STIEFEL-WHITNEY HOMOLOGY CLASSES OF Z_{2} -POINCARE-EULER SPACES

AKINORI MATSUI

(Received December 14, 1981, revised June 14, 1982)

- 1. Introduction and the statement of results. Let K be a simplicial It is said to be totally n-dimensional if for each $\sigma \in K$ there exists an *n*-dimensional simplex $\tau \in K$ such that $\sigma \prec \tau$ or $\sigma = \tau$. polyhedron X is totally n-dimensional if so is a triangulation K of X. (See Akin [1].) A totally n-dimensional locally finite simplicial complex K is an n-dimensional Z_o-Euler complex if there exists a totally (n-1)dimensional subcomplex L such that
 - 1) The cardinality of $\{\tau \in L \mid \sigma \prec \tau\}$ is even for each $\sigma \in L$.
 - The cardinality of $\{\tau \in K | \sigma \prec \tau\}$ is odd for each $\sigma \in L$.
- The cardinality of $\{\tau \in K | \sigma \prec \tau\}$ is even for each $\sigma \in K L$. We usually denote ∂K instead of L. A polyhedron X is Z_2 -Euler if so

is a triangulation K of X. Let $\partial X = |\partial K|$. A compact n-dimensional Z_{2} -Euler space X is said to be closed if ∂X is empty. Examples of Z_{2} -Euler spaces are PL-manifolds, Z_2 -homology manifolds, complex analytic

spaces and so on. (See Sullivan [16].)

Let K be a triangulation of a Z_2 -Euler space X. Then the k-th Stiefel-Whitney homology class $s_k(X)$ is defined as the k-skelton \bar{K}^k of the first barycentric subdivision \bar{K} of K. (See Akin [1], Halperin and Toledo [7], Sullivan [16].) Since a differentiable manifold M has a triangulation, the k-th Stiefel-Whitney homology class $s_k(M)$ can be defined as above. Whitney [19] announced that the k-th Stiefel-Whitney homology class $s_k(M)$ of an n-dimensional differentiable manifold M is the Poincaré dual of the (n-k)-th Stiefel-Whitney class $w^{n-k}(M)$. Its proof was outlined by Cheeger [5] and given by Halperin and Toledo [7]. Taylor [18] generalized it to the case of Z_2 -homology manifolds. paper will give another proof of this result.

We will study the case of Z_2 -Poincaré-Euler spaces. An *n*-dimensional Z_{\circ} -Euler space X is called an n-dimensional Z_{\circ} -Poincaré-Euler space if the cap products $[X]_0: H^*(X; Z_2) \to H^{inf}_*(X, \partial X; Z_2)$ and $[X]_0: H^*(X, \partial X; Z_2) \to$ $H_*^{\inf}(X;Z_2)$ are isomorphisms. Here H_*^{\inf} is the homology theory of infinite chains.

Let X be an n-dimensional Z_2 -Poincaré-Euler space. Define a

cohomology class U_X in $H^*(X\times X,\partial X\times X;Z_2)$ as the Poincaré dual of $\varDelta_*[X]$, where \varDelta is the diagonal map. Then $[X\times X]\cap U_X=\varDelta_*[X]$. Define the Stiefel-Whitney class $w^*(X)$ by $w^*(X)=(\operatorname{Sq}\,U_X)/[X]$. There exists a proper PL-embedding $\varphi\colon (X,\partial X)\to (R_+^\alpha,\partial R_+^\alpha)$ for α sufficiently large, where $R_+^\alpha=\{(x_1,x_2,\cdots,x_\alpha)|x_\alpha\geq 0\}$. (See Hudson [10].) Suppose that R is a regular neighborhood of X in R_+^α . Put $\widetilde{R}=R\cap\partial R_+^\alpha$ and $\overline{R}=\operatorname{cl}\,(\partial R-\widetilde{R})$. Regard φ as a proper embedding from $(X,\partial X)$ to (R,\widetilde{R}) . We also call $(R;\widetilde{R},\overline{R};\varphi)$ a regular neighborhood of X in R_+^α . We will define homomorphisms

$$e_{\varphi} \colon \mathfrak{N}_*(R, \, ar{R}) o Z_2$$
 and $\widetilde{e}_{\varphi} \colon \mathfrak{N}_*(R, \, ar{R}) o Z_2$, where $\mathfrak{N}_*(R, \, ar{R})$

is the unoriented differentiable bordism group. We need the following:

TRANSVERSALITY THEOREM (Buoncristiano, Rourke and Sanderson [2] and Rourke and Sanderson [14]). Let M and N be PL-manifolds. Suppose that $f:(M,\partial M)\to (N,\partial N)$ is a locally flat proper embedding and that X is a closed subpolyhedron in N. If $f(\partial M)\cap X=\varnothing$ or if $(\partial N,\partial N\cap X)$ is collared in (N,X) and $\partial N\cap X$ is block transverse to $f|\partial M:\partial M\to\partial N$, then there exists an embedding $g:M\to N$ ambient isotopic to f relative to ∂N such that X is block transverse to g.

Let $f:(M,\partial M)\to (R,\bar R)$ be in $\mathfrak{N}_*(R,\bar R)$. There exists an embedding $g:(M,\partial M)\to (R\times D^\beta,\bar R\times D^\beta)$ for β sufficiently large, such that $g\simeq f\times\{0\}$ and that $(\varphi\times\operatorname{id})(X\times D^\beta)$ is block transverse to g by Transversality Theorem. Let $Y=(\varphi\times\operatorname{id})^{-1}\circ g(M)$. Then Y is a closed Z_2 -Euler space with a normal block bundle ν in $X\times D^\beta$. Define $e_{\varphi}(f,M)$ as the modulo 2 Euler number e(Y) of Y. Let $\psi\colon Y\to X\times D^\beta$ be the inclusion. Define $\widetilde{e}_{\varphi}(f,M)=\langle\psi^*w^*(X\times D^\beta)\cup \overline{w}(\nu),[Y]\rangle$, where $\overline{w}(\nu)$ is the cohomology class determined by $w^*(\nu)\cup \overline{w}(\nu)=1$. Now define a homomorphism $o_{\varphi}\colon \mathfrak{N}_*(R,\bar R)\to Z_2$ by $o_{\varphi}=\widetilde{e}_{\varphi}-e_{\varphi}$. We can state the main theorem of this paper as follows:

Theorem. Let X be an n-dimensional Z_2 -Poincaré-Euler space. Take a regular neighborhood $(R; \widetilde{R}, \overline{R}; \varphi)$ of X in \mathbf{R}^{α}_+ . Then $[X] \cap w^*(X) = s_*(X)$ if and only if $o_{\varphi} = 0$.

A totally *n*-dimentional polyhedron X is an *n*-dimensional \mathbb{Z}_2 -homology manifold if there exist a locally finite triangulation K of X and a totally (n-1)-dimensional subcomplex L such that

- 1) $H_*(Lk(\sigma;L); \mathbb{Z}_2) = H_*(S^{n-i-2}; \mathbb{Z}_2)$ for each *i*-simplex $\sigma \in L$.
- 2) $H_*(Lk(\sigma; K); Z_2) = H_*(pt; Z_2)$ for each *i*-simplex $\sigma \in L$.
- 3) $H_*(Lk(\sigma;K);Z_2)=H_*(S^{n-i-1};Z_2)$ for each i-simplex $\sigma\in K-L$.

Theorem is applied to prove the following generalization of Whitney-

Cheeger-Halperin and Toledo theorem.

COROLLARY. Let X be an n-dimensional Z_2 -homology manifold with or without boundary. Then $[X] \cap w^*(X) = s_*(X)$.

We remark that Taylor [18] proved the corollary for Z_2 -homology manifolds without boundaries.

In Section 2, we study Stiefel-Whitney homology classes and the graded bordism theory of compact Z_2 -Euler spaces. The structure of the graded bordism group of compact Z_2 -Euler spaces is given in Proposition 2.3. The ungraded bordism theory was studied by Akin [1]. In Section 3, we study the Stiefel-Whitney classes of block bundles via the bordism group of compact Z_2 -Euler spaces. The result will be used in Section 6. In Section 4, we study regular neighborhoods and the Stiefel-Whitney classes. These are necessary for calculation in Sections 5 and 6. In order to prove the above corollary, we need Propositions 4.6 and 4.7. In Section 5, we give a characterization of Stiefel-Whitney classes via the unoriented differentiable bordism group. In Section 6, we give a characterization of Stiefel-Whitney homology classes via the unoriented differentiable bordism group.

Our Theorem follows from Lemmas 5.1 and 6.1.

For completeness we add an appendix, where we give a detailed proof of Transversality Theorem by following the outline given in Buoncristiano, Rourke and Sanderson [2].

2. Stiefel-Whitney homology classes and bordism groups of Z_2 -Euler spaces.

Let K be a simplicial complex. The barycentric subdivision \overline{K} of K is defined by

$$ar{K} = \{(\sigma_{\scriptscriptstyle 0}, \, \cdots, \, \sigma_{\scriptscriptstyle p}) \, | \, \sigma_{\scriptscriptstyle 0} \prec \, \cdots \, \prec \sigma_{\scriptscriptstyle p}, \, \sigma_{\scriptscriptstyle i} \in K \} \; .$$

We denote the k-skelton of \bar{K} by \bar{K}^k . Then we have the following:

PROPOSITION 2.1. Let K be a Z_2 -Euler complex. Then \overline{K}^k is a Z_2 -Euler complex such that $\partial \overline{K}^k = \overline{\partial K}^{k-1}$.

In order to prove Proposition 2.1, we need the following:

LEMMA 2.1. Let K be a totally n-dimensional locally finite simplicial complex. If $b \in \overline{K}^{p-1}$, then the cardinality of $\{a \in \overline{K} - \overline{K}^p | a > b\}$ is even.

