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1. Introduction and the statement of results. Let Kbe a simplicial
complex. It is said to be totally τι-dimensional if for each a e K there
exists an 7i-dimensional simplex τ 6 K such that σ < τ or σ = τ. A
polyhedron X is totally ^-dimensional if so is a triangulation K of X.
(See Akin [1].) A totally ^-dimensional locally finite simplicial complex
K is an -^-dimensional J£2-Euler complex if there exists a totally (n — 1)-
dimensional subcomplex L such that

1) The cardinality of {τeL\σ -< τ} is even for each σeL.
2) The cardinality of {τeK\σ -< τ} is odd for each σeL.
3) The cardinality of {τeK\σ < τ} is even for each σeK — L.

We usually denote dK instead of L. A polyhedron X is ^2-Euler if so
is a triangulation K of X. Let 3X = \dK\. A compact ^-dimensional
^2-Euler space X is said to be closed if dX is empty. Examples of Z2-
Euler spaces are PL-manifolds, Z2-homology manifolds, complex analytic
spaces and so on. (See Sullivan [16].)

Let K be a triangulation of a ^2-Euler space X. Then the A-th
Stiefel-Whitney homology class sk(X) is defined as the Λ-skelton Kk of
the first barycentric subdivision K of K. (See Akin [1], Halperin and
Toledo [7], Sullivan [16].) Since a differentiate manifold M has a
triangulation, the A -th Stiefel-Whitney homology class sk(M) can be
defined as above. Whitney [19] announced that the Λ-th Stiefel-Whitney
homology class sk(M) of an ^-dimensional differentiate manifold M is
the Poincare dual of the (n — &)-th Stiefel-Whitney class wn~k(M). Its
proof was outlined by Cheeger [5] and given by Halperin and Toledo [7].
Taylor [18] generalized it to the case of ^-homology manifolds. This
paper will give another proof of this result.

We will study the case of Z2-Poincare-Euler spaces. An ^-dimensional
^2-Euler space X is called an ^-dimensional ^2-Poincare-Euler space if the
cap products [JC]n: if*(Z; Z2) -> H?f(X, dX; Z2) and [JΓ]n: JEΓ*(-2Γ, dX , Z2) ->
£Γinf(J£"; Z2) are isomorphisms. Here JH"inf is the homology theory of
infinite chains.

Let X be an ^-dimensional ^2-Poincare-Euler space. Define a
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cohomology class Ux in H*(X x X, dX x X\ Z2) as the Poincare dual of
Λ*[X], where A is the diagonal map. Then [X x X] Π Ux — Δ*[X}.
Define the Stiefel-Whitney class w*(X) by w*(Σ) = (Sq J7Z)/[JΓ]. There
exists a proper PL-embedding 9: (X, dX) -> (Λ+, 3JZ+) for α sufficiently
large, where Ra

+ = {(a?!, a?2, -, α?β)|α?α ^ 0}. (See Hudson [10].) Suppose
that R is a regular neighborhood of X in R«+. Put # = R Π 3/ίί and
5 = cl (3jβ — JB). Regard φ as a proper embedding from (X, dX) to
(R, R). We also call (R R, R\ φ) a regular neighborhood of X in R+.
We will define homomorphisms

eφ: W ̂ R, R) -» Z2 and eφ: 3l*(R, R)-* Z2 , where 3l*(R, R)

is the unoriented differentiate bordism group. We need the following:

TRANSVERSALITY THEOREM (Buoncristiano, Rourke and Sanderson [2]
and Rourke and Sanderson [14]). Let M and N be PL-manifolds.
Suppose that f: (M, dM) —> (N, dN) is a locally flat proper embedding and
that X is a closed subpolyhedron in N. If f(dM) fϊ X = 0 or if
(dN, dN Π X) is collared in (N, X) and dN Π X is block transverse to
f I dM: dM —» dN, then there exists an embedding g: M —> N ambient
isotopic to f relative to dN such that X is block transverse to g.

Let /: (M, dM) -> (R, R) be in 3l*(R, R). There exists an embedding
g: (M, dM) -> (R x Dβ, R x Dβ) for β sufficiently large, such that g ~
f x {0} and that (φ x iά)(X x Dβ) is block transverse to g by Trans-
versality Theorem. Let Y = (φ x id)~1og(M). Then F is a closed Z2-
Euler space with a normal block bundle v in X x Dβ. Define eφ(f, M)
as the modulo 2 Euler number e(F) of Y. Let ψ: Γ-> X x D^ be the
inclusion. Define e φ ( f , M) = (ψ*w*(X x DO U w(v), [Γ]>, where ^(v) is
the cohomology class determined by w*(v) U w(v) = 1. Now define a
homomorphism o^: 5ί2#(12, R) —> ̂ 2 by o^ = β^ — ep. We can state the main
theorem of this paper as follows:

THEOREM. Let X be an n-dimensional Z2-Poincare-Euler space. Take
a regular neighborhood (R\ R, R-, φ) of X in R+. Then [X] (Ί w*(X) —
s*(X) if and only if oφ = 0.

A totally w-dimentional polyhedron X is an ^-dimensional ^2-homology
manifold if there exist a locally finite triangulation K of X and a totally
(n — l)-dimensional subcomplex L such that

1) H*(Lk(σ; L); Z2) = ̂ (S"-*-2; Z2) for each i-simplex σ e L.
2) H*(Lk(σ; K); Z2) = H*dpt; Z2) for each i-simplex σ eL.
3) H*(Lk(σ; K); Z2) = H^S*-*'1; Z2) for each i-simplex σ 6 K - L.
Theorem is applied to prove the following generalization of Whitney-
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Cheeger-Halperin and Toledo theorem.

COROLLARY. Let X be an n-dimensίonal Z2-homology manifold with
or without boundary. Then [X] Π w*(X) = s*(X).

We remark that Taylor [18] proved the corollary for ^2-homology
manifolds without boundaries.

In Section 2, we study Stiefel-Whitney homology classes and the
graded bordism theory of compact ^2-Euler spaces. The structure of
the graded bordism group of compact ^2-Euler spaces is given in Propo-
sition 2.3. The ungraded bordism theory was studied by Akin [1].
In Section 3, we study the Stiefel-Whitney classes of block bundles via
the bordism group of compact ^-Euler spaces. The result will be used
in Section 6. In Section 4, we study regular neighborhoods and the
Stiefel-Whitney classes. These are necessary for calculation in Sections
5 and 6. In order to prove the above corollary, we need Propositions
4.6 and 4.7. In Section 5, we give a characterization of Stiefel-Whitney
classes via the unoriented differentiable bordism group. In Section 6,
we give a characterization of Stiefel-Whitney homology classes via the
unoriented differentiable bordism group.

