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COMPLEX STRUCTURES ON S3 x S3

HAJIME TSUJI
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0. Introduction. In the theory of complex manifolds, it is a funda-
mental problem to study complex structures on a given differentiable
manifold. This problem is completely solved in the case of complex
dimension 1. In the case of complex dimension 2, K. Kodaira completely
classified complex structures on S^xS3 [10]. But little is known about
such a problem in the case of complex dimensions greater than 2.

For the case of dimension greater than 2, E. Calabi and B. Eckmann
constructed complex structures on the product of two odd dimensional
spheres [4]. More general complex structures on the product of two odd
dimensional spheres were constructed by E. Brieskorn and A. van de
Ven [3].

In this paper, we study complex structures on S3 x S3. In Section
1, we introduce a complex manifold M+(a, A, m) (resp. Mr{a, A, m)) which
is diffeomorphic to a S3-bundle over a lens space and which generalizes
Calabi-Eckmann manifolds. To construct M+(a, A, m), M~(a, A, m), we
use a surgery of new type. In Sections 2, 3, we study tubular neigh-
bourhoods of a primary Hopf surface imbedded in a complex manifold of
dimension 3. We show the existence of multiplicative holomorphic func-
tions with the Hopf surface as divisor (Theorem 2.8) and the equivalence
of the tubular neighbourhood of the Hopf surface with a tubular neigh-
bourhood of the 0-section of the normal bundle of the Hopf surface
(Theorem 2.48). In Section 3, we compute some local cohomologies and
the irregularity of M±(a9 A, m) for general a. In Section 4, we charac-
terize the complex structures M+(a, A, m), M~(a, A, m) by using the
results of Sections 2, 3. The key point of the characterization is the
possibility of the inversion of the surgery introduced in Section 1.

1. Constuction of M+(a, A, m) and M~(a, A, m). A compact complex
manifold H is called a Hopf manifold, if its universal covering manifold
is biholomorphic to Cn — O (0 is the origin of Cn, n = dim H). Moreover
if the fundamental group of H is an infinite cyclic group, we call H a
primary Hopf manifold.

For Hopf surfaces i.e., Hopf manifolds of dimension 2, the following
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facts are well known [10].

(1.1) (1) Every primary Hopf surface S has the following normal form:

S = Sβ9t = C>~ O/(g}

g(zlf z2) = (a.z, + tzf, a2z2)

where αe(zί*)2 (d* is the unit punctured disk in C), teC, meZ+ satis-
fying 0 < | α j ^ \a2\ < 1, (αx - a?)t = 0.

(2) Every Hopf surface S satisfies:

H\S, Os) = H\S, C)~C, H\S, 01) = H\S, C*) = C* .

In particular every complex line bundle on Sa>t has the following normal
form for some βeC*.

L(a, β\ = (C2 ~ 0 ) x C/(hβ) , hβ(zlf z2, zz) = (g(zl9 z2), βzz)

and the bundle projection p: L(a, β)t -> Satt is defined by

where [ ] denotes the class in the quotient spaces. We denote by \L\
the number \β\ for a line bundle L = L(a, β)t. And write L*(a, β)t for
L(a, β)t - (0-section).

LEMMA 1.2. Let E(X) be a non-singular elliptic curve of the form:
E(X) = C/Z + λZ, λe C, Imλ > 0. Lei π: C->E(X) be the natural uni-
versal covering projection. Then for every multiplicative holomorphic
function f on E(X), / * = π*f is of the form: f*(z) — r exp (sz) for some
r,seC.

PROOF. Let Z be a nowhere zero vector field on E(\). Since / and
Zf are sections of a flat line bundle on E(X), they have no zero locus
or they are identically zero. Suppose / is not constant. Let / be a
holomorphic function defined on C such that f*(z) = exp (/(#))• Since
Zf has no zero locus, / is an automorphism of C. This implies the
lemma. q.e.d.

LEMMA 1.3. Let L*(a), L*(β) denote L*(al9 a2, α8)0, L*(β19 β2f β3)0 for
some (alf a2, α3), (β19 β2, /33)e (z/*)3 respectively. Then L*(a) is biholomor-
phic to L*(β), iff the following conditions are satisfied (log denotes the
branch of logarithm on C* — JB" such that log 1 = 0). Set ξ =
(l/2πi) log α3, η = (l/2πi) log βz.

(1.4) There exist A = (a •, J e SL(2, Z) and m = (mlf m2) 6 Z 2 satisfying
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β1 = exp ((α — cη) log aλ + 2πim{ή)
+ a β2 = e χ P ((α — ^ ) log a2 + 2πim2η)

or

/ x ^ __ αf + b β1 = exp ((α — cη) log α2 + 2πim1rf)
\ ) 1 I — j—-zr f

c ί + a β2 = exp ((α — 07) log αx + 2πim2rj)
PROOF. Let p x: (C2 - 0) x C-> L*(α) and p2: (C2 - 0) x C-> L*(/3) be

the natural projections defined by: («lf »2, 23)e (C2 — 0) x C-» [^, 2̂>
exp (2τri«8)] € L*(α) (resp. L*(/3)). Suppose that there exists a biholomor-
phic mapping ^: L*(θ) -> L*(α). Let Φ: (C2 -0) x C-^ (C2 - 0) x C be
the lifting of φ. We set Φ(p) = (Φ[(p), Φl(p), Φ\p)) = (Φ 1^), Φ2(p)) for
pe(C2 — 0) x C. Let &, βr2 be the automorphisms of C2 — 0 defined by:
&(Si! «2) = («i«i, ^2^2), ^2(̂ 1, «2) = (βfiu βfo)- Since ^ is a biholomorphic
mapping, we can find A = (a ΛeSL(2f Z) such that:

and

( 1 g. Φ\9&u Z2), z3 + 37) = Φ2(«i, 32, «8) + αf + b

ΦX*if *2, Zz + 1 ) = Φ\Z19 Z2, Zz) + Gξ + d

hold. By Hartog's extension theorem, we can regard Φ as an automor-
phism of C\ Since Φ(0, 0) x C is an automorphism of (0, 0) x C, we have
that Φ2(0, 0, zz) is a linear function of z3. So we have from (1.6) that
η — (aξ + b)/(cξ + d). Next differentiating (1.5) and setting (zlf z2) = (0, 0),
we have

A f ^ O , 0, «, + *)= (α ? ) ^ i ( 0 , 0,

Note t h a t (dΦ)/dz3)(0, 0, zz) = 0. Since t h e Jacobian m a t r i x of Φ a t (0, 0, 0)
is nondegenerate, we have t h a t

(1.8) - ^ L ( 0 , 0, 0) Φ 0 , - ^ 1 ( 0 , 0, 0) Φ 0
9^x 3z2

or

(1.9) j ^ L ( o , 0, 0) ^ 0 , 4^-(0, 0, 0) ^ 0
α^2 3^!

holds. Suppose (1.8) holds. Since we can r e g a r d (3Φ1/3^1)(O, 0, z3) and
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(dΦl/dz2)(0, 0, z3) as multiplicative holomorphic functions on E(rj) = C/Z +
ηZ, by applying Lemma 1.2., we can find two complex numbers slf s2

such that

(1.10) exp (27m,-) = a{ , exp (Zπisfl) = alβϊ1 , j = 1,2 .

From (1.10) by easy calculation, we obtain the condition ( + ). Suppose
(1.9) holds. By using the same argument, we obtain the condition ( —).
The "if" part of this lemma can be proven by the reverse process of
the proof of the "only if" part easily. q.e.d.