PROOF. If p=n, then $\bar{K}-\bar{K}^p$ is empty. Thus we may assume that p < n. Let $a = \langle \sigma_0, \cdots, \sigma_s \rangle \in \bar{K} - \bar{K}^p$ and let $b = \langle \tau_0, \cdots, \tau_t \rangle \in \bar{K}^{p-1}$. Then s > t+1. Since the cardinality of $\{\sigma \in K | \sigma_0 \prec \sigma \prec \sigma_1\}$ is even for

each $\langle \sigma_0, \sigma_1 \rangle \in \overline{K}$, we have that the cardinality of $\{a \in \overline{K} - \overline{K}^p | a > b\}$ is even for $b \in \overline{K}^{p-1}$.

PROOF OF PROPOSITION 2.1. Note that the cardinality of $\{a \in \overline{K} \mid a > b\}$ equals the sum of the cardinalities of $\{a \in \overline{K}^p \mid a > b\}$ and $\{a \in \overline{K} - \overline{K}^p \mid a > b\}$ for $b \in \overline{K}$. By Lemma 2.1, it follows that the cardinalities $\{a \in \overline{K} \mid a > b\}$ and $\{a \in \overline{K}^p \mid a > b\}$ are congruent modulo 2 for $b \in \overline{K}^{p-1}$. Then \overline{K}^p is a Z_2 -Euler complex such that $\partial \overline{K}^p = \overline{\partial K}^{p-1}$.

We need the following proposition to prove Corollary 2.2 as well as Lemmas 3.2 and 3.3 and 6.1.

PROPOSITION 2.2. (Halperin and Toledo [8]). Let X and Y be Z_2 Euler spaces. Then $s_k(X \times Y) = \sum_{p=0}^k s_p(X) \times s_{k-p}(Y)$.

In [8], Z_2 -Euler spaces without boundaries are studied but we can prove Proposition 2.2, using the same method as in [8].

Let $\{\mathfrak{B}_n, \partial\}$ be the bordism theory of compact Z_2 -Euler spaces. Then $\{\mathfrak{B}_n, \partial\}$ is a homology theory. (See Akin [1].) Let (A, B) be a pair of polyhedra. Define a homomorphism $s\colon \mathfrak{B}_n(A,B) \to H_0(A,B;Z_2) + H_1(A,B;Z_2) + \cdots + H_n(A,B;Z_2)$ by $s(\varphi,X) = \sum_{i=0}^n \varphi_* s_i(X)$. Then s is well defined by Proposition 2.1. The following holds:

PROPOSITION 2.3. The homomorphism $s: \mathfrak{B}_n(A, B) \to H_0(A, B; Z_2) + H_1(A, B; Z_2) + \cdots + H_n(A, B; Z_2)$ is an isomorphism.

PROOF. Put $h_n(A, B) = H_0(A, B; Z_2) + H_1(A, B; Z_2) + \cdots + H_n(A, B; Z_2)$. Define the boundary operator $\partial_h \colon h_n(A, B) \to h_{n-1}(B)$ by that of the ordinary homology theory. Note that $\{h_n, \partial_h\}$ and $\{\mathfrak{B}_n, \partial\}$ are homology theories with compact supports and that s is a homomorphism from $\mathfrak{B}_n(A, B)$ to $h_n(A, B)$ such that $\partial_h \circ s = s \circ \partial$. Since $h_n(pt) = Z_2$ and $\mathfrak{B}_n(pt) = Z_2$, where pt is the space of one point, the homomorphism $s \colon \mathfrak{B}_n(A, B) \to h_n(A, B)$ is an isomorphism. (cf. See Spanier [15].)

This proposition implies directly the following:

COROLLARY 2.1. Let (φ_1, X_1) and (φ_2, X_2) be in $\mathfrak{B}_n(A, B)$. Then (φ_1, X_1) is cobordant to (φ_2, X_2) in $\mathfrak{B}_n(A, B)$ if and only if $(\varphi_1)_*s_i(X_1) = (\varphi_2)_*s_i(X_2)$ in $H_i(A, B; Z_2)$ for all i.

REMARK. Akin [1] showed this in the case of ungraded bordism groups.

Let $S^1 \vee S^1$ be the one point union of two circles. Then $S^1 \vee S^1$ is a 1-dimensional \mathbb{Z}_2 -Euler space such that the modulo 2 Euler number $e(S^1 \vee S^1) = 1$. The following holds:

COROLLARY 2.2. Let (φ, X) be in $\mathfrak{B}_n(A, B)$. If $\varphi_*[X] = 0$ in $H_n(A, B; Z_2)$, then there exists (φ, Y) in $\mathfrak{B}_{n-1}(A, B)$ such that (φ, X) is cobordant to $(\psi \circ \pi, Y \times (S^1 \vee S^1))$, where $\pi: Y \times (S^1 \vee S^1) \to Y$ is the projection.

PROOF. Let \overline{K}^{n-1} be the (n-1)-skelton of the barycentric subdivision \overline{K} of a triangulation K of X. Put $|\overline{K}^{n-1}| = X^{n-1}$. Then $\varphi_* s_{n-1}(X) = (\varphi | X^{n-1})_* [X^{n-1}]$. Let $p\colon X^{n-1}\times (S^1\vee S^1)\to X^{n-1}$ be the projection. Then $\varphi_* s_{n-1}(X) = (\varphi | X^{n-1})_* \circ p_* s_{n-1}(X^{n-1}\times (S^1\vee S^1))$ by Proposition 2.2. By induction, there exists (ψ, Y) in $\mathfrak{B}_{n-1}(A, B)$ such that $\varphi_* s_i(X) = \psi_* \circ \pi_* s_i(Y\times (S^1\vee S^1))$ for $0\leq i\leq n$, where $\pi\colon Y\times (S^1\vee S^1)\to Y$ is the projection. By Corollary 2.1, we have (φ, X) is cobordant to $(\psi\circ\pi, Y\times (S^1\vee S^1))$.

We need the following to prove Lemma 3.3.

PROPOSITION 2.4. (Blanton and McCrory [4]). The k-th Stiefel-Whitney homology class $s_k(\mathbf{P}^n)$ of the n-dimensional real projective space \mathbf{P}^n is equal to ${}_{n+1}C_{k+1}j_*[\mathbf{P}^k]$, where $j\colon \mathbf{P}^k\to \mathbf{P}^n$ is the canonical inclusion.

3. Characterization of Stiefel-Whitney classes of block bundles via the bordism group of Z_2 -Euler spaces. Let $\xi=(E(\xi),K,t)$ be a k-block bundle over a simplicial complex K. Then there exist PL-homeomorphisms $\varphi_{\sigma} : \sigma \times D^k \to E(\sigma)$, called the charts, for all σ in K. (See Rourke and Sanderson [14].) Put $\bar{E}(\xi) = \bigcup \varphi_{\sigma}(\sigma \times \partial D^k)$. Then $\bar{\xi} = (\bar{E}(\xi),K)$ is called the sphere bundle associated with ξ .

Let $\xi = (E(\xi), K, \iota_K)$ and $\eta = (E(\eta), L, \iota_L)$ be k-block bundles over simplicial complexes K and L. A map $(\bar{h}, h): (E(\xi), K) \to (E(\eta), L)$ is a bundle map if

- 1) $h: K \to L$ is a simplicial map,
- 2) $\iota_L \circ h = \overline{h} \circ \iota_K$, and
- 3) for each σ in K, there exist charts φ_1 : $\sigma \times D^k \to E(\sigma)$ and φ_2 : $h(\sigma) \times D^k \to E(h(\sigma))$ such that $\bar{h} \circ \varphi_1 = \varphi_2 \circ (h \mid \sigma \times \mathrm{id})$, where id is the identity of D^k .

Let $\xi=(E(\xi),\,X,\,\iota_X)$ and $\eta=(E(\eta),\,Y,\,\iota_Y)$ be k-block bundles over polyhedra X and Y. A map $(\overline{h},\,h)\colon (E(\xi),\,X)\to (E(\eta),\,Y)$ is a bundle map if there exist simplicial complexes K and L such that $|K|=X,\,|L|=Y$ and that $(\overline{h},\,h)\colon (E(\xi),\,K)\to (E(\eta),\,L)$ is a bundle map.

REMARK. If a map (\bar{h}, h) : $(E(\xi), X) \to (E(\eta), Y)$ is a bundle map, then $\xi = h^*\eta$. Conversely, if $\xi = h^*\eta$, then there exists a bundle map (\bar{h}, h) : $(E(\xi), X) \to (E(\eta), Y)$. (See [14].)

Let $\xi=(E(\xi),A,\iota)$ be an n-block bundle over a locally compact polyhedron A. Define $\bar{E}(\xi)$ to be the total space of the sphere bundle associated with ξ . Then we will define a homomorphism $e_{\xi}\colon \mathfrak{B}_{*}(E(\xi),\bar{E}(\xi))\to Z_{2}$, where $\mathfrak{B}_{*}(E(\xi),\bar{E}(\xi))$ is the bordism group of compact Z_{2} -Euler spaces. Let R be a regular neighborhood of A embedded properly in R^{α} for α sufficiently large. Let $i\colon A\subset R$ be the inclusion and let $p\colon R\to A$ be the retraction. Suppose that $p^{*}\xi=(E(p^{*}\xi),R,\iota_{R})$ is the induced bundle. Then there exist bundle maps $(\bar{i},i)\colon (E(\xi),A)\to (E(p^{*}\xi),R)$ and $(\bar{p},p)\colon (E(p^{*}\xi),R)\to (E(\xi),A)$. For each (φ,X) in $\mathfrak{B}_{*}(E(\xi),\bar{E}(\xi))$, there exists an embedding $\tilde{\varphi}\colon (X,\partial X)\to (E(p^{*}\xi),\bar{E}(p^{*}\xi))$ such that $\tilde{\varphi}\simeq \bar{i}\circ\varphi$. By Transversality Theorem, we may assume that $\tilde{\varphi}(X)$ is block transverse to $\iota_{R}\colon R\to E(p^{*}\xi)$. Then we define $e_{\xi}(\varphi,X)$ as the modulo 2 Euler number $e(\tilde{\varphi}^{-1}(\iota_{R}(R)))$ of $\tilde{\varphi}^{-1}(\iota_{R}(R))$. We need the following to prove Lemma 3.3:

LEMMA 3.1. Let (\overline{h}, h) : $(E(\xi_1), A_1) \rightarrow (E(\xi_2), A_2)$ be a bundle map. Then $e_{\xi_1}(\varphi, X) = e_{\xi_2}(\overline{h} \circ \varphi, X)$ for each (φ, X) in $\mathfrak{B}_*(E(\xi_1), \overline{E}(\xi_1))$.

