1l, p,¢=0.

Since : C(z*, O(E Q L™)) — Z Z*, Os(E @ L™)) is a linear isomorphism,
Kodaira-Spencer’s augument (c.f. [12]) shows that there exists a positive
constant K, which satisfies the following property:

(2.38) 7| < K,|09*|, for every mn,eC(Z*, OyE Q L™).

But K, may depend on v.
We set

(2.39) EWw) ={(r,rneZ (Zz, O(EQ L™) X R ;
|ZPZiv| < d**9r for p,q = 0}.
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Then (2.87) implies that (7%, |7*|.) € E() for v* e ZX(Z'*, Os(E ® L™)). We
set K, = sup {|9p’|/r; o =7, » # 0, (7", r)€ E(w)}. It is clear that K =
K,. By (2.39), for our purpose, it is sufficient to show that K are
bounded with respect to v. Suppose not. Taking a subsequence, if
necessary, we may assume that K, — « as g goes to infinity. By the
definition of K,, we can find n*e C%(Z, Os(E @ L~*) and (7* r.) € E(%)
satisfying:

(2.40) opt =, ptllre s Kp s 2\9*/re, It =1.

Then » — 0 as ¢ — oo. Note that Z, (i = 1, 2) are cochain mapping and
(v*, r.)€ E(y) implies that (Z,7# dr.) e E(¢) (¢ =1,2). Hence we have:

2.41) \Zap| < Kldr. < 2—:7_"_[(17-,, —2d for i=1,2.
]
Let us denote »* by {n;}. Since the zero loci of Z,AZ, do not intersect
with the Silov boundary of U, (1 <14 < 6), (2.41) implies that »/ and its
first derivatives on/oz,, 0ni/0z, are uniformly bounded with respect to
U, where 0/0z, and /0%, are vector fields on U, naturally defined from
the identification of U, with a domain in C®. Then taking a subsequence
if necessary, we may assume that each %! converges to a holomorphic
function h; uniformly on U,.
Let us denote 7* by {74}. Then the equality 67* = 7* means that

(2.42) i — lifeni =745 on UNU;.

We note that |l,], |le] <1 or |lg], |lsl <1 holds by the assumption.
Suppose |l ], |le] < 1 holds. In this case, we conclude that h, = 0 on U,
and h, =0 on U, by the fact ., —0. Then by the fact [,; =¢; =1 for
, 7)) =(,2), 2,3), (4,5), (5,6) and the fact ».— 0, (2.42) implies that
all h, vanish. Thus 7! converges to 0 uniformly on U, respctively. This
contradicts the fact that |»*| =1 for all x. In the case |l,], |ls] <1,
by the same argument we obtain the proof of the lemma. g.e.d.

Now we return to the proof of Theorem 2.8. We assume that (2.23)
holds. Then since |N| <1, applying Lemma 2.833 to E = Oy (trivial
bundle), L = N, by (2.31), we obtain:

(2.43) mlm(zf(mng[wlﬂ for pelU,, 1<i<86.

1 — BA*(u)
We note that the relation:
(2.44) Sivii(%) — 87 fi1(25) = by (2:) on UFN Uy .

Since U, (resp. U,) contains the Silov bondaries of UX, U, U* (resp.
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Uyx, UF, U), by (2.43) and the assumption |N| < 1, we have:

@45)  |untaion] <[ EXDBEWI ] g peys, 1<is6.

1 — BA*(u) L1
Now we define a power series A(u) = u + >, A,u* to be the solution
of the functional equation:
(2.46) Aw) — u = K+ DBAW)

1 — BA(u)

Clearly A(u) exists and has a positive radius of convergence. Then we
obtain:

(2.47) fi(z(D), w) K A(w;) pelUr, 1=i1=6.
by the induction on by using (2.45). This completes the proof of Theo-
rem 2.8. q.e.d.

Next we prove the following theorem.

THEOREM 2.48. Let S be a primary Hopf surface imbedded in a
complex manifold M of dimension 3. Suppose that the following condi-
tions are satisfied:

(1) The normal bundle N of S is of tangentially infinite type with
IN| # 1.

(2) [S] is a flat line bundle on some neighbourhood of S.

Then there exists a tubular meighbourhood of S which is biholomorphic
to a tubular neighbourhood of the 0-section of N.