Now we construct M±(a, A, m). Let H(a) be a primary Hopf surface
of dimension 3 of the form:

(1.11) H(a) = C3 - O/(h) , h{zlf z2, zz) = (aLzίf a2z2, α3z3) ,

where 0 < | α 1 | ^ | α 2 | < l , 0 < |α 3 | < 1 and (h) denotes the group of
automorphism of C3 generated by h. We set SQ = {[zu z2, zs] e H(a); zB = 0}
and C = {[zlf z2, zs] e H(a); zι = z2 = 0}. Clearly So is a primary Hopf sur-
face and C is an elliptic curve. Let us consider an open complex mani-
fold W = H(a) - So- C. It is clear that W is biholomorphic to L*(α).
Then for any element A of SL(2, Z), if we take mlfm2eZ sufficiently
large, there exists L*(β) satisfying the condition (1.4) ( + ) or (1.4) ( — )
with respect to L*(α), A, m = (m19 m2). Now we consider a compactifi-
cation of L(β\ as a P'-bundle over S{βl}β2)i0. We denote it P(/5). Let
Soo be the infinity section of P(β). Note that L*(α) and L*(/3) have
structures of rank 2 vector bundle over elliptic curves minus zero sections
by the projections: [zL, z2, z3] e L*(a) (resp. L*(β)) -> [zs] e C*l(a^ (resp.
C*/</33>). By the proof of Lemma 1.3, we can choose a biholomorphic
mapping φ+ (or ψ~): L*(β) -^L*(α) of the form: φ+ (resp. φ~): [zlf z2, zz]e
L*(β) - [fMz19 Mzz)zt, /afe)] 6 L*(a) (resp. [fMzi9 f2(zz)z19 fM] e L*(α)),
where f^), f2(zs) are multiplicative holomorphic functions on the elliptic
curve C. Then by identifying L*(β) aP(β) - (0-section) with L*(α) =
WaH{a) by φ+ or φ~9 we obtain a compact complex manifold. We denote
the manifold by M+(a, A, m) or M~(a, A, m) according to the patching
φ+ or φ~. M±(α, A, m) has the following structure:

(1.12) M±(α, A, m) = (H(a) - C) U U(SJ ,

where [/(SL) is a tubular neighbourhood of Soo in P(β), i.e., M±{a, A, m)
is constructed from H(a) by the surgery which replaces the elliptic
curve C with Soo. We shall study the topology of M±(ay A, m).

THEOREM 1.13. M±{a, A, m) is dίffeomorphic to S3 x S3 if and only

if A is of the form: A = (^ Λ.
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PROOF. Let us denote M±{a, A, m) by M. Because of the construc-
tion of M, M — So and M — S^ have a structure of complex line bundle
over Soo and So respectively. We note that every primary Hopf surface
is diffeomorphic to S1 x S3 and in particular every complex line bundle
over a primary Hopf surface is differentiably trivial. So we obtain that
M — So and M — SL are diffeomorphic to S1 x S3 x C. This implies that
M is diffeomorphic to a manifold constructed from two copies of S1 x
S3 x C by gluing them along S1 x S3 x C*. We shall review the con-
struction of M. We can naturally identify M — SL and M — So with
L(α)0 and L(β)0 respectively. Review that L*(a) and L*(β) have a struc-
ture of rank 2 vector bundle over an elliptic curve minus 0-section by
the projection [zlf z2, z3] e L*(a) (resp. L*(/3)) -• [s8] e C*/<α3> (resp. C*/</33».
By using the definition of ^+ (resp. φ~), we see that ^+ (resp. φ~) is a
restriction of an isomorphism between the above vector bundles over
the elliptic curves. Let us identify C* with S1 x R+ by the diffeomor-
phism: ze C* -+(z/\z\, \z\)e S1 x R+ and let us identify S3 x R+ with
R* — O (0 is the origin of iϊ4) naturally. Then we can identify S1 x
S3 x C* with S1 x S1 x (/24 - 0). Then M is diffeomorphic to a manifold
constructed from two copies of S1 x S3 x C by gluing them along S1 x
S 3 x C * = (S1 x S1) x (iί4 - 0) by a diffeomorphism u: (S1 x S1) x (J?4 -
0) -> (S1 x S1) x (Λ4 - 0) of the form: u(x, y) = (ufa), G(x)y), where G(x)
is a differentiable mapping from S1 x S1 into S0(4). This implies that
M is diffeomorphic to a S3-bundle over a manifold which is constructed
from two solid torus by gluing their boundaries, i.e., a S3-bundle over
a lens space (c.f. [6]). Hence M is diffeomorphic to S3 x S3 if and only
if M is simply connected, because S3-bundle over S3 is differentiably
trivial (c.f. [15]). By van Kampen theorem, one can easily see that M

is simply connected, if and only if A is of the form: ( . ? ,J). q.e.d.

COROLLARY 1.14. M±(a, A, m) is diffeomorphic to a S3-bundle over
a lens space. And there exists a complex structure on a S3-bundle over
any lens space.

2. Neighbourhoods of a primary Hopf surface. In this section, we
study complex analytic properties of tubular neighdourhoods of a primary
Hopf surface imbedded in a complex manifold of dimension 3. We use
the same notations as in Section 1.

DEFINITION 2.1. Let L be a line bundle over a primary Hopf sur-
face S.

(1) L is said to be of infinite type, if H\S, OS{L~V)) = 0 for v ^ 1.
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(2) L is said to be of tangentially infinite type, if H\S, Θs ®
0s(L-v)) = 0 for v ^ 1.

( 3 ) L is said to be of smooth type, if H\S, Ω\ (x) Ω\ (g) OS(L~V)) = 0
for v > 1.

(4) L is said to be torsion free, if for any curve C in S, L\c (g)
iV̂ /s is nontrivial for any r Φ 0, and any p.

REMARK 2.2. Let L be a line bundle over a primary Hopf surface
S. If L is torsion free, L is also of infinite type, tangentially infinite
type and smooth type.

PROOF. Let L be a torsion free line bundle over S = Saiί(X2)t and let
L = L(alf a2, α8)« It is easy to verify that every curve in S is biholo-
morphic to C*/<α?α2> and its normal bundle is the restriction of L(alf

a2f a[ai) for some a, b, c, de Z. Hence there exists no triple of integers
(p, q> r) such that al — a\a\ and r Φ 0. First we prove that L is of
infinite type. Since S is diffeomorphic to S1 x S\ Riemann-Roch theorem
implies that

(2.3) dim H\S, 08(L->)) = dim H\S, OS(L-")) + dim H\S, OS(L'U)) .

So it suffices to prove that dim H\S, OS(L-*)) = dim H2(S, OS(L-U)) = 0
for v ^ 1. Since every line bundle over S is flat, we can identify every
global section of OS(L~V) with a multiplicative holomorphic function on
S. Suppose that there exists a nontrivial section σ of O(L~V) for some
v ^ 1. Since L~v is not trivial by the assumption, σ has zero locus.
Let C = ΣTΠJCJ be the zero locus of σ, where Cό is an irreducible reduced
curve in S. Since every line bundle over S is flat, there exists a multi-
plicative holomorphic function σ3 with divisor Cό for each j. Then
(JlσpY^σ is a multiplicative holomorphic function with no zero locus.
Hence it is a constant. Let us denote L(alf a2, ak) (k = 1, 2) by Lfc.
Since [Cj] = Lx or =L 2 [10], we conclude that a^ = αfαf for some
2>, (7 sS 0. This contradicts the assumption. Hence we obtain that
H\S, OS(L-V)) = 0 for v ^ 1. To prove that iΓ(S, O^Ir*)) = 0 for v ^ 1,
we note that i3| = L* ® L* [10]. Then by Serre duality, we have that
dim H\S, Os(L-p)) = dim H%S, OS{LV (g) Lί (g) L2*)). Then by the similar
argument to the case of H°, we can prove that dim H2(S, 05(L"1')) = 0
for v ^ 1.

Next we shall prove that L is of tangentially infinite type. Since
the tangent bundle Ts is of the form:

(2.4) Ts = C2 x (C2 — 0)1 (u) , u(ί1, ί2, «!, «2) = (αA + mtz?~%, a2t29 g(zL, z2))

by (1.1) (1), the following exact sequence holds:



COMPLEX STRUCTURES 357

(2.5) 0 -> OsiLJ -»Θs-> OS(L2) -> 0 .