PROOF. Let i_k : $A_k \subset R_k$ be the inclusions to regular neighborhoods embedded properly in \mathbf{R}^{α} , for α sufficiently large, such that there exists an inclusion h_R : $R_1 \subset R_2$ with $i_2 \circ h \simeq h_R \circ i_1$. Let p_k : $R_k \to A_k$ be the retractions for k=1,2. Suppose that $p_k^* \xi_k = (E(p_k^* \xi_k), R_k, \bar{\ell}_k)$ are the induced bundles for k=1,2. Then there exists the following bundle maps

$$(\overline{i}_k,\,i_k)\colon (E(\xi_k),\,A_k) o (E(p_k^*\xi_k),\,R_k)$$
 , $(\overline{p}_k,\,p_k)\colon (E(p_k^*\xi_k),\,R_k) o (E(\xi_k),\,A_k)$,

for k = 1, 2, and

$$(\overline{h}_{\scriptscriptstyle R},\,h_{\scriptscriptstyle R}) \colon (E(p_{\scriptscriptstyle 1}^*\xi_{\scriptscriptstyle 1}),\,R_{\scriptscriptstyle 1}) o (E(p_{\scriptscriptstyle 2}^*\xi_{\scriptscriptstyle 2}),\,R_{\scriptscriptstyle 2})$$
 ,

such that \bar{h}_R is an embedding. For each (φ, X) in $\mathfrak{B}_*(E(\xi_1), \bar{E}(\xi_1))$, there exists an embedding $\tilde{\varphi}\colon (X, \partial X) \to (E(p_1^*\xi_1), \bar{E}(p_1^*\xi_1))$ such that $\tilde{\varphi}\simeq \bar{i}_1\circ \varphi$ and that $\tilde{\varphi}(X)$ is block transverse to $\bar{\iota}_i\colon R_1\to E(p_1^*\xi_1)$. Then $\bar{h}_R\circ \tilde{\varphi}(X)$ is block transverse to $\bar{\iota}_2\colon R_2\to E(p_2^*\xi_2)$. Noting that $\bar{h}_R\circ \tilde{\varphi}\simeq i_2\circ (\bar{h}\circ \varphi)$, we have $e_{\xi_2}(\bar{h}\circ \varphi, X)=e((\bar{h}_R\circ \tilde{\varphi})^{-1}(\bar{\iota}_2(R_2)))$. Since $\bar{\iota}_1(R_1)=\bar{h}_R^{-1}(\bar{\iota}_2(R_2))$ and $e_{\xi_1}(\varphi, X)=e(\tilde{\varphi}^{-1}(\bar{\iota}_1(R_1)))$, it follows that $e_{\xi_1}(\varphi, X)=e_{\xi_2}(\bar{h}\circ \varphi, X)$. q.e.d.

LEMMA 3.2. Let $\xi=(E,A,\epsilon)$ be an n-block bundle over a locally compact polyhedron A. Then there exists a unique cohomology class $\Phi(\xi)$ in $H^*(E,\bar{E};Z_2)$ satisfying $\langle \Phi(\xi), \varphi_*s_*(X) \rangle = e_{\xi}(\varphi,X)$ for each (φ,X) in $\mathfrak{B}_*(E,\bar{E})$.

PROOF. First we will prove the existence of $\Phi(\xi)$. Let $\Phi^i(\xi) = 0$ in

 $H^{i}(E, \bar{E}; Z_{2})$ for $i = 0, 1, \dots, n-1$. Define a homomorphism $\widetilde{\Phi}^n$: $\mathfrak{B}_n(E,\bar{E}) o Z_2 \text{ by } \widetilde{\varPhi}^n(\varphi,X) = e_{\xi}(\varphi,X). \quad \text{If } \varphi_*[X] = 0 \text{ in } H_n(E,\bar{E};Z_2), \text{ then }$ by Corollary 2.2 there exists (ψ, Y) in $\mathfrak{B}_{n-1}(E, \bar{E})$ such that (φ, X) is cobordant to $(\psi \circ \pi, Y \times (S^1 \vee S^1))$, where $\pi: (Y \times (S^1 \vee S^1)) \to Y$ is the projection. Hence $e_{\varepsilon}(\varphi, X) = e_{\varepsilon}(\psi \circ \pi, Y \times (S^1 \vee S^1)) = e_{\varepsilon}(\psi, Y) \cdot e(S^1 \vee S^1) = 0$. Thus we can define $\Phi^n(\xi)$ as the cohomology class determined by $\widetilde{\Phi}^n$. As an induction hypothesis, we may assume that $\Phi^n(\xi), \dots, \Phi^{n+i}(\xi)$ are determined so that $\langle \Phi^{n+p}(\xi), \varphi_*[X] \rangle = \sum_{j=0}^{p-1} \langle \Phi^{n+j}(\xi), \varphi_* s_{n+j}(X) \rangle + e_{\xi}(\varphi, X)$ for $p \leq i$. Define a homomorphism $\widetilde{\Phi}^{n+i+1}$: $\mathfrak{B}_{n+i+1}(E, \bar{E}) \to Z_2$ by $\widetilde{\Phi}^{n+i+1}(\varphi, X) = 0$ $\sum_{j=0}^i \langle \Phi^{n+j}(\xi), \varphi_* s_{n+j}(X) \rangle + e_{\xi}(\varphi, X).$ Suppose that $\varphi_*[X] = 0$. Corollary 2.2, there exists (ψ, Y) in $\mathfrak{B}_{n+i}(E, \bar{E})$ such that (φ, X) is cobordant to $(\psi \circ \pi, \ Y \times (S^1 \vee S^1))$, where $\pi: \ Y \times (S^1 \vee S^1) \to Y$ is the projection. Note that $\pi_*(s_{n+j}(Y\times (S^1\vee S^1)))=s_{n+j}(Y)$ for $j=0,\cdots,i$, by Proposition 2.2 and that $e_{\varepsilon}(\psi \circ \pi, Y \times (S^1 \vee S^1)) = e_{\varepsilon}(\psi, Y)$. Then $\widetilde{\varPhi}^{n+i+1}(\varphi,X) = \sum_{j=0}^{i} \langle \varPhi^{n+j}(\xi), \psi_* s_{n+j}(Y) \rangle + e_{\varepsilon}(\psi,Y)$. Since $\langle \varPhi^{n+i}(\xi), \varphi_* s_{n+i}(Y) \rangle = e_{\varepsilon}(\psi,Y)$. $\sum_{j=0}^{i-1} \langle \varPhi^{n+j}(\xi), \psi_* s_{n+j}(Y) \rangle + e_{\xi}(\psi, Y), \quad ext{it follows that} \quad \widetilde{\varPhi}^{n+i+1}(\varphi, X) = 0.$ Hence we can define $\Phi^{n+i+1}(\xi)$ as the cohomology class determined by $\widetilde{\Phi}^{n+i+1}$. By induction, cohomology classes $\Phi^k(\xi)$ can be defined as above for every k, so that the following is satisfied, $\langle \Phi^{n+k}(\xi), \varphi_*[X] \rangle = \sum_{j=0}^{k-1} \langle \Phi^{n+j}(\xi), \varphi_*[X] \rangle$ $\varphi_* s_{n+j}(X) \rangle + e_{\xi}(\varphi, X)$ for each (φ, X) in $\mathfrak{B}_{n+k}(E, \bar{E})$. Put $\Phi(\xi) = \sum \Phi^k(\xi)$. Then for each (φ, X) in $\mathfrak{B}_m(E, \overline{E})$, it follows that

$$\begin{split} \langle \varPhi(\xi), \, \varphi_* s_*(X) \rangle &= \sum_{k=0}^m \left\langle \varPhi^k(\xi), \, \varphi_* s_k(X) \right\rangle \\ &= \left\langle \varPhi^m(\xi), \, \varphi_* s_m(X) \right\rangle + \sum_{k=0}^{m-1} \left\langle \varPhi^k(\xi), \, \varphi_* s_k(X) \right\rangle \\ &= e_{\xi}(\varphi, \, X) \; . \end{split}$$

Hence there exists a cohomology class $\Phi(\xi)$ satisfying the assumption.

The uniqueness of $\Phi(\xi)$ can be proved as follows. Setting $\Phi = \Phi^0 + \Phi^1 + \cdots + \Phi^\alpha$ in $H^*(E, \bar{E}; Z_2)$, suppose that $\langle \Phi, \varphi_* s_*(X) \rangle = 0$ for each $\langle \varphi, X \rangle$ in $\mathfrak{B}_*(E, \bar{E})$. Clearly $\Phi^0 = 0$. Suppose that $\Phi^0 = 0$, $\Phi^1 = 0$, \cdots , $\Phi^k = 0$. Since $\langle \Phi, \varphi_* s_*(X) \rangle = 0$ for $\langle \varphi, X \rangle$ in $\mathfrak{B}_{k+1}(E, \bar{E})$, it follows that $\langle \Phi^{k+1}, \varphi_*[X] \rangle = 0$ and $\Phi^{k+1} = 0$. Hence $\Phi = 0$ if $\langle \Phi, \varphi_* s_*(X) \rangle = 0$ for each $\langle \varphi, X \rangle$ in $\mathfrak{B}_*(E, \bar{E})$. This means that the cohomology class $\Phi(\xi)$ satisfying the assumption is unique.

