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0. Introduction. A foliation ^~ of a closed Riemannian manifold
W is minimal if the leaves are minimal submanifolds of W. A foliation
is taut if there is a metric on W for which the foliation is minimal.

Sullivan [S], Rummler [R] and Haefliger [H] found geometrical and
topological characterizations of these foliations. A codimension one
oriented foliation is taut if and only if every compact leaf is cut out
by a closed transversal (Sullivan). For general codimension there is a
necessary and sufficient condition for ^ to be taut that depends only
on the holonomy pseudo group of the foliation (Haefliger). If the leaves
of ^~ are all compact then ^ is taut if and only if _̂ ~ is stable
(Rummler).

Recently, Oshikiri [0], proved that for ^~ of codimension one and
W with non-negative Ricci curvature tensor, ^~ minimal implies that
^ and ^~L are totally geodesic, where _^r~1 denotes the normal flow
to ^ 7 In particular, ^ is defined by a closed form.

In this paper we generalize this theorem for the case of codimension
two. Precisely, we prove the following:

THEOREM. Let Wn+2 be an oriented closed (n + 2)-dimensional
Riemannian manifold and ^[ a minimal, codimension two C°° foliation
of W. Suppose the normal distribution of ^\, say ^ 7 , is C°° and integ-
rable and that both j^[ and j^l are orientable.

(1) // Rice (W) > 0 then e(^ζ) Φ 0.
(2 ) If Rice (W) ^ 0 then either ^~[ is totally geodesic or ε(^7) Φ 0.

(Both can occur simultaneously.)
(3 ) If W has non-negative sectional curvature then either ε ( ^ ) Φ 0

or ^ 7 ΛTMZ ^l are totally geodesic. (Both can occur simultaneously.)
Here ε(^l) denotes the Euler class of ^\ and Ricc(W) is the Ricci
curvature tensor of W.

REMARKS.

(a) For the case of non-negative sectional curvature the theorem
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is a complete generalization of Oshikiri's result for codimension two.
(Notice that the Euler class of a one dimensional orientable foliation is
always zero.)

(b) For the case of positive Ricci curvature the theorem provides
a topological obstruction to the integrability of the normal bundle of a
minimal foliation. Let us illustrate that with one example.

Let S 3 c Λ 4 be the standard unit 3-sphere of constant curvature.
Set W = S3 x S3 with the Riemannian product metric. It is easy to see
that Rice (W) > 0. There are orientable codimension two foliations on
W such that the normal bundle is also an orientable foliation. The
product of two Reeb foliations of S3 is such an example. This foliation
is not minimal.

There are also minimal foliations of codimension two on W. For
instance, consider the fibration π = Hoπ^. S3 x S3 -> S2, where: πy. S3 x
S3 -> S3, π^x, y) = x; H: S3 -> S2 is the Hopf fibration. The fibration
π: S3 x S3 —> S2 defines a totally geodesic (hence minimal) foliation ^~ of
W where each leaf is a totally geodesic S3 x S1 c S3 x S3. The normal
bundle of this foliation, say ^ L , is not integrable because ε (^" 1 )e
H\W, R) = 0.

We wish to express our gratitude to Professor A. Conde, L. Jorge
and M. Djaczer for many helpful suggestions and observations they made
during the preparation of this paper. We are especially grateful to
Professor C. E. Harle for calling our attention to this problem.

1. Notations. Let xeWn+2 and UaWn+2 an open neighborhood of
x. Let {eu •• ,en+2} be a local orthonormal frame defined on U. The
coframe, connection and curvature forms are given by

θjifij) = d j δZJ = 0 if IΦJ δXI = 1

π+2

(Ou(u) = {VJφύ, βj) , ΩJJ = dωu - Σ a>iκ/\ω
KJ

where 1^1, J^n + 2 and F, < , >, denote respectively the Riemannian
connection and the scalar product of M.