ProOF. We divide the proof of this theorem into several steps.
First we remark the condition (2) is equivalent to the condition:

(2) There exists a multiplicative holomorphic function on a neigh-
bourhood of S with divisor S.

Step 1. Let w be the multiplicative holomorphic function in the
assumption (2)’. We choose Stein coverings v = {U,}, * = {U*} of S
and a Stein coordinate covering 7°* = {V*, (2, w,)} as (2.9), (2.10). We
may assume that w = w|V;* for 1 <1 < 6, where we choose the branch
of w such that ¢,; = w,/w; = 1 for the pairs (¢, ) = (1, 2), (2, 3), (4, 5), (5, 6).
We identify S with 0-section of N as usual. We choose a Stein coordi-
nate covering % * = {W¥, (y,, s;)} of N as follows:

(1) Wk =pU*), where p: N— S is the bundle projection.
(2) y:i=p* | U.
(2.49) (8) s, is a restriction of a branch of a multiplicative holomor-
phic function with divisor S defined on whole N. And
s, satisfies the relation s,/s; = t,;; on W*N W}
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To prove Theorem 2.48, it is sufficient to construet a system of
vector valued holomorphic functions {g,} defined respectively on a neigh-
bourhood W, of U, (W, c W) satisfying:

9:¥,0) =y,,

gi(ﬁji(yi)y tii8:) = ¥i(9.¥s 80, 8:) on W.N Wj

where 6;,(y,) = y; on WXN W} and (2, w;) = 2; on VXN VF. In fact,
using g¢,’s we can define a biholomorphic mapping g from a sufficiently
small neighbourbood W of the 0-section of N into M by

(2.51) 9: (Y, 8)e WXNW — (9:(y, 8), 8)€ V¥ .

Then it is clear that g is a well-defined holomorphic mapping. Now we
construct {g,} as formal power series. We set

(2.50)

(2.52) 9;(Ysy 8:;) = ;0 9:.(Y.)s? , 9:10(Ys) = Y -

We write ¢,(¥;, 8) = Dhe0 944(¥)st. For two power series P(u), Q(u) in
u, we indicate by writing P(u) =, Q(u) that the power series expansion
of P(uw) — Q(w) in u contains no terms of degree < vy. With these nota-
tions (2.50) is equivalent to:

(2.53), 940;:(Y), ii8:) =, (97 (Y 8.), 8) for v=0,1,2,---.
We construct gi(y,, s, satisfying (2.53) by induction on v. By the defini-
tion of y,, {9%¥y;, s;) = y,} satisfy (2.40),. Suppose {g;7'(v, s,)} satisying

(2.40),_, are already determined. We define a system of holomorphic
functions {9;,(2,)} defined on U,N U; respectively by

(2.54) Giin¥s) = [977°0:5Y5), t:;85) — Pii(95 (Y3, 85), 8L

= [—i;(957 (W3, 85), 8],
where [ ], denotes the coefficient of si = ¢4s% in the series. The proof
of the following lemma is standard and hence we omit it.

LEmMmA 2.55 (c.f. [12]).

(1) {g:;1} s an element of Z (7, Os(Ts Q@ N™)).

(2) 9i¥y 8) = 9:7 (Y, 8:) + 9u(Y:)si satisfies (2.58), if and only if
0{g:.} = {9451}

Since N is of tangentially infinite type, Lemma 2.55 completes the
inductive construction of the formal power series.

Step 2. We now proceed as in the proof of Theorem 2.8. We expand
;% + u, v) into a power series in three variables wu,, u,, v and let
L,;(z;, w, v) be the linear part of the power series, where u denotes the
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vector (u,, u,). Since 4; is a vector valued holomorphic function on the
closure of V*N V#, we can find a large number P such that

(2.56) ’lll‘,;j(z_.; + u, 7)) —_ 0,;j(zj) —_ L,-j(z,-, u, 'v)
< i P (u, + u, +v) for z,e Ur*NUf

where & means that every element of the left-hand side is dominated
by the right-hand side. Suppose that for some v > 2 and a polynomial
A7 (v) =cev + Db aw® in v with constant coefficients

(2.57),_, 977 (Y(p), 8:) — yi(p) K A”7'(s;)) for pelU,, 116

is obtained. If we take ¢ > 1 sufficiently large, then (2.57), is satisfied.
Then we obtain from (2.54) and (2.56):

@58) o)l = | -2E zé‘;;(jg)_) | for pevany,

where [ ], denotes the coefficient of s? = ;3% in the power series (note

g

that g,;, extends to U*N U; holomorphically). So we obtain:

y 9P (A (v))* ] *
2.59 29551 = [—— f eUXNU;
(2.59) 1839451, (Y:(D)) | T spa ey, 1 el nu,
where [ ], denotes the coefficient of v* in the power series. By (2.59)
and Lemma 2.55 (1), we can find a positive constant C such that

@60) o)l = | FEEZOIS | for peUnUF .