Our Theorem follows from Lemmas 5.1 and 6.1.
For completeness we add an appendix, where we give a detailed

proof of Transversality Theorem by following the outline given in
Buoncristiano, Rourke and Sanderson [2].

2. Stiefel-Whitney homology classes and bordism groups of ^2-Euler
spaces.

Let K be a simplicial complex. The barycentric subdivision K of K
is defined by

K = {(0Ό, , 0p)ko •< <σ99σteK} .

We denote the jfc-skelton of K by Kk. Then we have the following:

PROPOSITION 2.1. Let K be a Z2-Euler complex. Then Kk is a Z2-

Euler complex such that dKk = dKk~l.

In order to prove Proposition 2.1, we need the following:

LEMMA 2.1. Let Kbe a totally n-dimensional locally βnite simplicial
complex. If b e X*"1, then the cardinality of {a e K — Kp\a >• b} is even.

PROOF. If p = n, then K — K* is empty. Thus we may assume
that p < n. Let a = <σ0, , σ8} e K - Kp and let b = <τ0, , τt> e K*-1.
Then s > t + 1. Since the cardinality of {σ e K\ σQ < σ < σj is even for
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each <σ0, 0Ί> e ΪΓ, we have that the cardinality of {a e K — K* \ a > b] is
even for 6 e Kp~l. q.e.d.

PROOF OF PROPOSITION 2.1. Note that the cardinality of {α e K\a > b}
equals the sum of the cardinalities of {a e Kp \ a > b} and {α e K — Kp \ a > b}
ίoΐbeK. By Lemma 2.1, it follows that the cardinalities {aeK\a>b}
and {aeKp\a>b} are congruent modulo 2 for beKp~\ Then Kp is a

#2-Euler complex such that 3KP — 3Kp~l. q.e.d.

We need the following proposition to prove Corollary 2.2 as well as
Lemmas 3.2 and 3.3 and 6.1.

PROPOSITION 2.2. (Halperin and Toledo [8]). Let X and Y be Z2-
Euler spaces. Then sk(X x Y) = ΣJ-o*p(-30 x sk_p(Y).

In [8], ^2-Euler spaces without boundaries are studied but we can
prove Proposition 2.2, using the same method as in [8].

Let {S3re, 3} be the bordism theory of compact ^2-Euler spaces. Then
{S3n, 9} is a homology theory. (See Akin [1].) Let (A, E) be a pair of
polyhedra. Define a homomorphism s: %$n(A, B) -> HQ(A, B; Z2) + H^A, B;
Z2) +••• + Hn(A, B; Z2) by s(φ, X) = Σ?=o ?>**<(-£) Then s is well defined

by Proposition 2.1. The following holds:

PROPOSITION 2.3. The homomorphism s: 3Sn(A, B) -> HQ(A, B] Z2) +
HάA, B;Z2)+ + Hn(A, B\ Z2) is an isomorphism.

PROOF. Put hn(A, B) - H0(A, B; Z2) + HL(A, B; Z2) + + Hn(A, B; Z2).
Define the boundary operator 9Λ: hn(A, B) —> h^B) by that of the ordinary
homology theory. Note that {hn, dh} and {S5n, 3} are homology theories
with compact supports and that s is a homomorphism from ^8n(A9 B) to
hn(A, B) such that dh°s = sod. Since hn(pt) = Z2 and 58n(pt) = Z2, where
pt is the space of one point, the homomorphism s: 33n(A, B) -»hn(A, B) is
an isomorphism, (cf. See Spanier [15].) q.e.d.

This proposition implies directly the following:

COROLLARY 2.1. Let (φl9 X,) and (φ2, X2) be in 33n(A, B). Then
(φl9 Xί) is cobordant to (φ2, X2) in %$n(A, B) if and only if (φ^^s^X^ =
(φ2)*8t(X2) in Hi(A, B-, Z2) for all i.

REMARK. Akin [1] showed this in the case of ungraded bordism
groups.

Let S1 V S1 be the one point union of two circles. Then S1 V S1 is
a 1-dimensional Z2-Euler space such that the modulo 2 Euler number
e(S1 V S1) = 1. The following holds:
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COROLLARY 2.2. Let (φ, X) be in %>n(A, B). If φ*[X] = 0 in
Hn(A9 jB; Z2)9 then there exists (φ, Y) in %$n_y(A9 B) such that (φ, X) is
cobordant to (ψ°π9 Y x (S1 V S1)), where π: Y x (S1 V S1) -> Y is the
projection.

PROOF. Let Kn~l be the (n — l)-skelton of the barycentric subdivi-
sion K of a triangulation ίΓ of X Put | Kn~l \ = JP1-1. Then φ^s^Σ) =
(φ\JP-1)JJΓ1-1]. Let p: JΓ71-1 x (S1 V S1) -> X71'1 be the projection. Then
^Λ-ι(^) = (^l^n"1)*°PΛ_1(JSΓn-1 x (S1 VS1)) by Proposition 2.2. By
induction, there exists (ψ , F) in ^&n^(A9 B) such that φ^s^X) — ψ* °
TΓ^CF x (S1 V S1)) for 0 ̂  i ̂  n, where π: Γ x (S1 V S1) -> Γ is the
projection. By Corollary 2.1, we have (9), J5Γ) is cobordant to (ψ<>π9 Y x
(S1 V S1)). q.e.d.

We need the following to prove Lemma 3.3.

PROPOSITION 2.4. (Blanton and McCrory [4]). The k-th Stiefel-
Whitney homology class sk(Pn) of the n-dimensional real projective space
Pn is equal to n+ιCk+ιJ*[Pk]> where j: Pk —> Pn is the canonical in-
clusion.

3. Characterization of Stiefel-Whitney classes of block bundles
via the bordism group of ^2-Euler spaces. Let ς = (E(ξ\ K, c) be a k-
block bundle over a simplicial complex K. Then there exist PL-homeo-
morphisms φσ: σ x Dk —> E(σ), called the charts, for all σ in K. (See
Rourke and Sanderson [14].) Put E(ξ) = Όφσ(σ x 3Dk). Then f = (E(ξ), K)
is called the sphere bundle associated with ξ.

Let ζ = (E(ξ)9 K, cκ) and -η = (E(η\ L9jL) be A -block bundles over
simplicial complexes K and L. A map (h, h): (E(ξ), K) —> (E(η)9 L) is a
bundle map if

1) hi K -> L is a simplicial map,
2) cLoh = h°cκ, and
3) for each σ in j£, there exist charts φλ:σ x Dk-*E(σ) and ^>2:

ft(σ) x D fc —> E(h(σ)) such that fco^ = φ^(h\σ x id), where id is the
identity of Dk.