The Cartan structure equations are:
n + 2

dθx = Σ o)IKAΘκ , dωu = Σ (0IK/\ωKJ + Ωu .
K = l K = l

This is the notation used for instance in [Ch].

2. Some computational lemmas. Let Wn+2 be an oriented closed
Riemannian manifold and _^7 a foliation of codimension 2 satisfying the
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following conditions:
(a) ^ 7 is orientable, transversely orientable and has C°° differenti-

ability class.
(b) The normal distribution ^\ = ^β^1 is integrable and C°°.
(c) For i = 1, 2, the tangent spaces _ 7̂(x) at the point x of the

leaf ^ 7 passing through x satisfy ^~[{x) 0 ^lix) = TXW and ue^~[(x),
v £ <_̂ 7(#) => <w, v) = 0.

Throughout this paragraph we shall denote by ^ 7 both the foliation
and the distributions tangent to them.

As a consequence of (a), J?~2 is also orientable and transversely
orientable.

DEFINITION 2.1. A local orthonormal frame {elf e29 •• ,en+2} is said
to be adapted if the following conditions (i) and (ii) are satisfied:

(i) 0i(cc), * , en(x)e ^[{x)9 en+1(x), en+2(x)e ^"2{x) for all x.
(ii) {el9 e29 , en+2}, {eί9 , en} and {en+1, en+2] are compatible with

the orientation of W, ^ 7 and ^ 7 respectively.
Let {elf e2, , en+2} be an adapted local orthonormal frame defined on

an open set UaW. Let ψ be the following (n + l)-differential form
defined on U:

ψ — Σ Σ
" t ύ 2

Λωσ(n)Γ(n+1)ΛΘΓ(7,+2)

where Sn is the group of permutations of the set {1,2, , n} and S2

is the group of permutations of the set {n + 1, n + 2}. sgn (<j), sgn (τ)
stand for the signs of the permutations σ and τ.

Let E = {e19 e29 , e n + j be another adapted local orthonormal frame
defined on a neighborhood UaW and Θi9 ώi3 be the respective coframe
and connection forms associated to E. Let

ψ = σ Σ Σ ^ s g n ^ s g n ^ Θ . ^ Λ β . ^ Λ ••• Λθ, ( n-1>Λώα ( n ) Γ ( n + 1 )ΛθΓ ( n + 2> -

The following lemma shows t h a t ψ is a global form.

LEMMA 2.2.

ψ\uϊ\ΰ — ψlunϋ

PROOF. Set e< = Σ?=i α<jβi (1 ^ i ^ ^) and βα = Σ?ίn+i α^β/j {n + 1 ^
α ^ n + 2). Then we have θi = Σ?=i «*A> *« = Σ?ίϊ+i α « ^ ^ ω i α =
Σ i = i Σ ? i ' + i a^aaβCOjβy f o r 1 ^ i ^ n 9 n + l S a ^ n + 2 . T h u s

ZF = Σ Σ sgn (σ) sgn (τ) Σ aa{1)Slθh)Λ( Σ ^(2)i2Θy2 JΛ Λ
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(
n \ / n ra+2 \

Σ ^n-Dό^βόn-, )Λ( Σ Σ aσin)jnaτ[n+1)βiωjnβl)
">n—1~λ ' \J» = 1 />i=π+l /

( τι+2 \ I

Σ α r ( n + 2 ) ^ J _
02=n+l / IZ7ΠΪ7

= _Σ Σ . . Σ . _ β Σ_, / s g n (σ) sgn (τ) ασ ( 1 ) i l ασ ( 2 ) i 2 •

ΘhΛΘhΛ ••• Λ

The fact that ΘI/\ΘI = 0 and the symmetry of Sn gives us immedi-
ately:

Ψlunΰ = Σ Σ Σ Σ sgn (σ) sgn (r) aσaW)
σ e S £ eS λ

' ^ i ? ( l ) Λ * • • Λ ^ r / ( n _ i ) Λ ^ ( r ί ) / « ( j ι +

But i? is an adapted frame. Then det (atί) = 1 (1 ̂  i, i ^ w), det (ααj8) = 1
(n + 1 ̂  α, β ^ w + 2) and Σ<re^ sgn (α )ασ(1)9(1) aσ{nmn) = sgn (η) det (α<y) =
sgn 0?).