(2.59) and (2.60) assert that g,;,(y;) extends holomorphically to W,
where Wi =(UNU,)UUFN U, except for (i, 5) =1, 2), (2, 3), (4, 5),
(5,6) and Wi =U*NnU} for (1,75 =(1,2),(2,3), 4,5), (5,6) (we note
that g¢,;,(y,) = 0 for (3, 5) = (1, 2), (2, 3), (4, 5), (5, 6) by the construction
of the coordinates. We introduce a subspace of ZY(Z, O3 X O4(N™)) as
follows:

(2.61) ZUZ, 05 O«(N™)

={veZ (7%, Os Q Os(N™)); each 7% is holomorphic on
W and v = 0 for (4, 5) = (1, 2), (2, 3), (4, 5), (5, 6)},

And we introduce a norm on Zi(Z/, O3 QR Os(N™)) by
(2.62) [7'], = max sup{min{|7y;|, [vu[}: W3} for 7€ Zi(Z, 65s& Os(N™))
%,9)

where 74 = max {|74 |, |70} (V5 = (Y4, Vi). Then (2.60) asserts that
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9CP(A*'(v))* :|
1 —3PA(v) b~

Step 3. Since T is not a flat vector bundle in general, we need
the following lemma.

LEMMA 2.64. Z'Y(Zr* 05Q Oi(N™), Z\z*, O(L, Q N™) (k =1, 2)
(L, = L(ay, a,, a);) are metric spaces with respect to the morms:

|7 | = max sup {min {| 75|, [ 7%} Wi} for veZYZ*, 0sQ Os(L™))
|8 = max sup {min {|&;], [&:}: Wi} for &eZ (Z*, Os(Li @ N™))
k=12

respectively. And Z'Z*, 0,Q Os(N7*) is a direct sum of ZY %%,
Os(L, @ N7)) as metric spaces.

2.63) @)} < [

Proor. By (2.5), we have the commutative diagram:
0 — C%Os(L, ® N7)) —> C%(O5 ® Ox(L™)) —> C°(Os(L, ® N™*)) — 0
| | |
0— Z'(O(L,® N7) — Z'(S ®Q Os(L™) — Z'(0s(L, @ N™)) — 0 .
The first line is exact since Z* is a Stein covering and it clearly splits.
And by the assumption, every column gives a linear isomorpism. Hence

the second line is exact and splits. It is clear that this splitting is a
splitting as metric spaces by the definition of the norms. q.e.d.

By Lemma 2.64, the same argument as in Lemma 2.33 works, since
|IN|# 1. Then we have the following lemma.

LEMMA 2.65. For every element v of Zi(Z,05sQ Oi(N™)), there
exists a unique element 7° of CA(Z/, OsQ O(N™) satisfying o7 = 7.
And the inequality |7’| < K”|7*|, holds, where K" is a positive constant
independent of v and |7’| denotes max,sup {|7:|: Uj}.

Step 4. We define a power series A(w) = ¢v + >yu, a0 of positive
radius of convergence by:

__ 9CK"P*(A(w))*

2.66 AWw) —cv = .

(2.66) ©) = == 3paw)

Then by using (2.63) and Lemma 2.65, we can prove
(2.67) 9:(¥:(p), 8,) K A(s) for peU,, 1=i<6

as before. This completes the proof of Theorem 2.48. q.e.d.
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3. Local Cohomology. In this section, we compute some local
cohomologies.

THEOREM 3.1. Let S be a primary Hopf surface and let L be a line
bundle over S. Suppose that |L|+#1. Then the followings are true (we
identify S with the 0-section).

(1) If L™ is of infinite type, them we have that

Hi0,) =0, Hi0.)=0.