Let ζ = (£7(f), JΓ, O and r? = (̂ (̂ 7), Γ, ^Γ) be Λ-block bundles over
polyhedra X and Γ. A map (h9 h): (E(ζ\ X) -> (^(77), Γ) is a bundle map
if there exist simplicial complexes K and L such that |ίΓ| = X, \L\ = Y
and that (h, h): (E(ξ\ K) -> (E(η\ L) is a bundle map.

REMARK. If a map (A, A): (£/(f), -X") -> (̂ (57), F) is a bundle map,
then ζ — h*η. Conversely, if ζ = A*^, then there exists a bundle map
(A, A): (^(f)f JC) -> (̂ ), Γ). (See [14].)
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Let ξ = (E(ξ), A, c) be an n-block bundle over a locally compact
polyhedron A. Define E(ξ) to be the total space of the sphere bundle
associated with ξ. Then we will define a homomorphism eς : $&+(E(ξ)9

E(ξ)) -> Z29 where SB^C&Cf), E(ξ)) is the bordism group of compact Z2-
Euler spaces. Let R be a regular neighborhood of A embedded properly
in Ra for a sufficiently large. Let ί: A c R be the inclusion and let
p: R -> A be the retraction. Suppose that p*ξ = (E(p*ξ), R, CR) is the
induced bundle. Then there exist bundle maps (ζ ί): (E(ξ\ A)-*(E(p*ξ\ R)
and (p, p}: (E(p*ξ\ R) - (E(ξ\ A). For each (φ, X) in ̂ (E(ξ\ #(£)), there
exists an embedding φ: (X, dX) -> (E(p*ξ), E(p*ξ)) such that φ~i<>φ.
By Transversality Theorem, we may assume that φ(X) is block trans-
verse to CR: R -> E(p*ξ). Then we define ^(<p, X) as the modulo 2 Euler
number e(φ~l(cR(R))) of φ~\cR(R)}. We need the following to prove
Lemma 3.3:

LEMMA 3.1. Let (h, K): (E(ξί\ ΛJ -» (J5(f2), Λ) &e α bundle map. Then
eξl(φ, X) = eξz(hoφ, X) for each (φ, X) in %>*(E(ζ,\ #(&)).

PROOF. Let ik: Ak c Rk be the inclusions to regular neighborhoods
embedded properly in Ra, for a sufficiently large, such that there exists
an inclusion hR: Rl c R2 with iz o h c± feβ o ίlβ Let pfc: Rk — •> A fc be the
retractions for & = 1, 2. Suppose that pjf f c = (E(pϊξk\ Rk, ek) are the
induced bundles for ft = 1, 2. Then there exists the following bundle
maps

(ϊ* i»): (̂ (ί*), Λ) ->

(A, P*): (ί?(pί&), «*)

for ft = 1, 2, and

(KΛ, HR): (E(pfξ1\ R,)

such that hR is an embedding. For each (φ, X) in ^(E(ξ^9 E(ξj))9 there
exists an embedding φ: (X, dX) — > (E(p*ξί)9 ^(pf f J) such that ^ ~ ̂ 09 and
that 9(JC) is block transverse to fx: R^ -* E(pfξj). Then hβ°φ(X) is block
transverse to t£jRι-+E(pζζύ Noting that hR°φ ?z ί2°(h°φ), we have
β*t(λo9>, X) = β((ΛΛo^)-^(β2))). Since ^(βj = h*\c2(R2)) and ̂ (9, JC) -
e(φ-\ϊ,(R,})), it follows that efl(<?, JΓ) - eξ2(h°φ, X). q.e.d.

LEMMA 3.2. Lβί ξ = (£?, A, ή δe ατι n-block bundle over a locally
compact polyhedron A. Then there exists a unique cohomology class Φ(ξ)
in H*(E, E\ ZJ satisfying <Φ(f), <p*s*(X)) = eξ(φ, X) for each (φ, X) in

#, S).

PROOF. First we will prove the existence of Φ(ς). Let Φ'(ς) = 0 in
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H*(E, E\ Zz) for i = 0, 1, , n — 1. Define a homomorphism Φn:
S8n(E, E} -> £2 by Φ»(9>, X) = eξ(φ, X). If <P*[X] = 0 in Hn(E, E; Z2), then
by Corollary 2.2 there exists (ψ, Γ) in ^^(E, E) such that (9, JSΓ) is
cobordant to (ψ oπ, y x (S1 V S1)), where TT. ( Γ x (S1 V S1)) -» Γ is the
projection. Hence ee(0>, -3Γ) = eξ(ψ ° TT, Γ x (S1 V S1)) = e* (ψ , Γ) eCS1 V S1) = 0.
Thus we can define Φn(ξ) as the cohomology class determined by Φn.
As an induction hypothesis, we may assume that Φn(ξ ), , Φn+ί(ξ) are
determined so that <Φ"+*(£)f 2>JX]> = Σ£ί <Φn+y(f ), 9>*βw+X-Γ)> + e€(9>, -ϊ)
for p^i. Define a homomorphism φ*+«+1

: 33n+i+1(£/, E)->Z2 by Φn+ί+ί(φ, X) =

Σy=o <Φn+J'(f), 9>»βn+/(-a:)> + *«(?>, ̂  )• Suppose that y JX] - 0. By
Corollary 2.2, there exists (ψ>, Γ) in 33n+ίC&, £7) such that (φ, X) is
cobordant to (^OTT, Γ x (S1 V S1)), where π: Y x (S1 V S1) -> Γ is the
projection. Note that π*(sn+j(Y x (S1 V S1))) = sn+/Γ) for j = 0, , i,
by Proposition 2.2 and that eζ(ψ°π, Y x (S1 V S1)) = ee(ψ, Γ). Then

Φn+i+1(^-3Γ) = Σ^o <«n+y(f),^*en+Xy)>+ee(^y). Since <ΦTC+ί(f),^*sn+ί(F)> =
Σ£i <*w+y(f), Ψ *β.+y(y)> + (̂̂ , D, it follows that Φ^^1 ,̂ JC) = 0.
Hence we can define Φn+ί+1(ξ) as the cohomology class determined by
φn+i+i By in(juction, cohomology classes Φfc(f) can be defined as above for
every ft, so that the following is satisfied, (Φn+k(ζ), φ*[X]} = Σj£ί
9*βn+X-ϊ)> + βe(9>, -2Γ) for each (φ, X) in 35n+fc(£7, J?). Put Φ(ξ) =
Then for each (φ, X) in S3m(J5, £7), it follows that

= Σ <Φ\ξ\

- *(?>, X) .