Then we have the exact sequence of cohomology:

(2.6) -> H\S9 OS{LX <g) L")) -* ίP(S, 0S <g> O(L~>))

-> iΓ(S, O5(L2 (x) L-v)) — .

By the similar argument to the proof of the case of infinite type, we
obtain that H\S, O(Lk (g) L~")) = 0 for k = 1, 2 and v ^ 1. This completes
the proof of the case of tangentially infinite type.

The proof of the case of smooth type is similar to that of the case
of tangentially infinite type. Hence we omit it. q.e.d.

For the later use, we need the following lemma.

LEMMA 2.7. Let S = SΛtt be a primary Hopf surf ace and let π: C2 —
0 —• S be the natural covering projection. Then we have the following
table:

(2.8)

type

I

II

III

VI

(«!, a2, t)

(a, a, 0)

(α", a, 0)

m > 1

(α , a, t)
t Φ 0

otherwise

basis of π*

Zx d/dZi ,

z2 d/dz, ,

z? d/dz,

mz, d/dZi 4

zT d/dz,

H\S, θa)

Λr2 OjUΛ2

Zι d/dz2

z2 d/dz2

- z2 d/dz2

z2 d/dz2

dim H\S, θa)

4

3

2

2

PROOF. The proof of this lemma is easy calculation. Hence we
omit it. q.e.d.

Now we study tubular neighbourhoods of a primary Hopf surface
imbedded in a complex manifold of dimension 3.

THEOREM 2.8. Let S be a primary Hopf surface imbedded in a
complex manifold M of dimension 3 and let N be the normal bundle of
S. If N is of infinite type and \N\ < 1, then there exists a multipli-
cative holomorphic function u defined on some tubular neighbourhood of
S with divisor S.

PROOF. We divide the proof of this theorem into several steps.

Step 1. We choose a biholomorphic mapping i(t): Sajt —• S and identify
S with Satt. If t Φ 0, since for any ε < 0, iε: Satt —> Sa>εmt defined by



358 H. TSUJi

IX, z2] -> [zlf ez2] is a biholomorphic mapping, we can choose t arbitrary
near 0. Let π: C2 — 0 —» S be the natural covering projection defined
by π(z19 z2) = [zlf z2]. Then there exist ri9 τ\ > 0 (i — 1, 2, 3, 4) and δ > 0
satisfying the following conditions:

0 < rx <
r[ = \a2

77 — if

ΐ =

ΐ =

satisfy

(1) ^
(2) π(

= 1,

h,*

= 4,

is

[7)

< r3 < r4 , 0 <
and the domains

2,3,

2)eC2; z j < n + |

5,6

biholomorphic onto

ut

, r

its

π(L

Ls - a •

image

r4)ππ(D

S6)

by π
r

δ ) pi τr(

, r x = |

in C2 define

2

< rί_ + δ}

for each i9

Uβ) = ^.

By the property (2.9) (1), we can identify each Ut with its image
π(Ui). Hereafter we denote ί/* instead of π(Ut). Clearly ^ — {U%) is
a Stein covering of S. By replacing 3 by slightly larger one, we obtain
another Stein covering ^ * = {U?} of S such that Ut is a relatively
compact subdomain of U* for each i.

Now we consider a Stein covering of S in M. Since every Stein
submanifold admits a Stein neighbourhood [15], we can find a Stein
neighbourhood V* of £7** in M for each i. We define complex manifolds
Ui% (resp. Vt%) for (i, i, k) = (1, 2, 3), (4, 5, 6) by gluing disjoint unions
of Z7« , C//, Ϊ7&* (resp. V<*, F/, Ffc*) naturally on 17* n U? and U? f] U?
(resp. V*Π V* and F/Π Ffc*). Clearly Ut*fc is a closed Stein submanifold
of Fϊ*fc. We take a Stein neighbourhood V*** of Ui% in Fi*fc. Replacing
V?, V?f Vk* by F / n F ^ , F / Π F 4 , Vk*ΓίVt*ih respectively, we may
assume that V£3 and F4?β are Stein manifolds. Then we can find defining
equations wijk e H\ Vijk, 0) of 17,% in Vτ% for (ί, j , k) = (1, 2, 3), (4, 5, 6).
We set wh = wiJh\Vf for he{ί,j,k}. Then tiά = ( W ^ )l Ĉ * Π 17*, 1 ^
i, i ^ 6 (i ^ j) define the normal bundle of S. Since H\S, Of) = JBΓ^S, C*),
modifying wo Λ, if necessary, we may assume that ίo is constant for each
(i, j) from the beginning.

Next we construct local coordinates. We note that we can naturally
identify Ufa with a domain in C2 by its construction. We restrict the
standard coordinate of C2 to Ufa and obtain a local coordinate zijk of
Ufa. Since F ^ is a Stein neighbourhood of t/i**, we can extend zijk to
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a vector valued holomorphic function defind on V*Sk and we denote it by
zίjk again. We set zh = zi3 k\V* for he{i, j, &}. Shrinking V* (without
shrinking U*), if necessary, we may assume that (zif w%): V* -> C3 is a
local coordinate of V* for each i. Again we shrink U* and V* so that
the following conditions are satisfied:

(1) Uf is of the form (2.9), if we identify U? with a domain
in C2 naturally. In particular U* is a Stein manifold.

(2) V* is a Stein neighbourhood of £/**.
(3) Z7i* contains !/< as a relatively compact subset.
(4) (zt, Wi) is defined on the closure of V*.

(5) zt(Vt*) = zt(U<*).

The existence of such shrinking is clear. So we may assume the condi-
tion (2.10) from the beginning.

LEMMA 2.11. // we choose t sufficiently close to 0 at the beginning
of this step, we may assume that the Stein coverings *%S = {Z7J and
<%S* = {U*} satisfy the following condition:

Every holomorphic function defind on WiS = (U* Π Us) U (Ut Π U*)
, 1 p. has an analytic continuation to a holomorphic function defined

on a domain which contains Ut Π Us as a relatively compact
except for (i, j) = (1, 2), (2, 3), (4, 5), (5, 6).

PROOF. First we consider the case: t = 0. Since each Wiά is identified
with a Reinhaldt domain in C2 in this case, every holomorphic function
defined on WiS can be expanded into a Laurent power series by the
theorem of H. Cartan (c.f. [7]). Since the domain of convergence of a
Laurent power series is logarithmically convex (c.f. [7]), we can prove
this lemma only by writing the figure of Wiά. Details are left to
readers.

In the case: t Φ 0, Wiά is not necessary a Reinhaldt domain. But
as t goes 0, every Wiά approaches to a Reinhaldt domain. Then it is
clear that, if we take t sufficiently near 0, the same assertion as in the
case: t = 0 holds. q.e.d.

We set W*j = (the holomorphic envelope of Wtί) except for (ΐ, j) =
(1, 2), (2, 3), (4, 5), (5, 6) and W$ = UfnUf for (i, j) = (1, 2), (2, 3), (4, 5),
(5, 6).

Step 2. First we construct the desired multiplicative holomorphic
function as a formal power series. We write the transformation of local
coordinates on V? Π Vf as follows:
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oo

The construction of the formal power series given below in entirely the
same as in [17]. But for the next step, we repeat the construction.

To prove Theorem 2.8, it suffices to construct a system {ut} of holo-
morphic functions defined respectively on a neighbourhood VI ( c V*) of
U* satisfying the conditions:

(i) Each ut is of the form:

ulv) = gt(zt(p), wl

= Wt(p) + (terms of order ^ 2 with respect to wt)

(ii) ut = tijUj on ViΠ V3-.