(2) If L s of both tangentially infinite type and infinite type,
then we have that HiO,) =0, H(O,) = 0.

(8) If L™ is of both smooth type and infinite type and L is of
infinite type, then H2, X 23) =0, H(L, 21 Q 23) = 0.

PrOOF. Let us identify S with the O-section of L. Let F be the
natural compactification of L as a P'-bundle and let S, be the infinity
section of F. Let f:F—S be the bundle projection. Let <& = O,
(resp. O, 2L &® 2%). Let us consider the exact sequence:

8.1) 0— H(F, &¥)—> H(F — S, &¥) — H{(%”) — H(F, &)

— H\F — 8, &) —> H{(%) - H(F, &) — ---.

We study HY(F — S, &) for + =1,2. Clearly F — S is biholomorphic to
L. Let f* L™ — S. be the bundle projection. We identify F' — S with
L™ hereafter. By identifying S, with S, we consider L~ as a line bundle
over S. We choose a Stein covering Zr* = {U*} of S and a Stein coordi-
nate covering #* = (W}, (v, s,)} of L™ as (2.9), (2.10), (2.49). First
we study HY(F — S, &¥). Let h be an element of HY%L™, &¥). We
expand h;, = h| W into a power series:

(3.2) ha(We 80 = 3 hau(y)s:

Then h;, € H(S, & Q O4(L*)), where & = Oy (resp. O P Os(L™), (2% P
04(L) ® 2% ® Og(L)). Then by the assumption we have that

HYF — 8§, Oy) = H(S, Oy)
3.3) HF — 8, 6;) = H(S, 65) + H(S, Os(L™) + H*(S, Oy)

HF — 8§, 2, Q2% =0.

Secondly we study HYF — S, &”). Let {h;} be an element of
ZY (w7 *, &¥). Then each h,; has a power series expansion on W*N W :

3.4) hii(Y:, 8:) = vgohijlu(yi)sli .
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Let % = (U} (0 < d < ¢) be a Stein covering of S satisfying
(i) UlcUrfor1<i<6,0<0<e¢.
(3.5) (ii) oU} —oU¥ as 6 — 0 uniformly with respect to some
complete Riemannian metric on S for 1 <76,

We note that {h;;.} € Z(Z*, & @ Os(L*)). Suppose that {h,;} is cohomolo-
gous to 0 formally, i.e. every {h,;,} is cohomologous to 0. Then we can
find a system of formal power series {h;}, h.(¥;, 8) = D b (y,)s? satis-
fying:

(1) Pii(¥s, 85) = biYsy 8:) — hy(y;, 8;) on WrN W} as formal
(3.6) power series .

(ii) A4, (y;) is holomorphic on U* for 1 <:¢ <6, v=0.
for every 0 < d < e and R > 0, we can find a power series A(5, R)(s) =

2, A0, R)s* in s with constant coefficients A,0, B) satisfying the
condition:

@7 Shouwp) < AG, R)s) for peU.NU; for 1Si>j=6

and A(9, R)(s) has a radius of convergence greater than B. By Lemma
2.33 and the bundle exact sequence (2.5), there exists a positive constant
K, such that D2,k (¥:)st € K,A(0, R)(s,) holds for all 4. Letting 6 —0
and R — «, we conclude that every A, is holomorphic on Wj*. This
implies that we can compute H'(F — S, .&¥) formally. Then by the
assumption we obtain:

HYF — 8, Op) = H'(S, Og) (induced by (f%*)
(3.8) HYF — 8§, 05) = H'(S, 05) + H'(S, Os(L™) + H(S, Oy)
HF — 8§, 2 02%) =0.
Next we study HYF, s¥). Let us consider the Leray spectral
sequence: EP? = H*(S, R'f, ) = H*"(F, ¥).
(1) Case &¥ = Op. In this case we have the following:
2= HYS,00), EM=0, E¥=H(0)=0,
=0, E=0.
Hence we have that
(3.10) H\F, Op) = HYS, Os) (induced by f*), H*F,O0z) =0.