Similarly

Σ sgn(r)α r { n + 1 ) i, ( n + 1 ) α r ( r ι+2)Aί(n+2) = sgn (μ) .

Thus

ÊΓΠίF — Σ Σ

= Ψlunϋ D

From now until the end of this paragraph let us suppose that n ^ 2.
Using the same notations as before we define the forms φx and φ2 and
Ω in A n + 2 ( ^ ^ ) by

^i = Σ Σ sgn (σ) sgn (r) ( Σ α) ί(1)i,Λα) ία(!,)

ΛΘσ(3)Λ ••• ΛΘσ(n)ΛΘΓ(n+i))ΛΘΓ(n+2) ,

ί̂2 = Σ Σ sgn(<7)sgn(τ)0σ(1)Λ ••• Λ^ σ ( n )Λ(Σ (*>v(n+i)kAωkτ{n+2)) ,

Λ= Σ Σ Sp(ί7)Sp(r)β,(1)Λ •" Λβ^-uΛiϊ^Πn+ljΛβr^, ,

for ^ ^ 2.

REMARK. ^ , and φ2 and β are global forms in the sense that they
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do not depend on the choice of the particular adapted local frame. The
proof of that fact is a straightforward computation similar to that of
Lemma 2.2.

LEMMA 2.3. // n ^ 2, then

df = (-1)"[((Λ - 1)/2)A + (l/n)φ2] + (-1)"+10 .

PROOF. Let

(1) dψ = A + B + C ,

where

A = Σ Σ sgn (σ) sgn (τ) Σ(-l) i + 10.α>Λ Aθσ^λ)AdΘoU)AΘo{5+1)A •
e S l i l

JB = ( - l ) n + 1 Σ Σ s g n ( α ) s g n ( τ )Θσ ( 1 )Λ ••• Λβ β ( B . 1 ) Λtfα) α l n ) r | ) l + 1 ,Λθ r | 1 l + 2 , ,

C=(-l)n+2 Σ Σ sgn((7)sgn(r)Θ σ ( 1 ) Λ ••
*β8»τeSJ-

Permuting 1 and j on A, 1 Φ j , we get:

A= Σ Σ
8

Λβ<7(n-l)Λft)<7(7l) r (n+1)ΛΘ r(n+2)

But dθσ{1) = Σϊt 2iΛ>β ( 1 ) j rΛθjr. Thus

( 2 ) A = Λ + A2

where

Λ = (n - 1) Σ Σ sgn (σ) sgn (τ) ωβ{1)σ{n)Aθσ{n)AθσWAθσWA

Λ θ β ( n - i ) Λ α ) σ ( n ) r ( n + 1 , Λ Θr(n+2) , a n d

A2 = (n - 1) Σ Σ sgn (σ) sgn (r)α) α ( 1 , Γ ( n + 1 ) Λθ r ( n + 1 ,Λθ σ ( 2 )
6 S J

Using the symmetry with respect to the group Sn and the laws of
commutativity of the wedge product, we get

A2 = {n - l ) (- l ) n + 1 Σ Σ sgn(σ)sgn(τ)ωσ(1)rU+1)Λft)α(2)r(n+1)

Λ0 σ ( 3)Λ ••' Λ θ σ ( n ) Λ Θ r ( n + l ) Λ β Γ ( n + 2 )

Or, equivalently:

(4) A2 = (Λ-1)(-1)
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Then, using (2) and (4) we get