We shall determine each ut = Qi(zi9 w%) as an implicit function defined by
the equation:

(2.14) wt = fi(zi9 ut) = ut + Σ ftiAzJut ,
2

where Z^^, ut) is a power series in ut whose coefficients fi\v(zt) are holo-
morphic functions of the variable zt. By (2.13) the condition (ii) is
equivalent to:

(2.15) φilzu flzu ut)) = fά{ψάί{ziy Uziy no), tjtUt) .

We expand the left-hand side of (2.15) into the power series:

(2.16) φjlzt, f<(zi9 ut)) = tjut + Σ ftMuϊ) + tJ{ Σ KMu\

where

(2.17) tit Σ KMu\ = Σ ^iiv(«i)(^ + Σ Λι/i(«i)̂ fY .
v=2 v=2 \ /ί=2 /

The right-hand side of (2.15) is expanded into the form

Letting

we have

(2.18)

a(Zi, 0)) + Σ fji\»μ(zt)wΐ
μ=l

Σ fi\Aψn(*t> 0))(tjiV>iY + *ϋ Σ Wίi
i/=2 i/=2
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where

(2.19) tάi Σ KϊUzM = Σ Γ Σ U\MUi Σ

We infer from (2.17) and (2.19) that if /,,2, ••-,/„„ (1 ^ ΐ ^ 6) are deter-
mined, then h'tj\v+1 and ΛIJ|P+1 are determined independently of fi]u+lf

/,ιv+2, •••. The proof of the following lemma is [17].

LEMMA 2.20. ( 1 ) /,0s,, ut) (1 ^ i ^ 6) satisfy (2.15) as formal power
series, if and only if the equations

(2.21), fi]vMp)) - tτtfi]v+ι(1rMp), 0)) - Λ,yll,(3,(p)) /or p e ^ n £7/

are satisfied for any 1 <£ i, j ^ 6 (i ^ i) a^d v ^ 1, where we have set

( 2 ) Suppose that /,,2, •••,/,!„ satisfying (2.21X, , (2.21)l/_1 respec-
tively are already determined. Then {hiύ]v} is an element of

Since JV is of infinite type, Lemma 2.20 completes the construction
of the formal power series.

Step 3. Let a(u) = Σ"=o^X and A(u) = ΣΓ=o AX, A, ^ 0 be two
power series of u. We write a{u) < A(%), when \av\ ^ Av hold for all
v ;> 0. To prove the convergence of the power series /,(«„ %,) = w, +
ΣΓ=2 fi\u(Zt)u>i o n s o m e neighbourhood V/ ( c Vf) of £/,* respectively, we
shall show that there exists a power series A(u) = u + Σ^=2 Auu" with
constant coefficients and positive radius of convergence satisfying:

(2.22) AMP), ut)< A(ut) for pe Ut* (1 ^ ΐ ^ 6) .

If we write fί(zif ut) = ut + Σί= 2 fuMu? and Av(u) = w + Σ^=2 A ^ ,
then (2.22) is equivalent to the conditions:

(2.23), fϊ(zlp\ ut) < A\u%) for p e U<* (1 ^ i ^ 6) , » = 1, 2, • .

Suppose that /^(^i, u{) and Av(^) satisfying (2.23), are already determined.
We shall estimate |M ί Ί , + i | , |feiJ|V+1| in terms of A29 •••, Av.

Let jβ be a sufficiently large number such that \φ3 t\p(zt{p))\ ^ Rμ for
peUi*Π Of, l ^ ί , j ^ 6 ( ί ^ j ) , μ = 2,3, . F r o m (2.17), we obtain

if

Let C be max t i i ί ) {|ί4ί |} Then we have:

(2.24) Σ WjiΛs/p))!*? < C ^A^f\ for pe U? n ϋ"/1
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Since each Ut is relatively compact in t/i*, we can choose sufficiently-
large number Q such that, for every point p in U* Π Uίf the closed
disk; Dp = {qe Vf; zt(q) = zt(p), \wt(q)\ ̂  1/Q} is contained in Vf. By
the assumption and the condition (2.10) (5), we have:

(2.25) 1/^,^,(^(9), wt(q))) \ £ Aμ , q 6 Dv c Vf Π Vf , μ = 2, 3,

Then we have:

(2.26) ifuMpN £ APQ
λ , peUt*ΓίUj9

μ = 2,S, •-.,» , λ = 1,2, . . . .

Therefore, by (2.19), we have:

(2.27) ί/Σ ^,,fe(p))^? « Σ ί ί i ^ ^ ^ u , ) ) ^ , ^ ^ for v Uf

Then from (2.24) and (2.27), we get the following estimate:

(2.28) min {|Λ<iIy

\ C R(A^2 + C ^ W > 2 Ί for pelf,
1 - RA%u) 1- QA\u) l+i

where TΓ̂  = (Z7,* Π ϊ7y)U(I7,n t//) and [ ] y + 1 denotes the coefficient of
uv+1 in the power series. Let P be max {ί?, R2, Q}. Then we have:

(2.29) min {| Λ^fofo)) |, | **,„(*,(!>)) |} ^ Γ | ^ # S ^ 1 for p e Wiά .
LI — PA\u) Jv+i

Let L be a line bundle over S. We introduce a norm on
OS(L)) as follows:

(2.30) I {7<y}L = max sup {min {17^117^1:^5}} for {Ί^e Z\^\ OS{L))
a, j)

where (i, i) runs all pairs such that 1 ^ i < i ^ 6.
Then since hίj{v = 0 for (i, j) = (1, 2), (2, 3), (4, 5), (5, 6) because of the

construction of the local coordinates, by Lemma 2.11, we obtain:

(2-31) l { K

where B = 2CP and [ ] v + 1 denotes the coefficient of uv+1 in the power
series.

Step 4. In this step, we shall estimate the operator norm of the
coboundary mapping δ: C°(^*, OS(N~V)) -> Z\<&*, OS(N~U))9 v = 1, 2, -
by modifying the method in [5] appendix. Let L be a line bundle over
S. We introduce a norm on C°(^*, 05(L)) by
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(2.32) \{Vi}\ = max sup {\Vi\: UJ , ftJeCW, OS(L)) .

LEMMA 2.33. Let E, L be line bundles on S. Suppose that \L\ Φl
and δ: C°(^*, OS(E <g) L~u)) -> Z1^*, OS(E (g) I T " ) ) is <ra isomorphism for
v ^ 1. TΛ,e% £/ιere exists a positive constant K independent of v such
that the operator norm \δ\ of the coboundary mapping δ: C°(^*, OS(E(g)
L-v))-^Z\^*f OS{E®L-")) is equal or lower than K, i.e. for every
{?7ϊ}e C°(^*, O(E(g)L-v)) the inequality

(2.34) \{Vi)\ ̂  K\δ{Vi}\m

holds, {where we take the transition functions {e^}, {liό\ of E, L to be
constant and ei5 = ltί = 1 for (i, j) = (1, 2), (2, 3), (4, 5), (5, 6)).

PROOF. Let Z be a holomorphic vector field on the Hopf surface S.
We define a linear endmorphism of C ? ( ^ * , OS(E ® L~v)) by

(2.35) ^ : 97 - {^0,.,ίg} -> Z17 = ί^ . . .^} .

Since JS and L are flat line bundle, this mapping is a cochain mapping,
i.e. δ(Zrj) — Z{δη), since the transition functions eίj9 lίd are constants for
1 ^ i, j ^ 6 (i Φ 3). We note that the Silov boundary of [7, (1 ^ i ^ 6)
is its edges. Then by Lemma 2.7, we can take two holomorphic vector
fields Zu Z2 such that the zero loci of Z1AZi do not intersect the Silov
boundary of Ut for every i. We introduce another norm on Z\^*f

Os(E®L-»)) by

(2.36) I{7ϊ,}I = max sup {min {\Tiό|, |Tά i |}: U,n ?7, }

for {7ϊy} e Z 1 ^ * , 05(£; (x) L-1 )̂) .