(2) Case & =6, In this case we have that Rf,0,= 0,
Os(L_l) @ OS @ Os(L)y le*@F = 0, sz*@p = 0. SO we Obtain:

(3.9)
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(3.11)  E* = HXS, O«(L™) + H'S, O5) + H'(S, 65) , 2t =0,
E}* = H¥S, Oy(L™), E'=0, 2t =0.
Hence we have:
H'(F, 6) = H%(S, 05) + H'(S, O«(L™)) @ H'(S, Oy)
(3.12) HY(F, @) = HYS, 05 + H'(S, Og) + H'(S, Og(L™))
HYF, 05) = H¥S, Oi(L™) .
We claim that:
(3.13) Ker (H¥(F, ©5) — H*(F — 8, 6;) = 0.

Let {h,(y)} e ZX(Zr*, Os(L™")) be a 2-cycle not cohomologous to 0. Then
{hijo(y.)s2 008} € Z*(H#*, Op_s) is a 2-cycle not cohomologous to 0 even
formally. This proves the claim.

(8) Case &¥ = 2% QR R%. By (3.12) and the assumption, we have
that H¥F, ©,) = 0. Then by Serre duality, we have

(3.14) H'(F, 2% @ 2%) = 0.

By (8.1), (8.3), (3.8), (3.10), we see that HiO,) =0, H¥O0,) =0, in
the Case (1).

By (3.1), (3.3), (3.8), (3.12), (3.13), we see that HL(@,) = 0, H6,) = 0
in the Case (2).

By (3.1), (8.3), (3.8), (3.14), we see that Hi(Q:® 2%) =0, in the
Case (3). g.e.d.

COROLLARY 3.15. Let M = M*(a, A, m). If M is diffeomorphic to
St x S:. Then M has the following properties:

(1) M contains a cycle of primary Hopf surfaces of length 4, i.e.
there exists a divisor D=8, + S, + S, + S, such that:

(i) Each S; is a nonsingular primary Hopf surface.

(i) S;nS;=, uf (4, 5) = (0, 1), (1, 2), (2, 3), (3, 0) and {S;} intersect
transversally.

(2) For suitable indexing the normal bundles N,, N, of S, S,
satisfy |N,| <1, |N,| > 1.
Moreover if N, and N, are torsion free, then q(M) = dim H'(M, O,) = 1.

Proor. By (1.12), M is of the form:
(3.16) M = (H(a) — C)U U(S..)

where C = {[z, 2, %] € H(a); 2, = 2, = 0} and S, is a primary Hopf surface
and U(S..) is a tubular neighbourhood of S. in a P'-bundle P(B) over a
primary Hopf surface in which S, is the c-section. Let S, be S.. Then
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|N,| > 1, because |N,| = |G:*| > 1. Let S, be the primary Hopf surface
{[2:, 2., 25]€ H(a); 2, = 0}. Then |N,| <1, because |N,| = |a;| <1. Let
S¥, S¥ be the surfaces in H(a) — C defined respectively by: S} = {[z,, 2.,
2] € H(a) — C; 2, = 0}, S§ = {[#, #,, 2;]€ Ha) — C; 2, = 0}. Then the clo-
sures of Sy, S¥ in M are nonsingular primary Hopf surfaces intersect
with S, transversally because of the patching of H(a)—C and U(S..) (c.f.
Section 1). Let S, S; be the closures of S¥, S¥ respectively. Then D =
S, + S, + S; + S; is the desired cycle of primary Hopf surfaces.

Next, suppose that N, and N, are torsion free. Then by Theorem
3.1(1), H;(0y) =0 and Hg(0,) =0. So we have that H'(M, Oy =
HM — S,;, 0,). Since M — S, = H(a) — C, M — S, is identified with N..
We compactify N, naturally to a P'-bundle F, over S,. Since the normal
bundle of the infinity section of F|, is isomorphic to N;*, by Theorem
3.1 we have H'F, Oy)= H'M — S,, 0,) = H'(M, O,) (note that if a
line bundle L over a primary Hopf surface is torsion free, then L' is
also torsion free). Let =: F,— S, be the bundle projection. Then by
using the Leray spectral sequence E= H?*(S, n,0z)— H?"(F, Op),
we see that H'(F, Op) = H'S, Og) by zn*. Since dim H'(S, O,) =1,
dim H'(M, O,) = dim H* (F,, Op) = dim H'(S, Oy) = 1. q.e.d.

4. Characterization of M*(a, A, m). In this section, we study the
converse of Corollary 3.15.

THEOREM 4.1. Let V be a compact stmply connected complex mani-
fold of dimension 3. Suppose the following conditions are satisfied.