Hence there exists a cohomology class φ(£) satisfying the assumption.
The uniqueness of Φ(ξ) can be proved as follows. Setting Φ = Φ° +

Φ1 + + Φα in jEf*(J&, £7; ^2), suppose that <Φ, φ*s*(X)y = 0 for each
(φ, X) in 33 (̂57, ^). Clearly Φ°=0. Suppose that Φ° = 0, Φ^O, - , Φk = 0.
Since <Φ, ?>*β* W> = ° for (̂  -̂  ) in S54+1(J&f J^), it follows that
<Φ*+1, ^*[̂ ]> = 0 and Φk+1 = 0. Hence Φ = 0 if <Φ, <p+s+(Xy> = 0 for
each (9>, -X") in 33 (̂̂ 7, £7). This means that the cohomology class Φ(ξ)
satisfying the assumption is unique. q.e.d.

Let ς — (E, X, c) be a block bundle. Let Φ(ς) be the cohomology
class defined as above. Define w(ξ) by w(ξ) = c*(Uξ\J)"1Φ(ξ)9 where
^(^U)"1: #*(#, E\ Z2)-+H*(X', Z2) is the Thorn isomorphism of ς. Then
the following holds:

LEMMA 3.3. If ς is the block bundle induced by a vector bundle
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over a locally compact polyhedron X, then the cohomology class w(ξ)
coincides with the dual Stiefel-Whitney class w(ζ) of w*(ξ).

In order to prove Lemma 3.3, it is sufficient to prove the following
(cf. [12]):

1) Given a block bundle ξ = (E(ξ), A, c) and a map h: B — > A, where
A and B are locally compact polyhedra, we have w(h*ζ) = h*w(ξ).

2) For block bundles & and ξz over locally compact polyhedra, we
have $(&) x w(ξz) = wfa x £2).

3) For the canonical 1-disk bundle rf over the projective space Pn,
we have w(ηl) = 1 + a + + an, for the generator a of H\Pn\ Z^.

PROOF. 1) Let h*j = (E(h*ξ\ B, CB) be the induced bundle. There
exists a bundle map (h, h): (E(h*ξ\ B) -> (E(ξ\ A). Since (h°φ, X) is in
%>+(E(ξ\ E(ξ» for (φ, X) in ®*(E(h*ξ), E(tfξ)) and β,(λo9, X) = βjw(9, X)
by Lemma 3.1, it follows that <Φ(£), (Λ°?>)*8#(JC)> = eΛ*e(9>, X). Note
that Φ(Λ*£) = Λ*Φ(£) by Lemma 3.2. Since w(h*ξ) = ^(t^UΓ'PΦφ and
h°cB~εoh, it follows that «(Λ*f) = Λ*o^*(Z7eU)"1Φ(f), hence w(Λ*f) =

2) Let f i = (J^i, βi, ct) be block bundles over locally compact polyhedra
Bi for i = 1, 2. Let JE^ be the total space of the sphere bundle associated
with &. Since (̂  x ̂ ^^^ x X2) - (9ι)*β*(-Σι) x 0?2)*s*(X2) for (9,, X,)
in 9$t(Ei9 Et), by Proposition 2.2, it follows that

By the uniqueness of Φ(^ x £,), we have Φ(fO x Φ(£2) = Φ(^ x f2), hence

«(fι) x «(&) - wfa x f2).
3) Let η1 = (En+1, Pn, c) be the canonical 1-disk bundle over the real

projective space. Define h: (En+1, dEn+l) -» (Pn, pt) by the canonical iden-
tification En+1/dEn+1 = Pn. Then h*: H*(En+l, dEn+1; Z2)-+H*(Pn+1, pt; Z2)
is an isomorphism and h°c = jn, where jk: Pk -> Pn+1 are the canonical
inclusions. Let Jk: (Eh, Pk~1} — > (En+ί, Pn) be the canonical inclusions.
Then h*(Jk, Ek) = (jk, Pfc). Note that h*: ®h(En+1, dEn+1) -> ®k(Pn+1, pt)
is an isomorphism by Proposition 2.3. Since S3J|c(Pn+1, pi) is_ generated
by {(ί*, Pk)}> we see that SB^^"-1-1, dEn+1) is generated by {(Jfc, E")}. In
order to prove the assertion 3), it is sufficient to prove

<ϋ,ι U (r*r(l + « + . . . + «-), (Jk)*s*(Ek» = eX



STIEPEL WHITNEY HOMOLOGY CLASSES 329

Let β be the generator of H^P**1; Z2). Then I7,ι = h*β and OTV =
h*βf. Since Λ* » tf^φ*) = (j»)*β*(P*), we have

U (<*r(l + « + . . . + α"), (7»

= </3 + /32 + + /3«+1, (J»),

By Proposition 2.4, it follows that

(Λ),β,(P*) = ΣmCUiO U
p=0

Then

<C7,ι U (mi + « + . . . + «»), (Jfc

k

~ ^Lj fc+iVp+i == & -
p = l

Note that <v(Jfc, #
fc) = e(Pk~1) = Λ. Hence

<tr,ι u (ί*Γ(i + « + •••+ «n), (Jk)*
By the above, we have $()/) = 1 + a + + an. q.e.d.

COROLLARY 3.1. Let v = (£7, Λf, r) &β ίfcβ normal block bundle of a
proper embedding from a compact triangulated differentiate manifold
M into R"+. Then

(U» U (t*Γw*(M\ φ*s*(X)} - ej(φ, X) for each (φ, X)

in the bordism group $5*(E, E) of compact Z^Euler spaces, where E is
the total space of the sphere bundle associated with v.

PROOF. Since v is induced by a vector bundle, it follows that
<JJ» U (^*)"1®(v)> 9>*«*(-ϊ)> = e>(φ, X) by Lemma 3.3. Since w*(M) = w(v),
we have

U (O-V(M), φ^(X)} - ey(φ, X] . q.e.d.

4. Regular neighborhoods and Stiefel- Whitney classes. Let (jβ; R,
R φ) be a regular neighborhood of an 7i-dimensional <2/2-Poincare-Euler
space X in JB+. Define a cohomology class U(φ) in H\R, R', Z2) as the
Poincare dual of φJ(X\ in H™(R,R\Zύ. Then [β] Π φ*U(φ) = φJίX].
The following holds:

PROPOSITION 4.1. Let (R\R,R 9φ) be a regular neighborhood of an
n-dimensional Z2-Poincare-Euler space X in R^+k. Then there exist the
following isomorphisms:

1) ίx: H*(X; Z2) -> Hί+k(R, R; Z2) defined by t,(a) = U(φ) U (φ^a.
2) ί2: H\X, dX; Z2)-*Hί+k(R, 5R\ Z2) defined by t2(α) - Z7(φ) U (φΎ1^
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3) ts: H£l(R, R; Z2) -> H^(X; ZJ defined by ί,(o) = (φj-\a Π U(φ».
4) tt: HiϊKR, 3R; Zt) -> Hi^X, dX , Zt) defined by ί4(α) = (?)J"l(α Π

).