Then Cauchy inequality implies that there exists a positive constant d
such that

(2.37) I ZlZξT I ̂  c^+*| T |m for 7y 6 Z1^*, OS(E (g) L-v)) ,

v ^ l , p, q ^ 0 .

Since <5: C°(^*, O(JK <g) L"1*)) -> ^ 1 ( ^ * , 05(JK (x) L~v)) is a linear isomorphism,
Kodaira-Spencer's augument (c.f. [12]) shows that there exists a positive
constant Kv which satisfies the following property:

(2.38) I ^ I ̂  Kv\ δη» L for every ηv e C°(^*, OS(E (g) L~v)) .

But Kv may depend on v.
We set

(2.39) Eiv) = {(r, r) 6 ^ ( ^ , O^(^ (g) L"1 )̂) x R

^ dp+9r for j), g ^ O } .
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Then (2.37) implies that (T, \ T|J 6 E(v) for Te Z\<?S*, 0s(E (x) L'u)). We
set Kl = sup {\7f\lr\ Sηv = T,r Φ 0, (T, r) e E(v)}. It is clear that Kl ^
Kv. By (2.39), for our purpose, it is sufficient to show that Kl are
bounded with respect to v. Suppose not. Taking a subsequence, if
necessary, we may assume that K'μ —> °° as μ goes to infinity. By the
definition of Kμ, we can find ψ e C°(^, OS(E (x) L"0) and (7^, r^) 6 E{μ)
satisfying:

(2.40) ^ - 7% \ψ\/rμ £Ki^2\7p\/rμ , IΠ = 1 .

Then r —> 0 as ̂  —• c>o. Note that Z t (i = 1, 2) are cochain mapping and
(Ίμ, rμ)eE(μ) implies that {Zfίμ

f drμ)eE(μ) (i = 1, 2). Hence we have:

(2.41) \Ziψ\^Kr

μdrμ^^^drμ = 2d for i = 1, 2 .

Let us denote ^ by {57"}. Since the zero loci of Z1/\Zι do not intersect
with the Silov boundary of Ut (1 <£ ΐ ^ 6), (2.41) implies that 37? and its
first derivatives dτj!/dz19 dη%/dz2 are uniformly bounded with respect to
μ9 where 3/3 !̂ and 3/3 2̂ are vector fields on Ut naturally defined from
the identification of £7* with a domain in C2. Then taking a subsequence
if necessary, we may assume that each ηζ converges to a holomorphic
function ht uniformly on C7..

Let us denote Ίμ by {7&}. Then the equality δημ = Ίμ means that

(2.42) Vϊ ~ lϊfenVϊ = Wj on UtΓiU, .

We note that |Z31|, \lQi\ < 1 or |J13|, |Z4β| < 1 holds by the assumption.
Suppose |Z31|, | Ϊ M | < 1 holds. In this case, we conclude that hs = 0 on U3

and h6 = 0 on ?7β by the fact r^ —> 0. Then by the fact ίiy = e<y = 1 for
(i, i) = (1, 2), (2, 3), (4, 5), (5, 6) and the fact r^->0, (2.42) implies that
all ht vanish. Thus ημ converges to 0 uniformly on Ut respctively. This
contradicts the fact that \ημ\ = 1 for all μ. In the case |i1 3 |, |Z4β| < 1,
by the same argument we obtain the proof of the lemma. q.e.d.

Now we return to the proof of Theorem 2.8. We assume that (2.23)
holds. Then since |iSΓ| < 1, applying Lemma 2.33 to E = Os (trivial
bundle), L = N, by (2.31), we obtain:

(2.43) \U^IV))\^\ fB{^yΛ for
LI BAv(u) J

We note that the relation:

(2.44) Λ,v+1(s,) - tϊtf^+fa) = hts{χzt) on U? n U? .

Since U4 (resp. Uj) contains the Silov bondaries of Uf, U2*, Uz* (resp.
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Uf, Etf, ί/β*), by (2.43) and the assumption \N\ < 1, we have:

(2.45) \UMp))\^\^+1^fΊ for Peur, 1 £ < * 6 .
L 1 BA\) J

Now we define a power series A(u) = u + Σ~=2 Avu
v to be the solution

of the functional equation:

(2.46) A(u) - u = (K+DB(A(u)y
1 — BA(u)

Clearly A(u) exists and has a positive radius of convergence. Then we
obtain:

(2.47) ΛO&ito), ut) < A{uτ) p e U? , 1 ̂  i ^ 6 .

by the induction on by using (2.45). This completes the proof of Theo-
rem 2.8. q.e.d.

Next we prove the following theorem.

THEOREM 2.48. Let S be a primary Hopf surface imbedded in a
complex manifold M of dimension 3. Suppose that the following condi-
tions are satisfied:

(1) The normal bundle N of S is of tangentially infinite type with

(2) [S] is a flat line bundle on some neighbourhood of S.
Then there exists a tubular neighbourhood of S which is biholomorphic
to a tubular neighbourhood of the 0-section of N.

PROOF. We divide the proof of this theorem into several steps.
First we remark the condition (2) is equivalent to the condition:

(2) ' There exists a multiplicative holomorphic function on a neigh-
bourhood of S with divisor S.

Step 1. Let w be the multiplicative holomorphic function in the
assumption (2)'. We choose Stein coverings ^ = {Z7J, ^<* = {£/**} of S
and a Stein coordinate covering T* = {V?, (zif wt)} as (2.9), (2.10). We
may assume that w = w \ V? for 1 <̂  i ^ 6, where we choose the branch
of w such that tiS = wjw3- = 1 for the pairs (i, j) = (1, 2), (2, 3), (4, 5), (5, 6).
We identify S with 0-section of N as usual. We choose a Stein coordi-
nate covering 5^~* = {Wf, (yif 8<)} of N as follows:

(1) Wι = p~\Uf), where p:N->S is the bundle projection.

(2) Vt^p^ZtlUf).
(2.49) (3 ) Si is a restriction of a branch of a multiplicative holomor-

phic function with divisor S defined on whole N. And
Si satisfies the relation sjsj = tiS on W* Π W*.
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To prove Theorem 2.48, it is sufficient to construct a system of
vector valued holomorphic functions {g^ defined respectively on a neigh-
bourhood Wi of Ut(Wt c Wt*) satisfying:

(2.50)
Λ(0ϋ(Vi), tόis%) = ψJt(gt(yif β,), β«) on W, n PΓy

where ΘH(yϊ) = 2/; on IT** Π FT/ and ψ^ta, wt) = zy on V,* Π 7*. In fact,
using g/s we can define a biholomorphic mapping g from a sufficiently
small neighbourhood W of the 0-section of N into M by

(2.51) flr: (y,, 8i)eWt*nW^> {gί{yi9 st\ sτ) e V? .

Then it is clear that g is a well-defined holomorphic mapping. Now we
construct {gt} as formal power series. We set

oo

(2.52) g,-(yif st) = Σ 9uXVi)sϊ , 9t\o(Vι) = Vt -

We write g^Vu 8t) = Σ£=o0ίiΛ/iK. For two power series P(u), Q{u) in
^, we indicate by writing P(u) =vQ(u) that the power series expansion
of P(u) — Q(u) in u contains no terms of degree ^ v. With these nota-
tions (2.50) is equivalent to:

(2.53), gtθilvϊ), </A) =uΨn(gϊ(Vi9 st)9 8t) for v = 0, 1, 2, .

We construct gϊ(yi9 8t) satisfying (2.53) by induction on v. By the defini-
tion of yif {g%yί9 Si) = y%) satisfy (2.40)0. Suppose {gΓ\yi9 8t)} satisying
(2.40)v_! are already determined. We define a system of holomorphic
functions {gij\v{zι)} defined on UidUj respectively by

(2.54) ga\XVi) = [gΓ\θti(Vi), Ufii) - ψijigrKy^ «Λ sj)l

where [ ]v denotes the coefficient of 8\ = t\5s) in the series. The proof
of the following lemma is standard and hence we omit it.