(1) q(V)=dim H(V, Oy) =1, b(V) = 0.

(2) V contains a cycle of primary Hopf surfaces of length 4, i.e.
there exists a divisor D= S, + S, + S; + S, such that:

(i) FEach S; is a nonsingular primary Hopf surface.

(i) S;NS;=a, uf (4, 5) = (0, 1), 4, 2), (2, 3), (3, 0) and {S;} intersect
transversally.

(8) S, S, are mnmonelliptic and their mormal bundles N, N, are
torsion free with |N,| <1, |N,| > 1.
Then V s biholomorphic to M*(a, A, m) for some a, A, m and V 1is
diffeomorphic to S® x S°.

Proor. By Lefschetz duality theorem, we have:
(4.1) HWV -8, C)= H(V, S, C) .
We consider the exact sequence: ‘
(4.1) — H(V,C)— H(V, S, C)— H(S,, C) - H(V,C) — ---.
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Then by the assumption and (4.1), (4.2), we have:

(4.3) HWYV —-S,C)=C.
Next we consider the exact sequence:

44) 0 HV — 8, dOy) - HV — S, €) L H'(V — 8, 0y) — - .
LEMMA 4.5. j is an isomorphism.

ProorF. First we compute dim H*(V — S,, O,). By Theorem 2.8 and
Theorem 2.48, S, has a tubular neighbourhood which is biholomorphic to
a tubular neighbourhood of the 0-section of N,. Then by Theorem 3.1,
we have H;(0y) =0 and H;(0,) = 0. By the exact sequence:

(4.6)  — H5(0y) — H(V, Oy) > H(V — 8, Oy) > H§(Oy) = - -

and the assumption ¢(V) = 1, we have that dim HV — S,, Oy) = 1.
Next we prove that dim H°(V — S,, dOy) = 0. The proof of the fol-
lowing sublemma is easy. Hence we omit it.

SUBLEMMA. H*(S,, 2y5, ® N;*) = 0 for all v = 0.
This sublemma means that every holomorphic 1-form on V — S, has
zero of infinity order along S,. Hence we have that dim H°V — S,,

d0,) = 0. By using (4.83) and the above calculations, we see that j is
an isomorphism. q.e.d.

LEMMA 4.7. For every line bundle L over V, L|V — S, is a flat
line bundle.

PrROOF. Let us consider the commutative diagram:
— HY(Z)— HY(C) — HC*)— H*(Z)— H*(C) — - --

49 | l | l

— HYZ) — H'0y) — HY0}) — H*Z) — H*(Oy) — - -~

where H*—) means HYV — S,, —). We note that 6*(L|V — S,) =0 in
HXV — S,, C) because of b,(V) =0. Then by using Lemma 4.5, one can
prove this lemma only by chasing the diagram (4.8). q.e.d.

By Lemma 4.7, [S:]y_s, is a flat line bundle. Then the assumption
and Theorem 2.48 imply that there exists a tubular neighbourhood of
S, which is biholomorphic to a tubular neighbourhood of the 0-section
of N,. Then by the inverse of the surgery in Section 1, we can replace
S, by an elliptic curve C, since |N,| > 1. We denote the result of this
surgery by V*,

We claim that V* is a primary Hopf manifold of dimension 3.
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LEMMA 4.9. For every line bundle L over V, LIV — 8, is a flat
line bundle.

ProOOF. Since S, has a tubular neighbourhood which is biholomorphic
to a tubular neighbourhood of the 0-section of N,, by the same argument
as in Lemma 4.5, we obtain that the natural homomorphism HYV — S,
C) — HYV — 8,, Oy) is an isomorphism. Then by using the same diagram
as (4.8), one can prove this lemma. g.e.d.

By Lemma 4.9, there exist multiplicative holomorphic functions f,, f;, fs
with divisors S;N(V — 8,), S, SsN(V — 8S,) respectively on V — S..

LEmmA 4.10. H(V* Z) = Z.
Proor. By Lefschetz duality theorem, we have:
(4.11) H(V —8,, Z)= H(V,S,, Z) .
We consider the exact sequence:
(4.12) — HYV,Z)— HXS,, Z) > HX(V,S,, Z) > HV, Z) — - - - .
Combining the assumption and (4.11), (4.12), we have:

(4.13) HWV —-8,Z2)=Z.
Since the elliptic curve C has codimension 2 in V*, we have that 7,(V*) =
7V —8S,). So we have H(V*, Z)=H(V — S,, Z) = Z. q.e.d.