PROOF. Note that the diagram

I I
PΠnJ p]n

H^(X, dX; Zt) — > HΆ(R, R; Zt)
Ψ*

is commutative and that homomorphisms [-X"]n, [R]n and φ* are isomor-
phisms. Thus ίx is an isomorphism.

We can prove 2), 3) and 4) similarly. q.e.d.

Let (R\ jβ, 5; 9?) be a regular neighborhood of a ίΓ2-Poincare-Euler
space X in #£. The fc-th Stief el- Whitney class w*(?>) of φ is defined by
w\φ) = φ*°(U(φ) U Γ1 Sqfcf%>). The total Stief el- Whitney class is w *(?>) =
1 + w1^) + = 9* °(U(φ) U )-1 Sq t%>). If φ has a normal block bundle
v, then w*(φ) = w*(v). The following gives an alternative definition for

PROPOSITION 4.2. Lei (J?; R, R; φ) be a regular neighborhood of a
Z2-Poincare-Euler space X in R+. Then w*(X) \Jw*(φ) = l.

PROOF. Let r: (R, R) — > (X, dX) be a deformation retraction. Let
Ux e H*(Z x Σ, dX x X; Z8) and UR e H *(Λ x R, dR x Λ; Z2) be the
diagonal classes of X and jR respectively. Note that the cap product
Γi(U(φ) x 1Λ): H™(R x Λ, R x S U Λ x R; Z2) -> ifinf(jf2 x Λ, Λ x β; Z2) is
an isomorphism. Since [72 x .B] n ((r x r)*Ux U (Z7(^) x C%>))) = (Λ)*°
^JX] and (AR}*[R\ n (C7(^) x 1Λ) - (ΔR^φ^[X}9 we have i7Λ =
(r x r)*C7x U (1Λ x Z7(?>)). Since w*(Λ) = 1Λ, we have Sq UR = UR. Noting
Sq U(φ) = r*^*(^) U Z7(?>), we see that (r x r)* Sq Ux U (ls x r*w*(?>)) U
(1Λ x U(φ)) = (r x r)*J7z U (1Λ x ?/(?>)) . Note _that the cup product
(1Λ x Z7(?0) U : Jff*(Λ x R; Z2) -> £Γ*(JB x R, R x R; Z2) and r*: 1Γ*(Λ; Z2) -*
H*(X; Z2) are isomorphisms. Then Sq Σ7X U (lz x w*(?>)) = Z/jr. Since
[Sq C7X U (l^x w*(9>))]/[-XΊ = Sq E/χ/[-2Γ] U w*(φ) = w*(X) U w*(?>), we have
only to prove UX/[X] = lz. Note that [X] n UZ/[X] = (p2)*([X x X ] f ] Ux},
where pz is the projection of X x X to the second factor and that p2 o J:
X-»-X: is the identity. Then we have [J5Γ ] Π UZ/[X] = lx, hence

ϊ7χ/[-Γ] = Iz q.e.d.

We need the following for the calculation in Section 5.

PROPOSITION 4.3. Let X and Y be Z2-Poincare-Euler space. Then
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w*(X x Γ) = w*(X) x w*(Y).

PROOF. Let UZ9 Uγ and Uxxγ be the diagonal classes of X, Y and
X x Y respectively. Then w*(X x Y) = (Sq UXXY)/[X x Y] = (Sq Z7X)/[X] x
(Sq tfr)/[Γ] = w*(JC) x w*(Γ). q.e.d.

In order to apply our main Theorem to Z2-homology manifolds, we
need Propositions 4.4 and 4.5.

PROPOSITION 4.4. Given Z2-homology manifolds X and Y, let ψ:
( Y, dY) — > (X, dX) be an embedding with a normal block bundle v. Then

PROOF. Let E be the total space of a normal block bundle v of ψ
and let E be the total space of the sphere bundle induced by v. First
we will prove that w*(E) = i*w*(X), where i:E-*X is the inclusion.
Put E = cl (dE - E). Let P = {(xl9 , xa) \ xa ^ 0, xa_, ̂  0} and Q =

ThenΛί-PuQ. Let P= {(χίf , a?β)|a?β=0,
and Q = {(xίf - -, xa)\xβ = 0, a?β-1 ^ 0}. ^ Note

that there exists a proper embedding 9: X->R+ such that £>|£Ί (j&; E, E)—>
(P; P, P) and φ\t\(Σ- E): (cl (X - E\ cl (3Jf - E\ E) -> (Q; Q, Q) are
proper. (See Hudson [10].) Let (ΛP; βp, RP\φ\E), (Rq; RQ, Rq; 9>|cl (X-E))
and (Jf2; jβ, P; 9) be regular neighborhoods of £? in P, of cl (JSΓ — E) in Q
and of X m R+9 respectively, such that R — RP U RQ and R = RP\J RQ.
Define U(φ\E)eH*(RP, RP\ Z2) as the Poincare dual of (φ\E)*[E]. Then
U(φ\E) = j*U(φ), where j:P-+Rl is the inclusion, hence w*(φ\E) =
i*w*(φ). Thus w*(E) = ί*w*(X). Note that I7(ψy)= C/(9|£r)U[(φ|£r)*]-1Z71/,
where (JF2P; -BPnP, jRPU(-BpnP); ψy) is a regular neighborhood of Y in Λ+.
Let ψv: Y-+E be the canonical inclusion. Then w*(ψγ}=ι!r?w*(φ\E) U w*(v)
By Proposition 4.2, we have ψ?w*(E) = w*(Y) U w*(v) Since i<>^ = ψ,
we have ψ*w*(X) = w*(Y) U w*(v). q.e.d.

PROPOSITION 4.5. Let X be a closed Z2-Poincare-Euler space. Then
(w*(X), [X}} — e(X}> where e(X) is the modulo 2 Euler number of X.

The proof in the case of smooth manifolds given in Milnor [12] can
be applied to this proposition without any changes.

We need the following to prove Lemmas 5.2 and 6.2 in subsequent
sections.