Let $\xi = (E, X, \iota)$ be a block bundle. Let $\Phi(\xi)$ be the cohomology class defined as above. Define $\widetilde{w}(\xi)$ by $\widetilde{w}(\xi) = \iota^*(U_{\xi} \cup)^{-1}\Phi(\xi)$, where $\iota^*(U_{\xi} \cup)^{-1}: H^*(E, \bar{E}; Z_2) \to H^*(X; Z_2)$ is the Thom isomorphism of ξ . Then the following holds:

LEMMA 3.3. If ξ is the block bundle induced by a vector bundle

over a locally compact polyhedron X, then the cohomology class $\widetilde{w}(\xi)$ coincides with the dual Stiefel-Whitney class $\overline{w}(\xi)$ of $w^*(\xi)$.

In order to prove Lemma 3.3, it is sufficient to prove the following (cf. [12]):

- 1) Given a block bundle $\xi = (E(\xi), A, \iota)$ and a map $h: B \to A$, where A and B are locally compact polyhedra, we have $\widetilde{w}(h^*\xi) = h^*\widetilde{w}(\xi)$.
- 2) For block bundles ξ_1 and ξ_2 over locally compact polyhedra, we have $\widetilde{w}(\xi_1) \times \widetilde{w}(\xi_2) = \widetilde{w}(\xi_1 \times \xi_2)$.
- 3) For the canonical 1-disk bundle η^1 over the projective space P^n , we have $\widetilde{w}(\eta^1) = 1 + \alpha + \cdots + \alpha^n$, for the generator α of $H^1(P^n; \mathbb{Z}_2)$.
- PROOF. 1) Let $h^*\xi=(E(h^*\xi),B,\iota_B)$ be the induced bundle. There exists a bundle map $(\bar{h},h)\colon (E(h^*\xi),B)\to (E(\xi),A)$. Since $(\bar{h}\circ\varphi,X)$ is in $\mathfrak{B}_*(E(\xi),\bar{E}(\xi))$ for (φ,X) in $\mathfrak{B}_*(E(h^*\xi),\bar{E}(h^*\xi))$ and $e_{\xi}(\bar{h}\circ\varphi,X)=e_{h^*\xi}(\varphi,X)$ by Lemma 3.1, it follows that $\langle \Phi(\xi),(\bar{h}\circ\varphi)_*s_*(X)\rangle=e_{h^*\xi}(\varphi,X)$. Note that $\Phi(h^*\xi)=\bar{h}^*\Phi(\xi)$ by Lemma 3.2. Since $\tilde{w}(h^*\xi)=\iota_B^*(U_{h^*\xi}\cup)^{-1}\bar{h}^*\Phi(\xi)$ and $\bar{h}\circ\iota_B\simeq\iota\circ h$, it follows that $\tilde{w}(h^*\xi)=h^*\circ\iota^*(U_{\xi}\cup)^{-1}\Phi(\xi)$, hence $\tilde{w}(h^*\xi)=h^*\tilde{w}(\xi)$.
- 2) Let $\xi_i = (E_i, B_i, \iota_i)$ be block bundles over locally compact polyhedra B_i for i=1,2. Let \overline{E}_i be the total space of the sphere bundle associated with ξ_i . Since $(\varphi_1 \times \varphi_2)_* s_*(X_1 \times X_2) = (\varphi_1)_* s_*(X_1) \times (\varphi_2)_* s_*(X_2)$ for (φ_i, X_i) in $\mathfrak{B}_*(E_i, \overline{E}_i)$, by Proposition 2.2, it follows that

$$egin{aligned} raket{\Phi(\xi_1) imes\Phi(\xi_2),\,(arphi_1 imesarphi_2)_*s_*(X_1 imes X_2)}\ &=raket{\Phi(\xi_1),\,(arphi_1)_*s_*(X_1)}raket{\Phi(\xi_2),\,(arphi_2)_*s_*(X_2)}\ &=e_{\xi_1}(arphi_1,\,X_1)\cdot e_{\xi_2}(arphi_2,\,X_2)\ &=e_{\xi_1 imes\xi_2}(arphi_1 imesarphi_2,\,X_1 imes X_2)\;. \end{aligned}$$

By the uniqueness of $\Phi(\xi_1 \times \xi_2)$, we have $\Phi(\xi_1) \times \Phi(\xi_2) = \Phi(\xi_1 \times \xi_2)$, hence $\widetilde{w}(\xi_1) \times \widetilde{w}(\xi_2) = \widetilde{w}(\xi_1 \times \xi_2)$.

3) Let $\eta^1=(E^{n+1}, P^n, t)$ be the canonical 1-disk bundle over the real projective space. Define $h\colon (E^{n+1},\partial E^{n+1})\to (P^n,pt)$ by the canonical identification $E^{n+1}/\partial E^{n+1}=P^n$. Then $h_*\colon H_*(E^{n+1},\partial E^{n+1};Z_2)\to H_*(P^{n+1},pt;Z_2)$ is an isomorphism and $h\circ \iota=j_n$, where $j_k\colon P^k\to P^{n+1}$ are the canonical inclusions. Let $\bar{j}_k\colon (E^k,P^{k-1})\to (E^{n+1},P^n)$ be the canonical inclusions. Then $h_*(\bar{j}_k,E^k)=(j_k,P^k)$. Note that $h_*\colon \mathfrak{B}_k(E^{n+1},\partial E^{n+1})\to \mathfrak{B}_k(P^{n+1},pt)$ is an isomorphism by Proposition 2.3. Since $\mathfrak{B}_*(P^{n+1},pt)$ is generated by $\{(\bar{j}_k,P^k)\}$, we see that $\mathfrak{B}_*(E^{n+1},\partial E^{n+1})$ is generated by $\{(\bar{j}_k,P^k)\}$. In order to prove the assertion 3), it is sufficient to prove

$$\langle U_{\eta^1} \cup (\iota^*)^{-1} (1+lpha+\cdots+lpha^n)$$
, $(\overline{j}_{k})_* s_*(E^k)
angle = e_{\eta^1} (\overline{j}_{k},E^k)$.

Let β be the generator of $H^1(\mathbf{P}^{n+1}; \mathbf{Z}_2)$. Then $U_{\eta^1} = h^*\beta$ and $(\iota^*)^{-1}\alpha^i = h^*\beta^i$. Since $h_* \circ (\bar{j}_k)_* s_*(E^k) = (j_k)_* s_*(\mathbf{P}^k)$, we have

$$egin{aligned} \langle U_{\eta^1} \cup (\iota^*)^{-1} (1+lpha+\dots+lpha^n), (ar{j}_k)_* s_*(E^k)
angle \ &= \langle eta + eta^{\scriptscriptstyle 2} + \dots + eta^{\scriptscriptstyle n+1}, (ar{j}_k)_* s_*(P^k)
angle \;. \end{aligned}$$

By Proposition 2.4, it follows that

$$(j_k)_* s_*(\mathbf{P}^k) = \sum_{p=0}^k {}_{k+1} C_{p+1}(j_p)_* [\mathbf{P}^p]$$
.

Then

$$egin{align} \langle U_{eta^1} \cup (oldsymbol{\ell}^*)^{-1} (1+lpha+\cdots+lpha^n), (ar{ar{j}}_k)_* s_*(E^k)
angle \ &= \sum\limits_{p=1}^k {}_{k+1} C_{p+1} = k \;. \end{align*}$$

Note that $e_{\gamma^{1}}(\overline{j}_{k},E^{k})=e(P^{k-1})=k$. Hence

$$\langle U_{\eta^1} \cup (\iota^*)^{-1} (1+lpha+\cdots+lpha^n), (ar{j}_k)_* s_*(E^k)
angle = e_{\eta^1} (ar{j}_k, E^k) \;.$$

By the above, we have $\widetilde{w}(\eta^1) = 1 + \alpha + \cdots + \alpha^n$. q.e.d.

COROLLARY 3.1. Let $\nu=(E,M,t)$ be the normal block bundle of a proper embedding from a compact triangulated differentiable manifold M into \mathbf{R}_+^a . Then

$$\langle U_{\iota} \cup (\iota^*)^{-1} w^*(M), \varphi_* s_*(X) \rangle = e_{\iota}(\varphi, X)$$
 for each (φ, X)

in the bordism group $\mathfrak{B}_*(E,\bar{E})$ of compact $Z_{:}$ -Euler spaces, where \bar{E} is the total space of the sphere bundle associated with ν .