By considering the universal covering manifold of V*, we can extend
fis foy o to multiplicative holomorphic functions defined on V* by Hartogs’
extension theorem and we denote them by the same notations. Let us
take a generator v of H,(V*, Z) =~ Z and let a,, a,, @, be the monodromy
multipliers of f, f., /3 along 7 respectively (c.f. [10] II, p. 701, Lemma
11). Clearly |a;]=<1 for + =1,2,3. And by reversing the orientation
of 7, if necessary, we may assume that |a;,| < 1for: =1,2,3. In fact,
for instance, o = —log|a,| and ¢ = log |a,| were both positive, then
| feff| would be a single valued continuous function on V*. This con-
tradicts that f7ff is a nonconstant multivalued holomorphic function on
some open set in V'*,

Then we can define a holomorphic mapping @:V* — H(a) (a =
(ay, ayy a)) by:

(4.14) 0: peV* — [fi(p), fp), fi(p)] € H(ar) .

Let S}, S: be the zero loci of f,, f; respectively. Since S, is a nonelliptic
primary Hopf surface, @ is a biholomorphic mapping onto its image on
some tubular neighbourhood of S,. In fact S!NS, and S;N S, exhaust all
the curves in S, and they are zero loci of f,|S, and f£,|S, respectively.
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Then it is well-known that the holomorphic mapping {: pe S, — [fi(p),
Sfo(®)1€ Say ap is biholomorphic (e.f. [10], II). Then the above assertion is
clear. This implies that @ is generally one to one. We note that H(a)
contains only three surfaces and they are primary Hopf surfaces, because
S, is nonelliptic and N, is torsion free. Then we have that @ is biholo-
morphic onto its image on some neighbourhood of S;US,US;. Let us
consider the divisor D* of df,Adf;A\df,. Since H(a) contains only three
curves which are the intersections of the three surfaces, we have that
@(D*) consists of finite number of points in H(a). Then it is clear that
V* contains a global spherical shell (c.f. [9]). This fact implies that V*
is a small deformation of a compact complex manifold which is a modi-
fication of a primary Hopf manifold of dimension 3 at finitely many points
(e.f. [9]). Since b,(V) = 0, this implies that @ is a biholomorphic mapping.
Hence V is the result of a surgery of H(a) which replaces the elliptic
curve C by S, by identifying a tubular neighbourhood 7T of C in H(a)
minus C (we identify T with a tubular neighbourhood of the 0-section
of the rank 2 vector bundle L(a,, as, a,), — C*/{a,)) with a tubular neigh-
bourhood 7" of the 0-section of L(B,, B: (B;) minus the 0-section for some
(Bi, B Bs) Which is determined by the relation of Lemma 1.3 for some
A, m. Let v: T* — T'* be the identification where T* =T — C and
T* = T" — (0-section). We write v by using the coordinates as in Lemma

1.3 as follows:
(4.15) v([21 22 25]) = ([Mu(25)21, ho(25)2:, Bs(25)] + [1 (2, 22, 25)])
(or = ([hy(25)2sy ho(25)21, hy(25)] + [B' (24, 24y 25)]
where h,(2,), 1 =% =<3 are multiplicative holomorphic functions on the
elliptic curve C and h'(z, 2,, 2;) is a sum of higher order terms in z,, z,.

Let V, (Jt| £1) be the manifold constructed from H(a) by the surgery
which replaces C with S, by using the following identification w,:

(4.16) v:([2, 20 %)) = ([1u(20)2, a(20)2s, Bo(25)] + [tR/ (2, 25, 25)])
(resp. = ([h,(2:)22, ho(25)21, ho(25)] + [th' (2., 2, 25)])

(take T* and T'* small enough).

Then since H(V,, 0y,) =~ H(V, — S,, ©,,) by Theorem 3.1, the complex
analytic family {V,}, <. is trivial. This implies that V = V, is biholo-
morphic to V, = M((a,, as, @t;), A, m). Since V is simply connected by
Corollary 1.15, V is diffeomorphic to S® x S2. g.e.d.
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