LEMMA 2.55 (c.f. [12]).
(1) {&*!„} is an element of Z\^, OS(TS ® N~v)).
(2) gϊ(yif Si) = gϊ~\yu st) + gnXy^sϊ satisfies (2.53), if and only if

Since N is of tangentially infinite type, Lemma 2.55 completes the
inductive construction of the formal power series.

Step 2. We now proceed as in the proof of Theorem 2.8. We expand
ψij(Zi + u, v) into a power series in three variables u19 uz, v and let
Lij(Zj, u, v) be the linear part of the power series, where u denotes the
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vector (ulf u2). Since ψi5 is a vector valued holomorphic function on the
closure of V* Γ\ V*f we can find a large number P such that

(2.56) fafa + u, v) - θti(Zj) - Lid(zs, u, v)

< Σ PXu>i + u2 + vy for zj e U? n U?

where < means that every element of the left-hand side is dominated
by the right-hand side. Suppose that for some v >̂ 2 and a polynomial
A"~\v) = cv + Σί=2 <V*̂  i n v with constant coefficients

(2.57),., gϊΛyλv), st) - yt(p) < A^\Si) for p 6 17, , 1 ^ i ^ 6

is obtained. If we take c > 1 sufficiently large, then (2.57)! is satisfied.
Then we obtain from (2.54) and (2.56):

(2.58) I giJlv(Vi(p)) I <£ [ / ^ f ^ l for p e U* n 17,
Li Λ (S) J

where [ ]v denotes the coefficient of s< = tv

iάs) in the power series (note
that gijlv extends to Ut* Π ί7, holomorphically). So we obtain:

(2.59) \VjgiJMp))\ £ [i^Yp~A>-ζ)\ f 0 Γ v e U t ΠUj

where [ ]v denotes the coefficient of vv in the power series. By (2.59)
and Lemma 2.55 (1), we can find a positive constant C such that

(2.60) \gίόMv))\ ̂  [cι^p^-ζ)\ f o r

(2.59) and (2.60) assert that gίj\Xyι) extends holomorphically to W?ά,
where W$ = (Ut* Π Us) U (t7/ n ί/*) except for (i, j) = (1, 2), (2, 3), (4, 5),
(5, 6) and Wf, = U? ΓΊ Uf for (i, i) - (1, 2), (2, 3), (4, 5), (5, 6) (we note
that g^XVi) = 0 for (i, i) = (1, 2), (2, 3), (4, 5), (5, 6) by the construction
of the coordinates. We introduce a subspace of Z1(%S, Θs 0 OsiN'11)) as
follows:

(2.61)

= {Te Z\^/, Θs (x) OS(N~V)); each 7ϊ, is holomorphic on

Wίi and 7ϊy = 0 for (i, i) = (1, 2), (2, 3), (4, 5), (5, 6)} ,

And we introduce a norm on Z)J&S, ΘS(S)OS(N~V)) by

(2.62) \T\m = max sup{min{|7^ I, 17^1}:^?} for
a,j

where ^ = max{|7?Λ |, |7?i2|} (7?y - (7JΛ, 7?Λ)). Then (2.60) asserts that
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Step 3. Since Ts is not a flat vector bundle in general, we need
the following lemma.

LEMMA 2.64. Z\^*y Θs (x) Os(N-»)), Z1^*, Os(Lk <g) N~")) (k = 1, 2)
(Lk = L(a19 a2, ak)t) are metric spaces with respect to the norms:

\T\m = max sup {min {|Tίό|, |Tά ί |}: W$\ for Ve Z1^*, Θs <g> Os(L-»))

Iί»L = max sup {min {|&|, |^} : Wj) for ξ"e Z\^\ Os(Lk (g> N"1))
ϋt 3)

k = l,2

respectively. And Z\%S*, Θs (x) OS(N~V)) is a direct sum of
Os(Lk (x) N~u)) as metric spaces.

PROOF. By (2.5), we have the commutative diagram:

0 > C^OsiL, <g) N-η) > C°(ΘS (x) Os(L->)) > C\OS(L2 ® iV"*))

0 > ZXOS(LL (g) N-y)) > Z\S (x) OS(L~")) > Z\OS(L2 <g) N")) > 0 .

The first line is exact since ^<* is a Stein covering and it clearly splits.
And by the assumption, every column gives a linear isomorpism. Hence
the second line is exact and splits. It is clear that this splitting is a
splitting as metric spaces by the definition of the norms. q.e.d.

By Lemma 2.64, the same argument as in Lemma 2.33 works, since
\N\ Φ 1. Then we have the following lemma.

LEMMA 2.65. For every element V of Z\{fU, Θs® OS(N-U)), there
exists a unique element rf of C\fS, Θs (x) OS(N~V)) satisfying 3ηv = T.
And the inequality \ηv\ <; K"\V\m holds, where K" is a positive constant
independent of v and \rf\ denotes max* sup {|τ^|: U%).

Step 4. We define a power series A(v) — cv + Σ?=2 a>μVμ of positive
radius of convergence by:

Then by using (2.63) and Lemma 2.65, we can prove

(2.67) &(V*(P), 8t) < A(st) for peUif 1 ^ i ^ 6

as before. This completes the proof of Theorem 2.48. q.e.d.
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3. Local Cohomology. In this section, we compute some local
cohomologies.

THEOREM 3.1. Let S be a primary Hopf surface and let L be a line
bundle over S. Suppose that \L\Φl. Then the followίngs are true (we
identify S with the Osection).

( 1 ) // L~ι is of infinite type, then we have that

Hl(OL) = 0 , HI(OL) = 0 .

(2) // L~ι is of both tangentίally infinite type and infinite type,
then we have that Hι

s{ΘL) = 0, HI(θL) = 0.
(3) // L~ι is of both smooth type and infinite type and L is of

infinite type, then H&Ωl (g) Ω\) = 0, H\L, Ω\ (x) Ω\) = 0.

PROOF. Let us identify S with the 0-section of L. Let F be the
natural compactification of L as a /^-bundle and let SL be the infinity
section of F. Let f:F-^S be the bundle projection. Let S? — OF

(resp. ΘF, ΩF (x) ΩF). Let us consider the exact sequence:

(3.1) 0 -+ H\F, &) -> H\F -S,f)-> m(^) ~+ H\F, &*)

— H\F - S, &) -> Hl(^) - H\F, ^ ) - > . . . .

We study H\F - S, S?) for i = 1, 2. Clearly F - S is biholomorphic to
L~\ Let /*: L"1 -+ S^ be the bundle projection. We identify F - S with
L"1 hereafter. By identifying £L with S, we consider L"1 as a line bundle
over S. We choose a Stein covering ^ * = {£/**} of S and a Stein coordi-
nate covering 3T~* = {Wt*, (yt, βt)} of L"1 as (2.9), (2.10), (2.49). First
we study H\F - S, &). Let h be an element of H\L~\ &>). We
expand ht — h\ W* into a power series:

(3.2) ht(yi98t) =
l/=0

Then h^eH°(S, ^ (g) OS(L")), where ^ - = Os (resp. Θs φ OS(L-1), (X^ φ
OS(L)) 0 ώ2

s ® OS(L)). Then by the assumption we have that

H\F - S, OF) = H\S, Os)

(3.3) H\F - S, ΘF) s H\S, Θs) + H\S, OS(L-1)) + H\S, Os)

H\F - S, Ωι

F (g) Ω%) = 0 .

Secondly we study H\F — S, ^ ) . Let {h^} be an element of
, S^). Then each htj has a power series expansion on W*Γ\W*:

(3.4)
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Let ^ 3 = {U}} (0 < 8 < ε) be a Stein covering of S satisfying

(i) Ul c U? for 1 ^ ί ^ 6, 0 < δ < ε .

(3.5) (ii) dU'->dU* as δ->0 uniformly with respect to some

complete Riemannian metric on S for 1 <ί i rg 6 .