PROOF. Since ν is induced by a vector bundle, it follows that $\langle U_{\nu} \cup (\iota^*)^{-1} \overline{w}(\nu), \varphi_* s_*(X) \rangle = e_{\nu}(\varphi, X)$ by Lemma 3.3. Since $w^*(M) = \overline{w}(\nu)$, we have

4. Regular neighborhoods and Stiefel-Whitney classes. Let $(R; \tilde{R}, \bar{R}; \varphi)$ be a regular neighborhood of an n-dimensional Z_2 -Poincaré-Euler space X in R_+^α . Define a cohomology class $U(\varphi)$ in $H^k(R, \bar{R}; Z_2)$ as the Poincaré dual of $\varphi_*[X]$ in $H_n^{\inf}(R, \tilde{R}; Z_2)$. Then $[R] \cap \varphi^*U(\varphi) = \varphi_*[X]$. The following holds:

PROPOSITION 4.1. Let $(R; \widetilde{R}, \overline{R}; \varphi)$ be a regular neighborhood of an n-dimensional Z_z -Poincaré-Euler space X in R_+^{n+k} . Then there exist the following isomorphisms:

- 1) $t_1: H^i(X; \mathbb{Z}_2) \to H^{i+k}(R, \bar{R}; \mathbb{Z}_2)$ defined by $t_1(\alpha) = U(\varphi) \cup (\varphi^*)^{-1}\alpha$.
- $2) \quad t_2\text{: }H^i(X,\,\partial X;\, Z_2) \rightarrow H^{i+k}(R,\,\partial R;\, Z_2) \,\, defined \,\, by \,\, t_2(\alpha) = U(\varphi) \, \cup \, (\varphi^*)^{-1}\alpha.$

- 3) t_3 : $H_{i+k}^{\inf}(R, \bar{R}; Z_2) \to H_i^{\inf}(X; Z_2)$ defined by $t_3(a) = (\varphi_*)^{-1}(a \cap U(\varphi))$.
- 4) $t_4\colon H^{\mathrm{inf}}_{i+k}(R,\,\partial R;\, Z_{\scriptscriptstyle 2}) \to H^{\mathrm{inf}}_{i}(X,\,\partial X;\, Z_{\scriptscriptstyle 2}) \ \ defined \ \ by \ \ t_4(a) = (\varphi_*)^{-1}(a\cap U(\varphi)).$

PROOF. Note that the diagram

$$egin{aligned} H^i(X;m{Z_2}) & & \longrightarrow & H^{i+k}(R,ar{R};m{Z_2}) \ [X] \cap igcup & & igcup [R] \cap \ H^{\inf}_{n-i}(X,\,\partial X;\,m{Z_2}) & \longrightarrow & H^{\inf}_{n-i}(R,\,\widetilde{R};\,m{Z_2}) \end{aligned}$$

is commutative and that homomorphisms $[X]_{\cap}$, $[R]_{\cap}$ and φ_* are isomorphisms. Thus t_1 is an isomorphism.

We can prove 2), 3) and 4) similarly.

q.e.d.

Let $(R; \widetilde{R}, \overline{R}; \varphi)$ be a regular neighborhood of a Z_2 -Poincaré-Euler space X in R_+^{α} . The k-th Stiefel-Whitney class $w^k(\varphi)$ of φ is defined by $w^k(\varphi) = \varphi^* \circ (U(\varphi) \cup)^{-1} \operatorname{Sq}^k U(\varphi)$. The total Stiefel-Whitney class is $w^*(\varphi) = 1 + w^1(\varphi) + \cdots = \varphi^* \circ (U(\varphi) \cup)^{-1} \operatorname{Sq} U(\varphi)$. If φ has a normal block bundle ν , then $w^*(\varphi) = w^*(\nu)$. The following gives an alternative definition for $w^*(X)$.

PROPOSITION 4.2. Let $(R; \tilde{R}, \bar{R}; \varphi)$ be a regular neighborhood of a Z_{\circ} -Poincaré-Euler space X in R^{α}_{+} . Then $w^{*}(X) \cup w^{*}(\varphi) = 1$.

PROOF. Let $r: (R, \tilde{R}) \to (X, \partial X)$ be a deformation retraction. $U_X \in H^*(X \times X, \partial X \times X; Z_2)$ and $U_R \in H^*(R \times R, \partial R \times R; Z_2)$ be the diagonal classes of X and R respectively. Note that the cap product $\cap (U(\varphi) \times 1_R): H^{\inf}_*(R \times R, \overline{R} \times R \cup R \times \widetilde{R}; Z_2) \to H^{\inf}_*(R \times R, R \times \widetilde{R}; Z_2)$ is an isomorphism. Since $[R \times R] \cap ((r \times r)^* U_x \cup (U(\varphi) \times U(\varphi))) = (\Delta_R)_* \circ$ $(\Delta_{\mathtt{R}})_*[R]\cap (U(\varphi) imes 1_{\mathtt{R}})=(\Delta_{\mathtt{R}})_*\circ \varphi_*[X]$, we have $U_{\mathtt{R}}=$ $\varphi_*[X]$ and $(r \times r)^* U_{x} \cup (1_{R} \times U(\varphi))$. Since $w^*(R) = 1_{R}$, we have Sq $U_{R} = U_{R}$. Noting Sq $U(\varphi) = r^*w^*(\varphi) \cup U(\varphi)$, we see that $(r \times r)^* \operatorname{Sq} U_{\scriptscriptstyle X} \cup (1_{\scriptscriptstyle R} \times r^*w^*(\varphi)) \cup U(\varphi)$ $(1_R \times U(\varphi)) = (r \times r)^* U_X \cup (1_R \times U(\varphi)).$ Note that the cup product $(1_R imes \textit{U}(arphi)) \cup : H^*(R imes R; \textit{Z}_{\scriptscriptstyle 2}) o H^*(R imes R, R imes ar{R}; \textit{Z}_{\scriptscriptstyle 2}) ext{ and } r^* : H^*(R; \textit{Z}_{\scriptscriptstyle 2}) o$ $H^*(X; \mathbb{Z}_2)$ are isomorphisms. Then Sq $U_X \cup (1_X \times w^*(\varphi)) = U_X$. Since $[\text{Sq } U_X \cup (1_X \times w^*(\varphi))]/[X] = \text{Sq } U_X/[X] \cup w^*(\varphi) = w^*(X) \cup w^*(\varphi), \text{ we have }$ only to prove $U_x/[X] = 1_x$. Note that $[X] \cap U_x/[X] = (p_2)_*([X \times X] \cap U_x)$, where p_2 is the projection of $X \times X$ to the second factor and that $p_2 \circ \Delta$: $X \to X$ is the identity. Then we have $[X] \cap U_{\mathbb{X}}/[X] = 1_{\mathbb{X}}$, hence $U_{X}/[X]=1_{X}.$ q.e.d.

We need the following for the calculation in Section 5.

Proposition 4.3. Let X and Y be Z_2 -Poincaré-Euler space. Then

 $w^*(X \times Y) = w^*(X) \times w^*(Y).$

PROOF. Let U_X , U_Y and $U_{X\times Y}$ be the diagonal classes of X, Y and $X\times Y$ respectively. Then $w^*(X\times Y)=(\operatorname{Sq} U_{X\times Y})/[X\times Y]=(\operatorname{Sq} U_X)/[X]\times (\operatorname{Sq} U_Y)/[Y]=w^*(X)\times w^*(Y).$ q.e.d.

In order to apply our main Theorem to Z_2 -homology manifolds, we need Propositions 4.4 and 4.5.

PROPOSITION 4.4. Given Z_2 -homology manifolds X and Y, let ψ : $(Y, \partial Y) \rightarrow (X, \partial X)$ be an embedding with a normal block bundle ν . Then $\psi^*w^*(X) = w^*(Y) \cup w^*(\nu)$.

PROOF. Let E be the total space of a normal block bundle ν of ψ and let \bar{E} be the total space of the sphere bundle induced by ν . we will prove that $w^*(E) = i^*w^*(X)$, where $i: E \to X$ is the inclusion. Put $\widetilde{E} = \operatorname{cl}(\partial E - \overline{E})$. Let $P = \{(x_1, \dots, x_{\alpha}) | x_{\alpha} \ge 0, x_{\alpha-1} \le 0\}$ and $Q = \mathbb{C}$ $\{(x_1, \cdots, x_{\alpha}) | x_{\alpha} \geq 0, x_{\alpha-1} \geq 0\}.$ Then $R^{\alpha}_+ = P \cup Q$. Let $\widetilde{P} = \{(x_1, \cdots, x_{\alpha}) | x_{\alpha} = 0, x_{\alpha} \in \mathbb{R} \}$ $|x_{\alpha-1}| \leq 0$, $\bar{P} = \bar{Q} = P \cap Q$ and $\tilde{Q} = \{(x_1, \dots, x_\alpha) | x_\alpha = 0, x_{\alpha-1} \geq 0\}$. that there exists a proper embedding $\varphi: X \to R^{\alpha}_+$ such that $\varphi \mid E: (E; \tilde{E}, \bar{E}) \to R^{\alpha}_+$ $(P; \widetilde{P}, \overline{P})$ and $\varphi | \operatorname{cl}(X - E); (\operatorname{cl}(X - E), \operatorname{cl}(\partial X - \widetilde{E}), \overline{E}) \to (Q; \widetilde{Q}, \overline{Q})$ are proper. (See Hudson [10].) Let $(R_p; \tilde{R}_p, \bar{R}_p; \varphi | E)$, $(R_q; \tilde{R}_q, \bar{R}_q; \varphi | \operatorname{cl}(X - E))$ and $(R; \tilde{R}, \bar{R}; \varphi)$ be regular neighborhoods of E in P, of $\operatorname{cl}(X - E)$ in Q and of X in R_+^{α} , respectively, such that $R = R_P \cup R_Q$ and $\bar{R} = \bar{R}_P \cup \bar{R}_Q$. Define $U(\varphi | E) \in H^*(R_P, \bar{R}_P; Z_2)$ as the Poincaré dual of $(\varphi | E)_*[E]$. Then $U(\varphi \mid E) = j^*U(\varphi)$, where $j: P \to R^{\alpha}_+$ is the inclusion, hence $w^*(\varphi \mid E) = i$ $i^*w^*(\varphi)$. Thus $w^*(E) = i^*w^*(X)$. Note that $U(\psi_Y) = U(\varphi|E) \cup [(\varphi|E)^*]^{-1}U_{\varphi}$, where $(R_P; \widetilde{R}_P \cap \widetilde{P}, \overline{R}_P \cup (\widetilde{R}_P \cap \overline{P}); \psi_Y)$ is a regular neighborhood of Y in R^{α}_+ . Let $\psi_{\nu}: Y \to E$ be the canonical inclusion. Then $w^*(\psi_Y) = \psi_{\nu}^* w^*(\varphi|E) \cup w^*(\nu)$. By Proposition 4.2, we have $\psi_{\nu}^* w^*(E) = w^*(Y) \cup w^*(\nu)$. Since $i \circ \psi_{\nu} = \psi$, we have $\psi^* w^* (X) = w^* (Y) \cup w^* (\nu)$. q.e.d.

PROPOSITION 4.5. Let X be a closed Z_2 -Poincaré-Euler space. Then $\langle w^*(X), [X] \rangle = e(X)$, where e(X) is the modulo 2 Euler number of X.