LEMMA 4.1. Let (R;R9R;φ) be a regular neighborhood of an n-
dimensional Z2-Poincare-Euler space X in R+. Suppose that a PL-
embedding f: (M, dM) -> (R, R) is given with a normal block bundle ξ =
(E, M, fE)9 such that φ(X) is transverse to ξ , where M is a compact PL-
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manifold. Let Uξ be the Thorn class of ξ. Let jE: E -+ Rbe the inclusion.
Define Y^φ~^f(M) and XE = φ~l°jE(E). Let φE:XE-^E and ψM:
Y—>M be embedding s defined by φE = JElo(P and ψM = f~lo(<P\Y). Then
the following hold:

1) (Λ)*([M] Π /* U(φ)) = (φEUXE] Π Uξ.

2) [M]n/*tf(9) = (^)*m.
PROOF. 1) Note that jE°fE = / and [E] ΓιUζ = (Λ)JΛf]. Hence

(f^([M]Γif*U(φ)) = ( [ E ] Γ i j ί U ( φ ) ) f ] U 9 . Thus it suffices to prove

[E] Q JίU(φ) = (φE)AXEl Let J = cl (Λ - ^(#)) and let JΛ: (Λ; β, 5) ->
OR; -S, J?) be defined as the identity. Regard js as a map j^: (j£; E, E) -+

(jβ; 5, U), where ^ = cl (9^ - S). Note that (jE}*[E} = (jR^[R] and
[R] Π Z7(9>) - φJX]. Hence (̂  ([̂ ] Π (jETU(φ)) = (jR)**φ,[X] - (^)*o

(^)*[-Z"J- Since (j^i H£f(E, E; Z2) -> ffinf(β, 5; Z2) is an isomorphism,
we have [E] Π (j*ΓU(φ) = (<?E)*[XE].

2) Note that [-ΓJ Π (y^l/e = (ψ,)*[Γ], where :̂ Y-»XS is the
inclusion. By 1), we have (Λ)*([Af] Π /*£%>)) = (?>*)* °(^)*[Γ] Since
φE°ψE=fE° ΨM and since (/,)„: £Γinf(M, 3Jf Z2) -> ffinf(S, E; Z2) is an
isomorphism, we have [M] Π f*U(φ) = (ψjf)*[3Γ]. q.e.d.

5. Characterization of Stiefel-Whitney classes via unoriented
differentiable bordism groups. Let (R; R, R\ φ) be a regular neighborhood
of an ^-dimensional ^2-Poincare-Euler space X in R+. Suppose that eφ:
%l*(R, R) -> Z2 is the homomorphism defined in Section 1. Then the
following holds:

LEMMA 5.1. For each (f9M)e^(R9R)9 it follows that

<U(φ) U (φ*Γw*(X\ f*([M] Π w*(Jf ))> = 3ψ(f, M} .

In order to prove this lemma, we need the following:

LEMMA 5.2. Let f: (M, 3Λf ) -> (S, 5) be a PL-embedding with the
normal block bundle ξ, where M is a compact triangulated differentiable
manifold. If φ(X) is transverse to ξ, then

(U(φ) U (φ*Γlw*(X), U[M] Π w*(AΓ))> = eψ(f, M) .

PROOF. We use the notations in Lemma 4.1. By 2) of Lemma 4.1, we
have (U(φ) U (φ*Γw*(X), f*([M] n w*(M)}} = </* o (9>*)-1

w*(JΓ) U w*(AΓ),
(ψΊf)*[3Γ]) Let ψx . Y— >X be the inclusion. Note that foψM = φ°ψx.
Hence < U(φ) U (<P*Γw* W, Λ([Λf ] Π ^* (Λf ))> = <f *w* (X) u 1̂̂ * (M),
[Γ]> = <Ψ$w*(X) U ̂ ίiδ(e), [Γ]> = <ψ!w*(X) U iδ(fίf), [Γ]>. Thus
<U(φ)\J(φ*Γ1^X\f^([M]nw*(M))y = ?φ(f9M) by the definition of
eφ. q.e.d.
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PROOF OF LEMMA 5.1. Let (/, M) j)e in 3l*(R, R). Then there exists
an embedding g: (M, dM) -» (R x Dβ, R x Dβ) such that g ~ / x {0} and
(φ x id)(JSΓ x DO is block transverse to g by Transversality Theorem.
By Lemma 5.2, it follows that <(t%>) x 1) U [(φ x id)*]"1^*^ x DO,
g*([M] Π w*(Jlf))> = W, M). Since <(ί%>) U (φ*)-^*(X), Λ([Af ] n w*(Λf))> =
<(Z7(?0 X 1)U[(9> x id)*]-1^*^ x DO, 0,([lΓ]Γlt0*(Λf))> by Proposition 4.3,
we have

< Z7(?0 U (9*Γw*(X), Λ([M] n u>*(AΓ))> - ?,(/, M) . q.e.d.

The following and Lemma 5.1 give a characterization of Stiefel-
Weitney classes.

LEMMA 5.3. Let (A, S) be a pair of polyhedra. Given Φe
H*(A,B;ZJ, if <* f Λ([ΛΓ]nw*(ΛΓ))>=0 for every (/, M) 69l,(A, 5),

Φ = 0.

PROOF. Let Φ = Φ° + Φ1 + + Φn for Φ* e H^A, B; ̂ 2). Since
<Φ,Λ([M]n^*(M))> = <Φ°,Λ[M]> for (/,Af) e^CA,^), <Φ,/,([M]n
w*(Λf ))> = 0 for every (/, Λf ) implies that Φ° = 0. Suppose that Φ° = 0,
φi = 0, , Φk = 0. Then <Φ, Λ([M] Π w*(Jtf ))> - <Φfc+1, Λ[ΛΓ]> for (/, M) e
914+1(A,B). Hence, if <Φ,Λ([Jlf] n w*(Λf))> = 0 for every (/, M), it
follows that Φfc+1 = 0. By induction on k, we have Φ = 0. q.e.d.

6. Characterization of Stiefel-Whitney homology classes via un-
oriented differentiable bordism groups. Let (R R, R; φ) be a regular
neighborhood of an -^-dimensional ^2-Poincare-Euler space X in R+.
Suppose that eφ: %l*(R, R) — » Z2 is the homomorphism defined in Section 1.
Then the following holds:

LEMMA 6.1. For each (/, M) e 31 (̂5, R}, it follows that

<U(φ> u (φ*Γ o (\Σ\ n ΓB*(Σ\ Λ([M] n w*(M))> = β,(/,
In order to prove this lemma, we need the following:

LEMMA 6.2. Let f: (M, dM) -> (R, R) be a PL-embedding with a
normal block bundle ξ, where M is a compact triangulated differentiable
manifold. If φ(X} is transverse to ξ, then

