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1. Introduction and the statement of results. Let K be a simplicial
complex. It is said to be totally m-dimensional if for each o e K there
exists an m-dimensional simplex 7€ K such that 6 <7 or 6 =7. A
polyhedron X is totally n-dimensional if so is a triangulation K of X.
(See Akin [1].) A totally m-dimensional locally finite simplicial complex
K is an n-dimensional Z,-Euler complex if there exists a totally (n — 1)-
dimensional subcomplex L such that

1) The cardinality of {re L|o < 7} is even for each o¢ L.

2) The cardinality of {re€ K|o < 7} is odd for each ge L.

8) The cardinality of {re K|o < 7} is even for each e K — L.

We usually denote oK instead of L. A polyhedron X is Z,-Euler if so
is a triangulation K of X. Let 0X = |[0K|. A compact n-dimensional
Z,-Euler space X is said to be closed if 6X is empty. Examples of Z,-
Euler spaces are PL-manifolds, Z,-homology manifolds, complex analytic

spaces and so on. (See Sullivan [16].)
Let K be a triangulation of a Z,-Euler space X. Then the k-th

Stiefel-Whitney homology class s,(X) is defined as the k-skelton K* of
the first barycentric subdivision K of K. (See Akin [1], Halperin and
Toledo [7], Sullivan [16].) Since a differentiable manifold M has a
triangulation, the k-th Stiefel-Whitney homology class s,(M) can be
defined as above. Whitney [19] announced that the k-th Stiefel-Whitney
homology class s,(M) of an n-dimensional differentiable manifold M is
the Poincaré dual of the (n — k)-th Stiefel-Whitney class w"*(M). Its
proof was outlined by Cheeger [5] and given by Halperin and Toledo [7].
Taylor [18] generalized it to the case of Z,-homology manifolds. This
paper will give another proof of this result.

We will study the case of Z,-Poincaré-Euler spaces. An n-dimensional
Z,-Euler space X is called an n-dimensional Z,-Poincaré-Euler space if the
cap products [X],: H*(X; Z,) » Hy (X, 0X; Z,) and [X],: H*(X, 0X; Z,) —
HP(X; Z,) are isomorphisms. Here H,** is the homology theory of

infinite chains.
Let X be an mn-dimensional Z,-Poincaré-Euler space. Define a
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cohomology class Uy in H*(X x X, 60X x X; Z, as the Poincaré dual of
4,[X], where 4 is the diagonal map. Then [X x X]NU; = 4,[X].
Define the Stiefel-Whitney class w*(X) by w*(X) = (Sq Uy)/[X]. There
exists a proper PL-embedding ¢: (X, 0X)— (R%, 0R%) for a sufficiently
large, where R% = {(x,, &,, - - -, ) |2, = 0}. (See Hudson [10].) Suppose
that R is a regular neighborhood of X in R%. Put B = RN4R: and
R=cl(®R — R). Regard ¢ as a proper embedding from (X,4X) to
(R, R). We also call (R; R, R; ) a regular neighborhood of X in R:.
We will define homomorphisms

t: N (R, R)—Z, and &, N, (R, R)— Z,, where R.R,R)
is the unoriented differentiable bordism group. We need the following:

TRANSVERSALITY THEOREM (Buoncristiano, Rourke and Sanderson [2]
and Rourke and Sanderson [14]). Let M and N be PL-manifolds.
Suppose that f: (M, 0M) — (N, oN) is a locally flat proper embedding and
that X is a closed subpolyhedron im N. If fOM)NX=Q or if
(0N, 0NN X) is collared in (N, X) and oNN X s block transverse to
floM:0M — 6N, then there exists an embedding g: M — N ambient
isotopic to f relative to ON such that X is block transverse to g.

Let f: (M, 6M) — (R, R) be in N, (R, R). There exists an embedding
g: (M, dM) — (R x D?, R x D*) for A sufficiently large, such that g ~
f x {0} and that (@ x id)(X x D?) is block transverse to g by Trans-
versality Theorem. Let Y = (p X id)™og(M). Then Y is a closed Z,-
Euler space with a normal block bundle v in X X D% Define e,(f, M)
as the modulo 2 Euler number ¢(Y) of Y. Let 4: Y — X x D? be the
inclusion. Define &,(f, M) = {y*w*(X x D*®) Uw(®), [Y]), where w(v) is
the cohomology class determined by w*(v) Uw(®) =1. Now define a
homomorphism o,: %, (R, R) — Z, by 0, = &, — e,. We can state the main
theorem of this paper as follows:

THEOREM. Let X be an n;dimensional Z,-Poincaré-Euler space. Take
a regular meighborhood (R; R, R;®) of X in R%. Then [X]N w*(X) =
8.(X) if and only if o, = 0.