/g\ A = A -}- (u 1)( IV

On the other hand

where

( 7 ) Bt = ( — l)n+ίΩ

and

( 8 ) B2 = ( - D w + 1

σ Σ Σ ± sgn (σ) sgn (r)ββ { 1 )Λββ ( ! )Λ

From (8) we obtain:

and

(10) B21 = ( - l ) n + 1

σ Σ Σ sgn (σ) sgn (r)Θσ(1)ΛΘσ(2)Λ Λ β α M
n τeS2

A ( Σ ® - A (θσ r 7i i ) A Θτ n + 2

(11) β2 2 - ( - l ) n + 1 ^ Σ Σ χ sgn (σ) sgn (r)Θσ(1)ΛΘσ(2) A Λ β α M

A ft>σ(n)r(n+2) A ί«τ(n+2)r(n+l) A Θ Γ ( n + 2 ) .

Using again the symmetry of Sn and the laws of commutativity of
the wedge product "Λ", the equality (10) becomes:

(12) B2L = (~l)n+l(n - l ) σ Σ Σ ± sgn (σ) sgn (r)θβ ( 1 )Λβ, ( ί,Λ

A 6> σ ( n _ υ A ωσMσW A ωσa)τ{n+1) A Θτ(n+2) .

For C, we have

{16) O = Oi + G2

i.e. where

(14) d = ( - l ) n + 8 ^ Σ Σ ± sgn (σ) sgn (r)Θr(1) Λ Θam A A 0 , ^ ,

A α ) σ ( n ) r ( n + 1 ) A a>r(n+2)a(n) A θ α ( n )

and
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(15) C2 = ( - i r + 2 Σ Σ s g n ( σ ) s g n ( τ ) Θ σ ( 1 ) Λ ••• Λ©.(.- ! ,Λα>.< n ) Γ ( » + 1 >

It is easy to see, from (14) that

(16) G = ( - I ) " " •(!/")&.

From (3), (12), (11) and (15), we get

(17) Λ = -B21,

(18) £ 2 2 = - C 2 .

Using (1), (5), (6), (7), (9), (13), (16), we finally obtain from (17)
and (18):

dψ = (-l)"[((rc - 1)/2)Λ + (l/n)&] + ( - i r + 1 i 2 . D

Let Λfβ be the leaf of ^~[ passing through a point x e W. Mx is an
immersed manifold on W and its metric is that induced by the metric
of W. Let {e19 e2, , en9 en+19 en+2\ be an adapted frame defined in a
neighbourhood of x e W. Define Ax — (hΐά(x)) I ^ i, j ^ n, n + 1 ̂  a ^
n + 2 by Λ& = <Fβieα, ey> = —0Dίa{et). With these notations it is easy to
see that

φ,= -{2\)\n-2)\ ± Σ (ΛSΛ& - Λ?Aβ>
l=i<ί a=n + l

where v is the volume element of W. Or, equivalently:

A = (2 ! ) (Λ - 2)! Σ [tr A2

α - (tr Aaf]v
a=n+l

where

K , tr Al =

Because ^4α is symmetric, we have

If ^ 7 is a minimal foliation, then

Σ ΛS =• t r Aα = 0 n + 1 ̂  α ̂  ^ + 2 , and
(19)

where S = Σ?.i=i Σ ϊ ί i + i (Wy)2 is the square of the length of the second
fundamental form of Mx.
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Denote by ε ( ^ ) the Euler class of the tangent bundle to
Using the notations as before, we can write (see [M]).

= -(1/2!) Σ sgn(τ)Γ(Σ α>r(»+i>*Λω4r(n+2)) + £Γ ( 7 1 + 1 ) r ( n + 2 )Ί .