<U(φ) U (φ*Γ o ([Σ] Π Γs*(X\ Λ([ΛΓ] n w*(Λf ))> = eφ(f,

PROOF. By 1) of Lemma 4.1, we have <£%>) U (̂
Λ([ΛΓ] n w*(M))> = <^*(Λf) u /* o (9*)- o ([x] n Γs*(X), (ΛJ-XC^)*!-^] n
C7f)>. Note that js°fE=f. Then <C7(^) U (^roCfflnr^W,/*^] Π
!**(#))> - <ίre u (fsrw*(M\ ((φ^[ΣE}) n Λ o c^*)-1

Since there exists the commutative diagram
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H*(X;Z2) «-£- H*(R Z2} - 2—, H*(E;Z2)

2) — -» JΓ.(Λ, cl (Λ - #); £2) ̂ τ— #*(#,
^* Us)*

and since [ X ] Γ ι , φ* and (j^)* are isomorphisms, we have

((9>,)*m) n ̂ °(^

Note that <Z7e U (fίTlw*(M\ (9>*)*e*(-3T*)> = β(Γ) by Corollary 3.1. Thus
<£%>) U (φ*r* ([X}nTls*(X\f+([M} Π w*(AΓ))> = <?,(/, M). q.e.d.

PROOF OF LEMMA 6.1. Let (/, AΓ)_be in 3l*(R, 5). Then there exists
an embedding g: (Λf, 3Af ) -> (5 x D^, β x DO such that g ~ / x {0} and
that (φ x iά)(X x Dβ) is block transverse to g by Trans versality Theo-
rem. By Lemma 6.2, it follows that

<(£%>) x i) u [(?> x id)*]-1' ([-ar x Dηnr^ΛΣ x DO, ff*([Af] n

Since <£%>) U (9T1 o ([-3Γ] Π )-1s,(Z), Λ([Jlf ] Π w*(Λf ))> - <(EΓ(^) x 1) U
[(9 x id)*]-^^ x D^ΠΓ^Σ x DO, flr*([AΓ] n w*(AΓ))> by Proposition
2.2, we have <[%>) U (^^-^(OTn)-^.^),/^^] n n;*(Af))> - ̂ (/, M).

q.e.d.

Now we are in a position to prove the following theorem announced
in Section 1.

THEOREM. Let X be an n-dimensional Z2-Poincare-Euler space.
Take a regular neighborhood (jβ; R, R; φ] of X in R+. Then [X] Π w*(X) =
8*(X) if and only if oφ = 0.

PROOF. If [X] n w*(Σ) = s*(X), then e φ ( f , M) = ^(/, M). This
means oφ = 0. Conversely suppose that oφ = 0. By Lemmas 5.1, 5.3 and
6.1, we have U(φ) U (φ*)~lw*(X} = U(φ) U (^T^OTnΓXί-X"). Hence
[X] Π w*(JC) = 8*(JC) by Proposition 4.1. q.e.d.

This Theorem can be applied to Z2-homology manifolds.

COROLLARY. Let X be an n-dίmensional Z2-homology manifold with
or without boundary. Then [X] Π w*(Σ) = 8*(Σ).

PROOF. Let ψ : Γ-^X x Dβ be the embedding used to define ^ and
eφ. Note that ψ4 bas a normal block bundle ^> in X x D^. Then Y is
a ^2-homology manifold. Therefore ιjr*w*(X x DO = w*(Y) U w*M by
Proposition 4.4. In view of the definition of eφ and ,̂ we have oφ = 0
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by Proposition 4.5. Thus [X] n w*(X) = s*(X) by Theorem. q.e.d.

EXAMPLE 1. We construct a simple example of ^2-Poincare-Euler
space X which is not a £Γ2-homology manifold. Let X1 = Dz/{a, &, c) where
D2 = [ — 1, I]2 and α, &, c are distinct points in dD2. Then Xl is a #2-
Euler space. Let X2 = cone 3JEi. Then there exists a canonical PL-
homeomorphism r.dX^-^dX^. Put -3Γ= -XiU-3Γ2 Then JΓ is homotopy

ί
equivalent to S2 and is not a ^2-homology manifold.

EXAMPLE 2. We construct a little more complicated example of Z^-
Poincare-Euler space X which does not satisfy [X] Γi w*(X) = β*(-Σ"). In
particular, X is not a Z2-homology manifold. Let JEi be the quotient
space of [-1, 1] x [0, 1] by the identification (-1, ί) = (0, ί) and (1, ί) =
(0, 1 - ί) for each ί in [0, 1]. Then X, is a £2-Euler space. Put Y =
dXJ([Q, 1] x {0}). Let φ: dX,-^ Y be the quotient map. Let X2 be the
mapping cylinder of φ. Then X2 is a ^2-Euler space such that dX2 =
dX, U Γ. Let X, = ([0, I]2 U [-1, 0]2)/{(0, 0), (1, 1)}. Then X, is a Z2-Euler
space such that 3XS is PL-homeomorphic to Γ. Define JΓ = X1 U X2 U -XΓ8.
Then JΓ is a ^2-Euler space and is homotopy equivalent to P2. Hence
w^-Z") ^ 0. Since 8t(X) = 0, it follows that X is a ^2-Poincare-Euler
space which does not satisfy [X] n w*(X) =

Appendix. Proof of Transversality Theorem.

A.I. BLOCK TRANSVERSALITY AND MOCK TRANSVERSALITY. Let M and

N be PL-manifolds. Suppose that /: Af — > N is a locally flat PL-embedding
and that X is a subpolyhedron of N. Then -3Γ is block transverse to /
in N, if there exists a normal block bundle v = (E(v\ M, fE) of / such
that XΠ E(v) = E ( v \ X Π f ( M ) ) . (See [2] and [14].)

Let /: (M, 3M) -> (N, dN) be a PL-embedding. The collars c,: dM x
J— > M and c2: δjϊSΓ x /— > JV are said to be compatible with /, if /o d(x9 1) =
c2(f(x\ t) for every (x, t} in dM x /. (See [10].)

Let X and 3Γ be polyhedra and let K be a ball complex (cf . [2])
such that X=\K\. A proper PL-embedding /: Y-+X is transverse to
Ky if f'l(σ) is a compact PL-manifold with boundary f~\dσ) and if the
PL-embedding f\f~\σ)m.f~\σ)-+σ has compatible collars for every σ in

JΓ.
In order to prove Transversality Theorem, we need the following.

The next section is devoted to its proof.

PROPOSITION A.I. (cf. Buoncristiano, Rourke and Sanderson [2]).
Let X and Y be polyhedra. Let K be a ball complex such that X = | JBΓ|.
Suppose that a subdivision K' of K does not subdivide a subcomplex
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L of K and that a proper PL-embedding f: Y -» X is transverse to K.
Then there exists a proper PL-embedding g: Y —»X which is transverse
to K' and ambient isotopic to f relative to \L\.