The proof in the case of smooth manifolds given in Milnor [12] can be applied to this proposition without any changes.

We need the following to prove Lemmas 5.2 and 6.2 in subsequent sections.

LEMMA 4.1. Let $(R; \tilde{R}, \bar{R}; \varphi)$ be a regular neighborhood of an n-dimensional Z_z -Poincaré-Euler space X in R_+^{α} . Suppose that a PL-embedding $f: (M, \partial M) \to (R, \bar{R})$ is given with a normal block bundle $\xi = (E, M, f_E)$, such that $\varphi(X)$ is transverse to ξ , where M is a compact PL-

manifold. Let U_{ξ} be the Thom class of ξ . Let $j_E : E \to R$ be the inclusion. Define $Y = \varphi^{-1} \circ f(M)$ and $X_E = \varphi^{-1} \circ j_E(E)$. Let $\varphi_E : X_E \to E$ and $\psi_M : Y \to M$ be embeddings defined by $\varphi_E = j_E^{-1} \circ \varphi$ and $\psi_M = f^{-1} \circ (\varphi \mid Y)$. Then the following hold:

- 1) $(f_E)_*([M] \cap f^*U(\varphi)) = (\varphi_E)_*[X_E] \cap U_{\xi}.$
- 2) $[M] \cap f^*U(\varphi) = (\psi_M)_*[Y].$

PROOF. 1) Note that $j_E \circ f_E = f$ and $[E] \cap U_\xi = (f_E)_*[M]$. Hence $(f_E)_*([M] \cap f^*U(\varphi)) = ([E] \cap j_E^*U(\varphi)) \cap U_\xi$. Thus it suffices to prove $[E] \cap j_E^*U(\varphi) = (\varphi_E)_*[X_E]$. Let $\widetilde{R} = \operatorname{cl}(R - j_E(E))$ and let $j_E : (R; \widetilde{R}, \overline{R}) \to (R; \widetilde{R}, \overline{R})$ be defined as the identity. Regard j_E as a map $j_E : (E; \widetilde{E}, \overline{E}) \to (R; \overline{R}, \widetilde{R})$, where $\widetilde{E} = \operatorname{cl}(\partial E - \overline{E})$. Note that $(j_E)_*[E] = (j_R)_*[R]$ and $[R] \cap U(\varphi) = \varphi_*[X]$. Hence $(j_E)_*([E] \cap (j_E)^*U(\varphi)) = (j_R)_* \circ \varphi_*[X] = (j_E)_* \circ (\varphi_E)_*[X_E]$. Since $(j_E)_* : H_*^{\operatorname{inf}}(E, \overline{E}; Z_2) \to H_*^{\operatorname{inf}}(R, \widetilde{R}; Z_2)$ is an isomorphism, we have $[E] \cap (j_E)^*U(\varphi) = (\varphi_E)_*[X_E]$.

- 2) Note that $[X_E] \cap (\varphi_E)_* U_{\xi} = (\psi_E)_* [Y]$, where $\psi_E \colon Y \to X_E$ is the inclusion. By 1), we have $(f_E)_* ([M] \cap f^* U(\varphi)) = (\varphi_E)_* \circ (\psi_E)_* [Y]$. Since $\varphi_E \circ \psi_E = f_E \circ \psi_M$ and since $(f_E)_* \colon H^{\rm inf}_* (M, \partial M; Z_2) \to H^{\rm inf}_* (E, \widetilde{E}; Z_2)$ is an isomorphism, we have $[M] \cap f^* U(\varphi) = (\psi_M)_* [Y]$.
- 5. Characterization of Stiefel-Whitney classes via unoriented differentiable bordism groups. Let $(R; \tilde{R}, \bar{R}; \varphi)$ be a regular neighborhood of an n-dimensional Z_2 -Poincaré-Euler space X in R_+^{α} . Suppose that \tilde{e}_{φ} : $\mathfrak{R}_*(R, \bar{R}) \to Z_2$ is the homomorphism defined in Section 1. Then the following holds:

Lemma 5.1. For each $(f,M)\in\mathfrak{N}_*(R,\bar{R})$, it follows that $\langle \textit{U}(\varphi)\cup(\varphi^*)^{-1}w^*(X),f_*([M]\cap w^*(M))\rangle=\widetilde{e}_{\varphi}(f,M)\;.$

In order to prove this lemma, we need the following:

LEMMA 5.2. Let $f:(M,\partial M)\to (R,\bar R)$ be a PL-embedding with the normal block bundle ξ , where M is a compact triangulated differentiable manifold. If $\varphi(X)$ is transverse to ξ , then

$$\langle \mathit{U}(arphi) \cup (arphi^*)^{\scriptscriptstyle -1} w^*(X)$$
 , $f_*([M] \cap w^*(M))
angle = \widetilde{e}_{arphi}(f,M)$.

PROOF. We use the notations in Lemma 4.1. By 2) of Lemma 4.1, we have $\langle U(\varphi) \cup (\varphi^*)^{-1} w^*(X), f_*([M] \cap w^*(M)) \rangle = \langle f^* \circ (\varphi^*)^{-1} w^*(X) \cup w^*(M), (\psi_M)_*[Y] \rangle$. Let $\psi_X \colon Y \to X$ be the inclusion. Note that $f \circ \psi_M = \varphi \circ \psi_X$. Hence $\langle U(\varphi) \cup (\varphi^*)^{-1} w^*(X), f_*([M] \cap w^*(M)) \rangle = \langle \psi_X^* w^*(X) \cup \psi_M^* w^*(M), [Y] \rangle = \langle \psi_X^* w^*(X) \cup \psi_M^* \overline{w}(\xi), [Y] \rangle = \langle \psi_X^* w^*(X) \cup \overline{w}(\psi_M^* \xi), [Y] \rangle$. Thus $\langle U(\varphi) \cup (\varphi^*)^{-1} w^*(X), f_*([M] \cap w^*(M)) \rangle = \widetilde{e}_{\varphi}(f, M)$ by the definition of \widetilde{e}_{φ} .

PROOF OF LEMMA 5.1. Let (f,M) be in $\mathfrak{N}_*(R,\bar{R})$. Then there exists an embedding $g\colon (M,\partial M)\to (R\times D^{\beta},\bar{R}\times D^{\beta})$ such that $g\simeq f\times \{0\}$ and $(\varphi\times \mathrm{id})(X\times D^{\beta})$ is block transverse to g by Transversality Theorem. By Lemma 5.2, it follows that $\langle (U(\varphi)\times 1)\cup [(\varphi\times \mathrm{id})^*]^{-1}w^*(X\times D^{\beta}),$ $g_*([M]\cap w^*(M))\rangle=\widetilde{e}_{\varphi}(f,M).$ Since $\langle (U(\varphi)\cup (\varphi^*)^{-1}w^*(X),f_*([M]\cap w^*(M))\rangle=\langle (U(\varphi)\times 1)\cup [(\varphi\times \mathrm{id})^*]^{-1}w^*(X\times D^{\beta}),$ $g_*([M]\cap w^*(M))\rangle$ by Proposition 4.3, we have

$$\langle \mathit{U}(\varphi) \cup (\varphi^*)^{\scriptscriptstyle -1} w^*(X), f_*([M] \cap w^*(M)) \rangle = \widetilde{e}_{\varphi}(f, M) \; . \hspace{1cm} \mathrm{q.e.d.}$$

The following and Lemma 5.1 give a characterization of Stiefel-Weitney classes.

LEMMA 5.3. Let (A, B) be a pair of polyhedra. Given $\Phi \in H^*(A, B; Z_2)$, if $\langle \Phi, f_*([M] \cap w^*(M)) \rangle = 0$ for every $(f, M) \in \mathfrak{R}_*(A, B)$, then $\Phi = 0$.

PROOF. Let $\Phi = \Phi^0 + \Phi^1 + \cdots + \Phi^n$ for $\Phi^i \in H^i(A, B; \mathbb{Z}_2)$. Since $\langle \Phi, f_*([M] \cap w^*(M)) \rangle = \langle \Phi^0, f_*[M] \rangle$ for $(f, M) \in \mathfrak{N}_0(A, B)$, $\langle \Phi, f_*([M] \cap w^*(M)) \rangle = 0$ for every (f, M) implies that $\Phi^0 = 0$. Suppose that $\Phi^0 = 0$, $\Phi^1 = 0$, \cdots , $\Phi^k = 0$. Then $\langle \Phi, f_*([M] \cap w^*(M)) \rangle = \langle \Phi^{k+1}, f_*[M] \rangle$ for $(f, M) \in \mathfrak{N}_{k+1}(A, B)$. Hence, if $\langle \Phi, f_*([M] \cap w^*(M)) \rangle = 0$ for every (f, M), it follows that $\Phi^{k+1} = 0$. By induction on k, we have $\Phi = 0$. q.e.d.