We note that {hij]u} e Z\^*f ^ ® OS{LV)). Suppose that {hti} is cohomolo-
gous to 0 formally, i.e. every {A^J is cohomologous to 0. Then we can
find a system of formal power series {AJ, hKyu s<) = ΣΓ=i A<ι«,(3/<)sϊ satis-
fying:

(i) hu(yS9 8S) = hlyiy st) - hj(yjf Sj) on Wt* Π TΓ/ as formal

(3.6) power series .

(ϋ) hiXVi) is holomorphic on Ut* for 1 ^ i ^ 6, v ^ 0 .

for every 0 < δ < e and R > 0, we can find a power series A(δ, R)(s) —
ΣΓ=i -Av(δ, i2)sv in s with constant coefficients A»(δ, R) satisfying the
condition:

(3.7) Σ hijΊXyi(p)) < A(δ, RXs,) for peU.ΠUj for 1 ^ i ^ i ^ 6
l

and A(δ, i?)(s) has a radius of convergence greater than R. By Lemma
2.33 and the bundle exact sequence (2.5), there exists a positive constant
Kδ such that ΣΓ=i h^AvM < KδA(δ, R){st) holds for all i. Letting δ -> 0
and iϋ->°o, we conclude that every A£ is holomorphic on Wt*. This
implies that we can compute H\F — S, <9*) formally. Then by the
assumption we obtain:

H\F - S, OF) = H\S, Os) (induced by (/»)*)

(3.8) H\F - S, ΘF) = H\S, Θs) + H\S, OsiL-1)) + H\S, Os)

H\F - S, ΩF (g) ΩF) = 0 .

Next we study iί^ί 7, ^ ) . Let us consider the Leray spectral
sequence: E{« = ίίp(S, Rqf*^) => H*+9(F, S?).

(1) Case ^ = OF. In this case we have the following:

El>» - H\S, Os) , E^ = 0 , # ! ° = ίί2(S, 0,) = 0 ,
( ' } Et1 = 0 , Eϊ'2 = 0 .

Hence we have that

(3.10) H\F, OF) = H\S, 08) (induced by /*) , H\F, OF) = 0 .

(2) Case S? = ΘF. In this case we have that R°f*ΘF = Θs 0
OS(L-1) © Os 0 05(L), i?1/*©^ = 0, i?2/^,, - 0. So we obtain:
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(3.11) El>» = H\S, OsiL-1)) + H\S, 08) + H\S, θs) , El1 = 0 ,

E*>° = H\S, OsiL-1)) , Et1 = 0 , E2°>
2 = 0 .

Hence we have:

H%F, θr) = H\S, θs) + H\S, OsiL'1)) φ 1ΓO(S, 0,)

(3.12) JΓ(Ff ©,) = H\S, θr) + iP(S, 08) + iΓ(S, O^L"1))

ίί 2(F, θr) = mS, OS(L-1)) .

We claim that:

(3.13) Ker (H\F, ΘF) -> i ϊ 2 ( F - S, β^)) - 0 .

£e t W j / < ) } e W * , ^^(L-1)) be a 2-cycle not cohomologous to 0. Then
{hijk(yi)s2i d/dSi} e ZX'W*, ΘF_S) is a 2-cycle not cohomologous to 0 even
formally. This proves the claim.

( 3 ) Case &* = ΩF<g)ΩF. By (3.12) and the assumption, we have,
that H\F, ΘF) = 0. Then by Serre duality, we have

(3.14) H\F, ΩF (g) ΩF) = 0.

By (3.1), (3.3), (3.8), (3.10), we see that H8(0L) = 0, H2

S(OL) = 0, in
the Case (1).

By (3.1), (3.3), (3.8), (3.12), (3.13), we see that Hι

s(ΘL) = 0, H2

S(ΘL) = 0
in the Case (2).

By (3.1), (3.3), (3.8), (3.14), we see that Hl{ΩΪ (g) Ω\) = 0, in the
Case (3). q.e.d.

COROLLARY 3.15. Let M = M±(α, A, m). If M is diffeomorphic to
Ss x S3. Then M has the following properties:

( 1 ) M contains a cycle of primary Hopf surfaces of length 4, i.e.
there exists a divisor D = So + Sx + S2 + S3 such that:

1i) Each Si is a nonsingular primary Hopf surface.
(ii) St Π Sj ^ 0 , iff (i, o) = (0, 1), (1, 2), (2, 3), (3, 0) and {SJ intersect

transversally.
(2) For suitable indexing the normal bundles Not N2 of So, S2

satisfy \N0\ < 1, \N2\ > 1.
Moreover if NQ and N2 are torsion free, then q(M) = dim H\Mf OM) = 1.

PROOF. By (1.12), M is of the form:

(3.16) M = (H(a) - C) U U(SJ)

where C = {[zlf z2, zB] e H(a); zi = z2 = 0} and £L is a primary Hopf surface
and Z7(Soo) is a tubular neighbourhood of SL in a P^bundle P(/3) over a
primary Hopf surface in which £L is the °o-section. Let S2 be Soo. Then
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|JV2| > 1, because \N2\ = \βs'\ > 1. Let So be the primary Hopf surface
{[Zi, z2f z3]eH(a); zB = 0}. Then \N0\ < 1, because | JV0| = |α 8 | < 1. Let
S*, S3* be the surfaces in H(a) — C defined respectively by: Sf = {[z19 z2,
z3] e H(a) - C; z1 = 0}, S* = {fo, z2, z3] e H{ά) - C;z2 = 0}. Then the clo-
sures of S*9 Sf in M are nonsingular primary Hopf surfaces intersect
with S2 transversally because of the patching of H(a) — C and Z7(Soo) (c.f.
Section 1). Let S19 S3 be the closures of S*, S3* respectively. Then D =
So + Sj + S2 + S3 is the desired cycle of primary Hopf surfaces.

Next, suppose that No and N2 are torsion free. Then by Theorem
3.1 (1), m2{OM) = 0 and HI2(OM) = 0. So we have that H\M, OM) s
fΓ^Λf - S2, Ojr). Since M - S2 = iϊ(α) - C, ikf - S2 is identified with JV0.
We compactify iV0 naturally to a P^bundle Fo over So. Since the normal
bundle of the infinity section of Fo is isomorphic to No~\ by Theorem
3.1 we have H\F0, 0Fo) = H\M - S2, OM) = H\M, OM) (note that if a
line bundle L over a primary Hopf surface is torsion free, then L~ι is
also torsion free). Let π: Fo —> So be the bundle projection. Then by
using the Leray spectral sequence Ef q = Hp(SQt π*0Fo) -> Hp+g(F0, 0Fo),
we see that H\FQ, 0Fo) = H\S, 08) by π*. Since dim H\S, Os) = 1,
dimH\M, OM) = dim H1 (Fo, 0Fo) = dim H\S, Os) = 1. q.e.d.

4. Characterization of M±(a9 A, m). In this section, we study the
converse of Corollary 3.15.

THEOREM 4.1. Let V be a compact simply connected complex mani-
fold of dimension 3. Suppose the following conditions are satisfied.

(1) q(Y) = dim H\ V, Ov) = 1, 62(F) = 0.
(2) V contains a cycle of primary Hopf surfaces of length 4, i.e.

there exists a divisor D = So + S± + S2 + S3 such that:
(i) Each Si is a nonsingular primary Hopf surface.
(ii) SiPiSj^ 0 , iff (i, j) = (0, 1), (1, 2), (2, 3), (3, 0) ami {St} intersect

transversally.
(3) So, S2 are nonelliptic and their normal bundles No, N2 are

torsion free with \N0\ < 1, |iV2| > 1.
Then V is biholomorphic to M±(a, A, m) for some a, A, m and V is
dίffeomorphic to S3 x S\

PROOF. By Lefschetz duality theorem, we have:

(4.1) H\V - So, C) = Hδ(V, So, C) .