Let M and N be PL-manifolds. Suppose that f:M-+N is a locally
flat proper PL-embedding and that X is a subpolyhedron of N. We say
that / is mock transverse to X in N, if there exists a ball complex K
which contains a subcomplex L such that \K\ = N and \L\ = X and if
/ is transverse to K.

We also need the following to prove Transversality Theorem. We
do not repeat the proof here since an adequate proof is given in [2].

PROPOSITION A.2. (Buoncristiano, Rourke and Sanderson [2, II,
Theorem 4.4]). Let M and N be PL-manifolds. Suppose that f:M—>N
is a locally flat proper PL-embedding and X is a closed subpolyhedron
of N. The PL-embedding f is mock transverse to X in N if and only
if X is block transverse to f in N.

PROOF OF TRANSVERSALITY THEOREM. Noting the assumption of
Transversality Theorem, there exists a normal block bundle v = (E(p\ M, fE)
of / to which a regular neighborhood R of 9N Π X in X is transverse
in N. Let K be a ball complex such that blocks E(σ) of v are balls of
jK", that \K\ = AT and that K\R is contained in K as a subcomplex. Then
/ is transverse to K. Choose a subdivision Kf of K which does not
subdivide K\dN and which contains a subcomplex Kx of K' where
\KZ\ = X. Put L = K\dN. Then by Proposition A.I, there exists an
PL-embedding g:M^>N which is transverse to Kr and ambient isotopic
to / relative to \L\ = dN. Thus g is mock transverse to X, and X is
block transverse to g by Proposition A.2. q.e.d.

A.2. PROOF OF PROPOSITION A.I. In order to prove Proposition A.I,
it suffices to prove the following:

LEMMA A.I. Let X and Y be polyhedra. Let K be a ball complex
such that \K\ = X. Suppose that a subdivision Kf of K does not sub-
divide a subcomplex L of K and that a proper PL-embedding f: Y -»X
is transverse to K. Then there exists a proper PL-embedding g:Y—*X
transverte to Kf and an ambient isotopy F: Xx I —> Xx I relative to \L\
between f and g such that F(σ x J) = σ x / for each a in K.

We will prove this lemma by induction on the dimension of X. For
the induction step, we need the following:

LEMMA A.2. Let M be a compact PL-manifold. Let K be a ball
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complex such that \K\ = Dn. Let f:M-+Dn be a proper PL-embedding
such that f\dM: dM-+ dDn is transverse to K\dDn. Then there exists an
PL-embedding g:M—*Dn transverse to K and ambient isotopic to f
relative to dDn.

We need the following to prove Lemma A.2:

UNIQUENESS THEOREM OF COLLARS. (Hudson and Zeeman [9]). // c0

and G! are two collars of M, then there exists an ambient isotopy F of
Mβxed on dMsuch that c± = F±°CQ and F0 is the identity, where F(x, t) —
(F*(x\ t}.

LEMMA A. 3. Let Abe a ball complex which contains only one n-ball
such that \Δ\ = Dn. Let Λ be the subcomplex of Δ containing all balls
except the n-ball and one (n — T)-ball. If X is a compact PL-manifold
and if a PL-embedding f:X-+\Λ\ is transverse to Λ, then there exists
a PL-embedding F: X x I-+Dn transverse to Δ such that F(x,0) — f(x)
for every x in X.

PROOF. Since there exists a PL-homeomorphism h: \Λ\ x I-> | Δ \ such
that h(y, 0) = y for every y in \Λ\9 an PL-embedding F: X x I-*\Δ\ can
be defined by F(x, t) = h(f(x), t). Clearly F is transverse to Δ and
F(x, 0) - f(x). q.e.d.

PROOF OF LEMMA A.2. Clearly there exists a subdivision K' of K
which does not subdivide K\dDn such that 3Dn x / = \K' — σ\ for some
n-ball σ in K'. Note that the ball complex K' — σ collapses to K\dDn.
By if dim M = n, there is nothing to prove. Otherwise by using Lemma
A.3, we can construct a subpolyhedron X of \K' — σ\ such that X
collapses to f(dM) and that the inclusion i: Xa\K' — σ\ is transverse to
K' — σ. Since the inclusion i has a normal block bundle (see [2]), X is
a PL-manifold. Therefore there exists a PL-homeomorphism h: dM x
I -> X. Define /: dM x I -> | K' - σ \ by / = i o h. Then / is transverse
to K' — σ. By the uniqueness theorem of regular neighborhoods (see
[10]), there exists a collar cλ: 3Dn x I-*Dn such that c^dD71 x I) =
I K' - a I and c±(f(x\ t) = j°f(x, t) for (x, t) in 3Mx I, where j:\K'-σ\-+
Dn is the inclusion. Let c:dMxI->M and CQ: 3DnxI-+Dn be compatible
collars with /. By the uniqueness theorem of collars, there exists an
ambient isotopy F: DnxI-> Dnxl relative to 3DnxI such that F0 is the
identity and c1 = JFT

1oc0> where F(x,t) = (Ft(x),t) for every (a?, t) in Dnxl.
Define g: M-* Dn by g = F^f. Note that / is transverse to K' — σ.
Thus g is transverse to K', and hence g is transverse to K. q.e.d.

PROOF OF LEMMA A.I. We prove Lemma A.I by induction on the
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dimension of X. The case dim X = 0 is trivial. Suppose that Lemma
A.I holds whenever the dimension of X is smaller than n + 1 and
assume that dimX=n + l. Suppose that a PL-embedding f:Y-+X
is transverse to a ball complex structure K of X. Then f \f~\\ Kn\):
f~\\Kn\}-+ \Kn\ is transverse to Kn, where Kn is the w-skelton of K.
Put (KnY = {σ e K' σa\Kn\}. By induction assumption, there exist a PL-
embedding g:f~l(\Kn\)-> \Kn\ transverse to (KnY and an ambient isotopy
G:KnxI->KnxI between f \ f ~ l ( \ K n \ ) and g relative to \Kn\Γ(\L\ such
that G(σ x I) = σ x I for each σ m Kn. Clearly there exists an isotopy
G: X x I-> X x /relative to |L| such that G|Kn | x I = G and G(σ x !)-=
σ x I for every σ in J5Γ. Thus we may assume that / is transverse to
Kn, where Kn = (#*)' U (X - #n) Applying Lemma A.2 to PL-embed-
dings f\f~l(σ):f~\σ)-*σ for all σ in K - ίΓπ, there exists a PL-embed-
ding gr: Y->X transverse to K' an ambient isotopy F: X x I-+Xx I
between / and g relative to | Kn \ U | L \ such that F(σ x I) = σ x I f or
every σ in K. q.e.d.
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