6. Characterization of Stiefel-Whitney homology classes via unoriented differentiable bordism groups. Let $(R; \widetilde{R}, \overline{R}; \varphi)$ be a regular neighborhood of an n-dimensional Z_2 -Poincaré-Euler space X in R_+^{α} . Suppose that $e_{\varphi} \colon \mathfrak{N}_*(R, \overline{R}) \to Z_2$ is the homomorphism defined in Section 1. Then the following holds:

LEMMA 6.1. For each
$$(f, M) \in \mathfrak{N}_*(R, \bar{R})$$
, it follows that
$$\langle U(\varphi) \cup (\varphi^*)^{-1} \circ ([X] \cap)^{-1} s_*(X), f_*([M] \cap w^*(M)) \rangle = e_{\varphi}(f, M).$$

In order to prove this lemma, we need the following:

LEMMA 6.2. Let $f:(M,\partial M)\to (R,\bar R)$ be a PL-embedding with a normal block bundle ξ , where M is a compact triangulated differentiable manifold. If $\varphi(X)$ is transverse to ξ , then

$$\langle \mathit{U}(\varphi) \cup (\varphi^*)^{-1} \circ ([X] \cap)^{-1} s_*(X), f_*([M] \cap w^*(M)) \rangle = e_{\varphi}(f, M) .$$

PROOF. By 1) of Lemma 4.1, we have $\langle U(\varphi) \cup (\varphi^*)^{-1} \circ ([X] \cap)^{-1} s_*(X)$, $f_*([M] \cap w^*(M)) \rangle = \langle w^*(M) \cup f^* \circ (\varphi^*)^{-1} \circ ([X] \cap)^{-1} s_*(X)$, $(f_E)^{-1} ((\varphi_E)_* [X_E] \cap U_{\xi}) \rangle$. Note that $j_E \circ f_E = f$. Then $\langle U(\varphi) \cup (\varphi^*)^{-1} \circ ([X] \cap)^{-1} s_*(X)$, $f_*([M] \cap w^*(M)) \rangle = \langle U_{\xi} \cup (f_E^*)^{-1} w^*(M)$, $((\varphi_E)_* [X_E]) \cap j_E^* \circ (\varphi^*)^{-1} \circ ([X] \cap)^{-1} s_*(X) \rangle$. Since there exists the commutative diagram

and since $[X] \cap$, φ^* and $(j_E)_*$ are isomorphisms, we have

$$\begin{split} ((\varphi_{\scriptscriptstyle E})_*[X_{\scriptscriptstyle E}]) \cap j_{\scriptscriptstyle E}^* \circ (\varphi^*)^{\scriptscriptstyle -1} \circ ([X] \cap)^{\scriptscriptstyle -1} s_*(X) &= [(j_{\scriptscriptstyle E})_*]^{\scriptscriptstyle -1} \circ \varphi_* s_*(X) \\ &= (\varphi_{\scriptscriptstyle E})_* s_*(X_{\scriptscriptstyle E}) \;. \end{split}$$

Note that $\langle U_{\varepsilon} \cup (f_{\varepsilon}^*)^{-1} w^*(M), (\varphi_{\varepsilon})_* s_*(X_{\varepsilon}) \rangle = e(Y)$ by Corollary 3.1. Thus $\langle U(\varphi) \cup (\varphi^*)^{-1} \circ ([X] \cap)^{-1} s_*(X), f_*([M] \cap w^*(M)) \rangle = e_{\varphi}(f, M).$ q.e.d.

Proof of Lemma 6.1. Let (f,M) be in $\mathfrak{R}_*(R,\bar{R})$. Then there exists an embedding $g\colon (M,\partial M)\to (R\times D^{\beta},\bar{R}\times D^{\beta})$ such that $g\simeq f\times \{0\}$ and that $(\varphi\times \mathrm{id})(X\times D^{\beta})$ is block transverse to g by Transversality Theorem. By Lemma 6.2, it follows that

$$\begin{split} & \langle (\textit{U}(\varphi) \times 1) \cup [(\varphi \times \mathrm{id})^*]^{-1} \circ ([X \times D^{\beta}] \cap)^{-1} s_* (X \times D^{\beta}), \, g_* ([M] \cap w^*(M)) \rangle \\ &= e_{\varphi}(f, M) \, \, . \end{split}$$

Since $\langle U(\varphi) \cup (\varphi^*)^{-1} \circ ([X] \cap)^{-1} s_*(X)$, $f_*([M] \cap w^*(M)) \rangle = \langle (U(\varphi) \times 1) \cup [(\varphi \times \mathrm{id})^*]^{-1} \circ ([X \times D^\beta] \cap)^{-1} s_*(X \times D^\beta)$, $g_*([M] \cap w^*(M)) \rangle$ by Proposition 2.2, we have $\langle U(\varphi) \cup (\varphi^*)^{-1} \circ ([X] \cap)^{-1} s_*(X)$, $f_*([M] \cap w^*(M)) \rangle = e_{\varphi}(f, M)$. q.e.d.

Now we are in a position to prove the following theorem announced in Section 1.

THEOREM. Let X be an n-dimensional Z_2 -Poincaré-Euler space. Take a regular neighborhood $(R; \tilde{R}, \bar{R}; \varphi)$ of X in R_+^{α} . Then $[X] \cap w^*(X) = s_*(X)$ if and only if $o_{\varphi} = 0$.

PROOF. If $[X] \cap w^*(X) = s_*(X)$, then $\widetilde{e}_{\varphi}(f, M) = e_{\varphi}(f, M)$. This means $o_{\varphi} = 0$. Conversely suppose that $o_{\varphi} = 0$. By Lemmas 5.1, 5.3 and 6.1, we have $U(\varphi) \cup (\varphi^*)^{-1}w^*(X) = U(\varphi) \cup (\varphi^*)^{-1} \circ ([X] \cap)^{-1}s_*(X)$. Hence $[X] \cap w^*(X) = s_*(X)$ by Proposition 4.1.

This Theorem can be applied to Z_2 -homology manifolds.

COROLLARY. Let X be an n-dimensional Z_2 -homology manifold with or without boundary. Then $[X] \cap w^*(X) = s_*(X)$.

PROOF. Let $\psi \colon Y \to X \times D^{\beta}$ be the embedding used to define e_{φ} and \widetilde{e}_{φ} . Note that ψ has a normal block bundle ν in $X \times D^{\beta}$. Then Y is a Z_2 -homology manifold. Therefore $\psi^*w^*(X \times D^{\beta}) = w^*(Y) \cup w^*(\nu)$ by Proposition 4.4. In view of the definition of e_{φ} and \widetilde{e}_{φ} , we have $o_{\varphi} = 0$

by Proposition 4.5. Thus $[X] \cap w^*(X) = s_*(X)$ by Theorem. q.e.d.

EXAMPLE 1. We construct a simple example of Z_2 -Poincaré-Euler space X which is not a Z_2 -homology manifold. Let $X_1 = D^2/\{a, b, c\}$ where $D^2 = [-1, 1]^2$ and a, b, c are distinct points in ∂D^2 . Then X_1 is a Z_2 -Euler space. Let $X_2 = \text{cone } \partial X_1$. Then there exists a canonical PL-homeomorphism $c: \partial X_1 \to \partial X_2$. Put $X = X_1 \cup X_2$. Then X is homotopy equivalent to S^2 and is not a Z_2 -homology manifold.

EXAMPLE 2. We construct a little more complicated example of Z_2 -Poincaré-Euler space X which does not satisfy $[X] \cap w^*(X) = s_*(X)$. In particular, X is not a Z_2 -homology manifold. Let X_1 be the quotient space of $[-1,1] \times [0,1]$ by the identification (-1,t) = (0,t) and (1,t) = (0,1-t) for each t in [0,1]. Then X_1 is a Z_2 -Euler space. Put $Y = \partial X_1/([0,1] \times \{0\})$. Let $\varphi \colon \partial X_1 \to Y$ be the quotient map. Let X_2 be the mapping cylinder of φ . Then X_2 is a Z_2 -Euler space such that $\partial X_2 = \partial X_1 \cup Y$. Let $X_3 = ([0,1]^2 \cup [-1,0]^2)/\{(0,0),(1,1)\}$. Then X_3 is a Z_2 -Euler space such that ∂X_3 is PL-homeomorphic to Y. Define $X = X_1 \cup X_2 \cup X_3$. Then X is a Z_2 -Euler space and is homotopy equivalent to P^2 . Hence $w^1(X) \neq 0$. Since $s_1(X) = 0$, it follows that X is a Z_2 -Poincaré-Euler space which does not satisfy $[X] \cap w^*(X) = s_*(X)$.

Appendix. Proof of Transversality Theorem.

A.1. BLOCK TRANSVERSALITY AND MOCK TRANSVERSALITY. Let M and N be PL-manifolds. Suppose that $f: M \to N$ is a locally flat PL-embedding and that X is a subpolyhedron of N. Then X is block transverse to f in N, if there exists a normal block bundle $\nu = (E(\nu), M, f_E)$ of f such that $X \cap E(\nu) = E(\nu | X \cap f(M))$. (See [2] and [14].)

Let $f: (M, \partial M) \to (N, \partial N)$ be a PL-embedding. The collars $c_1: \partial M \times I \to M$ and $c_2: \partial N \times I \to N$ are said to be compatible with f, if $f \circ c_1(x, t) = c_2(f(x), t)$ for every (x, t) in $\partial M \times I$. (See [10].)

Let X and Y be polyhedra and let K be a ball complex (cf. [2]) such that X = |K|. A proper PL-embedding $f \colon Y \to X$ is transverse to K, if $f^{-1}(\sigma)$ is a compact PL-manifold with boundary $f^{-1}(\partial \sigma)$ and if the PL-embedding $f \mid f^{-1}(\sigma) \colon f^{-1}(\sigma) \to \sigma$ has compatible collars for every σ in K.

In order to prove Transversality Theorem, we need the following. The next section is devoted to its proof.

PROPOSITION A.1. (cf. Buoncristiano, Rourke and Sanderson [2]). Let X and Y be polyhedra. Let K be a ball complex such that X = |K|. Suppose that a subdivision K' of K does not subdivide a subcomplex

L of K and that a proper PL-embedding $f: Y \to X$ is transverse to K. Then there exists a proper PL-embedding $g: Y \to X$ which is transverse to K' and ambient isotopic to f relative to |L|.

Let M and N be PL-manifolds. Suppose that $f: M \to N$ is a locally flat proper PL-embedding and that X is a subpolyhedron of N. We say that f is mock transverse to X in N, if there exists a ball complex K which contains a subcomplex L such that |K| = N and |L| = X and if f is transverse to K.

We also need the following to prove Transversality Theorem. We do not repeat the proof here since an adequate proof is given in [2].

PROPOSITION A.2. (Buoncristiano, Rourke and Sanderson [2, II, Theorem 4.4]). Let M and N be PL-manifolds. Suppose that $f: M \to N$ is a locally flat proper PL-embedding and X is a closed subpolyhedron of N. The PL-embedding f is mock transverse to X in N if and only if X is block transverse to f in N.