We consider the exact sequence:

(4.1) -> HΛ(V, C) - HΛ(V, So, C) - HCSo, C) -> HA(V, C) - .
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Then by the assumption and (4.1), (4.2), we have:

(4.3) H\V -So,C) = C.

Next we consider the exact sequence:

(4.4) 0 — H\V - SQ, dθv) -> H\V - So, C) Λ H\V - So, Ov) -> .

LEMMA 4.5. j is an isomorphism.

PROOF. First we compute dimίf^F — So, Ov). By Theorem 2.8 and
Theorem 2.48, So has a tubular neighbourhood which is biholomorphic to
a tubular neighbourhood of the 0-section of JV0. Then by Theorem 3.1,
we have Hs0(Ov) = 0 and HI0(Ov) = 0. By the exact sequence:

(4.6) - mo{Ov) -> H\ V, Ov) -> H\V - So, Oy) -> HI0(Ov) ->

and the assumption q(V) = 1, we have that dim H\V — S09 Ov) = 1.
Next we prove that dim H°(V - SQ, dθv) = 0. The proof of the fol-

lowing sublemma is easy. Hence we omit it.

S U B L E M M A . H ° ( S 2 9 Ω v l S 2 (x) N ^ ) = 0 for a l l v^O.

This sublemma means that every holomorphic 1-form on V — So has
zero of infinity order along S2. Hence we have that dim H\V — So,
dθy) = 0. By using (4.3) and the above calculations, we see that j is
an isomorphism. q.e.d.

LEMMA 4.7. For every line bundle L over V, L\V — So is a flat

line bundle.

PROOF. Let us consider the commutative diagram:

> H\Z) > H\C) > H\C*) > H\Z) > H\C) > •

I 1 I s. I I
> H\Z) > H\OV) > H\O$) -?-> H\Z) > H\OV) > -

where H\-) means H\V - So, —). We note that <5*(L|F - So) = 0 in
H\V — So, C) because of b2(V) — 0. Then by using Lemma 4.5, one can
prove this lemma only by chasing the diagram (4.8). q.e.d.

By Lemma 4.7, [S2]F_So is a flat line bundle. Then the assumption
and Theorem 2.48 imply that there exists a tubular neighbourhood of
S2 which is biholomorphic to a tubular neighbourhood of the 0-section
of N2. Then by the inverse of the surgery in Section 1, we can replace
S2 by an elliptic curve C, since \N2\ > 1. We denote the result of this
surgery by V*.

We claim that F * is a primary Hopf manifold of dimension 3.
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LEMMA 4.9. For every line bundle L over V, L\V — S2 is a flat
line bundle.

PROOF. Since S2 has a tubular neighbourhood which is biholomorphic
to a tubular neighbourhood of the 0-section of N2, by the same argument
as in Lemma 4.5, we obtain that the natural homomorphism Hι(V — S2,
C) -> H\V — S2f Ov) is an isomorphism. Then by using the same diagram
as (4.8), one can prove this lemma. q.e.d.

By Lemma 4.9, there exist multiplicative holomorphic functions f19 f2, /8

with divisors S.OiV - S2), SQ, S3Π(V - S2) respectively on V - S2.

LEMMA 4.10. H^V*, Z) = Z.

PROOF. By Lefschetz duality theorem, we have:

(4.11) HJY - S2, Z) ~ H\V, S2, Z) .

We consider the exact sequence:

(4.12) -> H\ V, Z) -> H\SU Z) — H\ V, S2, Z) -> H\ V, Z) -> • .

Combining the assumption and (4.11), (4.12), we have:

(4.13) Ht(Y -S2,Z) = Z.

Since the elliptic curve C has codimension 2 in V*, we have that πx(V*) —
π,{V - S2). So we have H^V*, Z) ~ H,{V - Sif Z) ^ Z. q.e.d.

By considering the universal covering manifold of V*f we can extend
fit f*> fz to multiplicative holomorphic functions defined on F* by Hartogs'
extension theorem and we denote them by the same notations. Let us
take a generator 7 of H1(y*9 Z) ~ Z and let alf a2, az be the monodromy
multipliers of flff2tΛ along 7 respectively (c.f. [10] II, p. 701, Lemma
11). Clearly |αJ=N=l for i = 1,2,3. And by reversing the orientation
of 7, if necessary, we may assume that | α j < 1 for i = 1, 2, 3. In fact,
for instance, p= — loglαj and σ = log|α 2 | were both positive, then
Ififίl would be a single valued continuous function on V*. This con-
tradicts that fΐfi is a nonconstant multivalued holomorphic function on
some open set in V*.

Then we can define a holomorphic mapping Φ: F* —• H(a) (a =
(a19 a29 α8)) by:

(4.14) Φ:peV*-> [^(p), /8(p), /8(p)] e H(a) .

Let S[, Si be the zero loci of fu /3 respectively. Since SQ is a nonelliptic
primary Hopf surface, Φ is a biholomorphic mapping onto its image on
some tubular neighbourhood of So. In fact Si Π SQ and S3 Π So exhaust all
the curves in So and they are zero loci of /Jfi o and fs\S0 respectively.
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Then it is well-known that the holomorphic mapping ζ: pe So —> [fx(p)9

A(p)]e S{alta3) is biholomorphic (c.f. [10], II). Then the above assertion is
clear. This implies that Φ is generally one to one. We note that H(a)
contains only three surfaces and they are primary Hopf surfaces, because
So is nonelliptic and No is torsion free. Then we have that Φ is biholo-
morphic onto its image on some neighbourhood of S[{JSO{JS3. Let us
consider the divisor D* of d/iΛd/2Λd/8. Since H(a) contains only three
curves which are the intersections of the three surfaces, we have that
Φ(D*) consists of finite number of points in H(a). Then it is clear that
F* contains a global spherical shell (c.f. [9]). This fact implies that F*
is a small deformation of a compact complex manifold which is a modi-
fication of a primary Hopf manifold of dimension 3 at finitely many points
(c.f. [9]). Since b2(V) = 0, this implies that Φ is a biholomorphic mapping.
Hence V is the result of a surgery of H(a) which replaces the elliptic
curve C by S2 by identifying a tubular neighbourhood T of C in H(a)
minus C (we identify T with a tubular neighbourhood of the 0-section
of the rank 2 vector bundle L(a19 a3, a2\ —> C*/(a2)) with a tubular neigh-
bourhood V of the 0-section of L(β19 β2, βs) minus the 0-section for some
(βi, β29 βi) which is determined by the relation of Lemma 1.3 for some
A, m. Let v: T* -> T'* be the identification where T* = T - C and
V* — T — (0-section). We write v by using the coordinates as in Lemma
1.3 as follows:

(4.15) v([z19 z2f zs]) = ([hάzάZu h2(z3)z2, h3(z3)] + [h'(zL9 z2, z3)])

(or = ( I X t e ) ^ , h2(z3)zu h3(z3)] + [h'(zlf z2, z3)]

where hi(z3), 1 ^ i ^ 3 are multiplicative holomorphic functions on the
elliptic curve C and h'(z19 z29 z3) is a sum of higher order terms in z19 z2.
Let Vt (\t\ ^ 1) be the manifold constructed from H(a) by the surgery
which replaces C with S2 by using the following identification vt:

(4.16) vt([zlf z2t z3]) = ([hMz19 h2(z3)z2, h3(z3)] + [th'(z19 z29 z3)])

(resp. = {[K{z3)z29 h2(z3)zl9 h3(z3)] + [th'(zL9 z29 z3)])

(take T* and ϊ7'* small enough).
Then since H\ Vu ΘVt) ~ H\ Vt - S29 ΘVt) by Theorem 3.1, the complex
analytic family {FJ^^i is trivial. This implies that V = V1 is biholo-
morphic to Vo = M((al9 α3, α2), A9 m). Since V is simply connected by
Corollary 1.15, V is diffeomorphic to S3 x S3. q.e.d.
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