On the other hand,

where vγ = θxt\ ΛΘn is the volume element of ^ 7 . Then

φ2 = -2n\ e(^;)Avι - n\ Σ sgn (r)i2T(n+1)Γ(n+

Let cn + l ι n + 2 denote the sectional curvature of W in the direction of
the plane determined by en+1 and en+2. According to our notations, we
have

^n+l,n+2Wn+l> ^n+2J ~ ^τι+l,n+2

Thus

(20) φ2 = -2nl s ^ Λ ^ + 2! nl cn+lfU+2v .

cia is the sectional curvature in the direction of the plane determined
b y et a n d ea9 1 ^ i ^ n , n + l ^ a ^ n + 2 a n d

(21) Ω= - ( Λ - I ) I

The following Lemma is an easy consequence of (19), (20) and (21),
Lemma 2.3 and the Stokes theorem.

LEMMA 2.4. If ^\ is a minimal foliation, then

[ Su - 2ε(jr2)Λv1 + Σ Rice (ea)v = 0 ,
JW a=n+l

where Rice (ea) — Σκ+A,κΦa βκa is the Ricci curvature of W in the direc-
tion of ea.

REMARK. Lemma 2.4 remains true even if the normal distribution
to J*7, say ^ , is not integrable. Observe as well that Σ2ίn+iRfcc(βJ
does not depend on the choice of the particular adapted frame.

3. Proof of the theorem. Suppose n ^ 2. Let us observe first
that the minimality of \^\ and the integrability of its normal bundle
imply ^ = 0 (see [J?]). Then vx is a cycle and i^e Hn(W, JB), where
Hn(W, R) is the w-th de Rham cohomology group of W.

The Euler class e ( ^ ) is also a cycle and e(^l)e H\W, R).
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We first prove (i). When Rice (W) > 0, suppose that ε ( ^ ) = 0 as
an element of H\W, B), i.e., ε ( ^ ) is an exact form. Consider the cup
product Λ in the cohomology ring H*(W, R)

A: H\W, R) x Hn(W, R) -* Hn+2(W, R) .

Since ε(j^I) = 0, we have ε{J>r)f\vλ = QeHn+2(W, R). Now, by the de
Rham theorem

\ e(^r~)Λv1 = 0 , which contradicts Lemma 2.4 .
JW

This completes the proof of part (1) of the theorem.
Suppose now Rice (W) ;> 0 and e ( ^ ) = 0. Then

Vχ = 0 = ( (s+ Σ Rice (ea))v ,
JW \ a=n+l /

by Lemma 2.4. Thus S = 0 and Rice (ea) = 0 ea ±
If S = 0 then _ 7̂ is totally geodesic and this completes the proof

of part (2) of the theorem.
Suppose now ε(^7) = 0 and W has non-negative sectional curvature

in the direction of every 2-plane and at every point of W. Then, in
particular Rice (W) ^ 0 and, by part (2) we see that ^ 7 is totally
geodesic.

Moreover, the following proposition is a part of a theorem proved
by Abe [Ab].

PROPOSITION. Let J?\ and J?Ί be two orthogonal foliations of com-
plementary dimensions over a complete Riemannian manifold W with
non-negative sectional curvatures. Suppose ^ 7 is totally geodesic. Then
J?l is totally geodesic.

This completes the proof of part (3) of the theorem for the case
n^2.

Let us now suppose that n = 1. Jβ?\ is now a minimal one dimen-
sional foliation. In other words, ^\ is totally geodesic.

Let {elf e2, e3} be an adapted local frame and set

ψ = α)21Λ<93 + Θ2Λα)31 .

It is easy to see that ψ is globally defined (see [A], [BLR]). Ex-
terior differentiation of ψ and the Stokes theorem give

2 \ e(j?l)ΛΘ1 = \ (Rice (e2) + Rice (ez))v .
JW JW

If _ 7̂ is totally geodesic and _^ς = J^1 is a foliation then dΘ1 = 0.



350 F. BRITO

The same argument used for the case n >̂ 2 shows that if Rice (W) > 0
then 6(^7) Φ 0.

This concludes part (1).
Part (2) is a consequence of the fact that J?\ is totally geodesic.

We can prove Part (3) by repeating the argument used in the case
n ^ 2. •
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