PROOF OF TRANSVERSALITY THEOREM. Noting the assumption of Transversality Theorem, there exists a normal block bundle $\nu = (E(\nu), M, f_E)$ of f to which a regular neighborhood R of $\partial N \cap X$ in X is transverse in N. Let K be a ball complex such that blocks $E(\sigma)$ of ν are balls of K, that |K| = N and that K|R is contained in K as a subcomplex. Then f is transverse to K. Choose a subdivision K' of K which does not subdivide $K|\partial N$ and which contains a subcomplex K_X of K' where $|K_X| = X$. Put $L = K|\partial N$. Then by Proposition A.1, there exists an PL-embedding $g: M \to N$ which is transverse to K' and ambient isotopic to f relative to $|L| = \partial N$. Thus g is mock transverse to K, and K is block transverse to K by Proposition A.2.

A.2. PROOF OF PROPOSITION A.1. In order to prove Proposition A.1, it suffices to prove the following:

LEMMA A.1. Let X and Y be polyhedra. Let K be a ball complex such that |K| = X. Suppose that a subdivision K' of K does not subdivide a subcomplex L of K and that a proper PL-embedding $f\colon Y\to X$ is transverse to K. Then there exists a proper PL-embedding $g\colon Y\to X$ transverte to K' and an ambient isotopy $F\colon X\times I\to X\times I$ relative to |L| between f and g such that $F(\sigma\times I)=\sigma\times I$ for each σ in K.

We will prove this lemma by induction on the dimension of X. For the induction step, we need the following:

LEMMA A.2. Let M be a compact PL-manifold. Let K be a ball

complex such that $|K| = D^n$. Let $f: M \to D^n$ be a proper PL-embedding such that $f | \partial M: \partial M \to \partial D^n$ is transverse to $K | \partial D^n$. Then there exists an PL-embedding $g: M \to D^n$ transverse to K and ambient isotopic to f relative to ∂D^n .

We need the following to prove Lemma A.2:

UNIQUENESS THEOREM OF COLLARS. (Hudson and Zeeman [9]). If c_0 and c_1 are two collars of M, then there exists an ambient isotopy F of M fixed on ∂M such that $c_1 = F_1 \circ c_0$ and F_0 is the identity, where $F(x, t) = (F_t(x), t)$.

LEMMA A.3. Let Δ be a ball complex which contains only one n-ball such that $|\Delta| = D^n$. Let Λ be the subcomplex of Δ containing all balls except the n-ball and one (n-1)-ball. If X is a compact PL-manifold and if a PL-embedding $f: X \to |\Lambda|$ is transverse to Λ , then there exists a PL-embedding $F: X \times I \to D^n$ transverse to Δ such that F(x, 0) = f(x) for every x in X.

PROOF. Since there exists a PL-homeomorphism $h: |A| \times I \to |A|$ such that h(y, 0) = y for every y in |A|, an PL-embedding $F: X \times I \to |A|$ can be defined by F(x, t) = h(f(x), t). Clearly F is transverse to A and F(x, 0) = f(x).

PROOF OF LEMMA A.2. Clearly there exists a subdivision K' of Kwhich does not subdivide $K|\partial D^n$ such that $\partial D^n \times I = |K' - \sigma|$ for some *n*-ball σ in K'. Note that the ball complex $K' - \sigma$ collapses to $K \mid \partial D^n$. By if dim M = n, there is nothing to prove. Otherwise by using Lemma A.3, we can construct a subpolyhedron X of $|K'-\sigma|$ such that Xcollapses to $f(\partial M)$ and that the inclusion $i: X \subset |K' - \sigma|$ is transverse to $K'-\sigma$. Since the inclusion i has a normal block bundle (see [2]), X is a PL-manifold. Therefore there exists a PL-homeomorphism $h: \partial M \times$ $I \to X$. Define $\widetilde{f} : \partial M \times I \to |K' - \sigma|$ by $\widetilde{f} = i \circ h$. Then \widetilde{f} is transverse to $K' - \sigma$. By the uniqueness theorem of regular neighborhoods (see [10]), there exists a collar $c_i: \partial D^n \times I \to D^n$ such that $c_i(\partial D^n \times I) =$ $|K'-\sigma|$ and $c_1(f(x),t)=j\circ f(x,t)$ for (x,t) in $\partial M\times I$, where $j:|K'-\sigma|\to$ D^n is the inclusion. Let $c: \partial M \times I \to M$ and $c_0: \partial D^n \times I \to D^n$ be compatible collars with f. By the uniqueness theorem of collars, there exists an ambient isotopy $F: D^n \times I \to D^n \times I$ relative to $\partial D^n \times I$ such that F_0 is the identity and $c_1 = F_1 \circ c_0$, where $F(x, t) = (F_t(x), t)$ for every (x, t) in $D^n \times I$. Define $g: M \to D^n$ by $g = F_1 \circ f$. Note that \widetilde{f} is transverse to $K' - \sigma$. Thus g is transverse to K', and hence g is transverse to K.

PROOF OF LEMMA A.1. We prove Lemma A.1 by induction on the

dimension of X. The case dim X=0 is trivial. Suppose that Lemma A.1 holds whenever the dimension of X is smaller than n+1 and Suppose that a PL-embedding $f: Y \rightarrow X$ assume that $\dim X = n + 1$. is transverse to a ball complex structure K of X. Then $f|f^{-1}(|K^n|)$: $f^{-1}(|K^n|) \to |K^n|$ is transverse to K^n , where K^n is the *n*-skelton of K. Put $(K^n)' = \{ \sigma \in K' | \sigma \subset |K^n| \}$. By induction assumption, there exist a PLembedding $g: f^{-1}(|K^n|) \to |K^n|$ transverse to $(K^n)'$ and an ambient isotopy $\widetilde{G}: K^n \times I \to K^n \times I$ between $f \mid f^{-1}(\mid K^n \mid)$ and g relative to $\mid K^n \mid \cap \mid L \mid$ such that $\widetilde{G}(\sigma \times I) = \sigma \times I$ for each σ in K^n . Clearly there exists an isotopy $G: X \times I \to X \times I$ relative to |L| such that $G|K^n| \times I = \widetilde{G}$ and $G(\sigma \times I) =$ $\sigma \times I$ for every σ in K. Thus we may assume that f is transverse to \bar{K}^n , where $\bar{K}^n = (K^n)' \cup (K - K^n)$. Applying Lemma A.2 to PL-embeddings $f | f^{-1}(\sigma): f^{-1}(\sigma) \to \sigma$ for all σ in $K - K^n$, there exists a PL-embedding $g: Y \to X$ transverse to K' an ambient isotopy $F: X \times I \to X \times I$ between f and g relative to $|K^n| \cup |L|$ such that $F(\sigma \times I) = \sigma \times I$ for every σ in K. q.e.d.

REFERENCES

- [1] E. Akin, Stiefel-Whitney homology classes and cobordism, Trans. Amer. Math. Soc. 205 (1975), 341-359.
- [2] S. BUONCRISTIANO, C. R. ROURKE AND B. J. SANDERSON, A geometric approach to homology theory, London Math. Soc. Lecture Notes 18, 1976.
- [3] J. D. BLANTON AND P. A. SCHWEITZER, Axiom for characteristic classes of manifolds, Proc. Symp. in Pure Math. 27 (1975), Amer. Math. Soc. 349-356.
- [4] J. D. BLANTON AND C. McCrory, An axiomatic proof of Stiefel conjecture, Proc. Amer. Math. Soc. 77 (1979), 409-414.
- [5] G. CHEEGER, A combinatorial formula for Stiefel-Whitney classes, in Topology of Manifolds, (Cantrel and Edward, eds.), Markham Publ., 1970, 470-471.
- [6] P. CONNER AND E. FLOYD, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete 33, Springer-Verlag, Berlin, Heidelberg, New York, 1964.
- [7] S. HALPERIN AND D. TOLEDO, Stiefel-Whitney homology classes, Ann. of Math. 96 (1972), 511-525.
- [8] S. HALPERIN AND D. TOLEDO, The product formula for Stiefel-Whitney homology classes, Proc. of Amer. Math. Soc. 48 (1975), 239-244.
- [9] J. F. P. Hudson and E. C. Zeeman, On combinatrial isotopy, Publ. Math. Inst. Hautes Et. Sci. 19 (1964), 69-94.
- [10] J. F. P. Hudson, Piecewise Linear Topology, Benjamin, New York, 1969.
- [11] C. McCrory, Cone complexes and PL transversality, Trans. Amer. Math. Soc. 207 (1975), 269-291.
- [12] J. MILNOR AND J. STASHEFF, Characteristic classes, Ann. of Math. Studies 76, Princeton Univ. Press. 1974.
- [13] C. P. ROURKE, Block structures in geometric and algebraic topology, Actes Congres intern. Math. Nice, 1970, 127-132.
- [14] C. P. ROURKE AND B. J. SANDERSON, Block bundles, I and II, Ann. of Math. 87 (1968), 1-28 and 255-277.

- [15] E. H. SPANIER, Algebraic Topology, McGraw-Hill, New York, 1966.
- [16] D. SULLIVAN, Combinatorial invariant of analytic spaces, Proc. Liverpool Singularities I, Lecture Notes in Math. 192, Springer-Verlag, Berlin, Heidelberg, New York, 1971, 165-168.
- [17] D. SULLIVAN, Singularities in spaces, Proc. Liverpool Singularities II, Lecture Notes in Math. 209, Springer-Verlag, Berlin, Heidelberg, New York, 1971, 196-206.
- [18] L. TAYLOR, Stiefel-Whitney homology classes, Quart. J. Oxford 28 (1977), 381-387.
- [19] H. WHITNEY, On the theory of sphere bundles, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 148-153.

ICHINOSEKI TECHNICAL COLLEGE ICHINOSEKI, 021 Japan