A totally n-dimentional polyhedron X is an n-dimensional Z,-homology
manifold if there exist a locally finite triangulation K of X and a totally
(n — 1)-dimensional subcomplex L such that

1) H,.(Lk(o; L); Z,) = H(S"*% Z,) for each ¢-simplex o ¢ L.

2) H,(Lk(o; K); Z,) = H,(pt; Z,) for each i-simplex o ¢ L.

3) H.(Lk(o; K); Z,) = H,(S"**; Z,) for each i-simplex € K — L.

Theorem is applied to prove the following generalization of Whitney-
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Cheeger-Halperin and Toledo theorem.

COROLLARY. Let X be an n-dimensional Z,-homology manifold with
or without boundary. Then [X]N w*(X) = s,.(X).

We remark that Taylor [18] proved the corollary for Z,-homology
manifolds without boundaries.

In Section 2, we study Stiefel-Whitney homology classes and the
graded bordism theory of compact Z,-Euler spaces. The structure of
the graded bordism group of compact Z,-Euler spaces is given in Propo-
sition 2.3. The ungraded bordism theory was studied by Akin [1].
In Section 3, we study the Stiefel-Whitney classes of block bundles via
the bordism group of compact Z,-Euler spaces. The result will be used
in Section 6. In Section 4, we study regular neighborhoods and the
Stiefel-Whitney classes. These are necessary for calculation in Sections
5 and 6. In order to prove the above corollary, we need Propositions
4.6 and 4.7. In Section 5, we give a characterization of Stiefel-Whitney
classes via the unoriented differentiable bordism group. In Section 6,
we give a characterization of Stiefel-Whitney homology classes via the
unoriented differentiable bordism group.

Our Theorem follows from Lemmas 5.1 and 6.1.

For completeness we add an appendix, where we give a detailed
proof of Transversality Theorem by following the outline given in
Buonecristiano, Rourke and Sanderson [2].

2. Stiefel-Whitney homology classes and bordism groups of Z,-Euler

spaces.
Let K be a simplicial complex. The barycentric subdivision K of K

is defined by
E={(y +,0,)]0,<--- <0, 0,eK}.
We denote the k-skelton of K by K*. Then we have the following:

PROPOSITION 2.1. Let K be a Z-Euler complex. Then K* is a Z,-
Euler complex such that 0K* = 6K*.

In order to prove Proposition 2.1, we need the following:

LEMMA 2.1. Let K be a totally n-dimensional logally _ﬁ'nite simplicial
complex. If be K™, then the cardinality of {a ¢ K — K?|a > b} is even.

PrRoOF. If p =m, then K — K? is empty. Thus we may assume
that p<n. Let a={(0, +++,0,0eK— Krandletb = (7, -+, 7,y € K*7*.
Then s >t + 1. Since the cardinality of {c € K|o, < ¢ < 0,} is even for
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each (o, 0, ¢ K, we have that the cardinality of {a ¢ K — K?|a > b} is
even for be Kr. q.e.d.

PROOF OF PROPOSITION 2.1. Note that the cardinality of {a ¢ K|a > b}
equals the sum of the cardinalities of {a ¢ K?|a >b} and {a € K — K?|a > b}
for be K. By Lemma 2.1, it follows that the cardinalities {a ¢ K|a > b}
and {a ¢ K?|a > b} are congruent modulo 2 for bc K**. Then K’ is a
Z,-Euler complex such that 0K? = dK*™. q.e.d.

We need the following proposition to prove Corollary 2.2 as well as
Lemmas 3.2 and 3.3 and 6.1.

ProrosITION 2.2. (Halperin and Toledo [8]). Let X and Y be Z-
Euler spaces. Then 8,(X X Y) = Dk 8,(X) X 8,_,(Y).

In [8], Z,-Euler spaces without boundaries are studied but we can
prove Proposition 2.2, using the same method as in [8].

Let {B,, 0} be the bordism theory of compact Z,-Euler spaces. Then
{8,, 0} is a homology theory. (See Akin [1].) Let (4, B) be a pair of
polyhedra. Define a homomorphism s:%5,(A, B) — H,(4, B; Z,) + H,(A, B;
Z)+---+ HJ(A, B; Z,)) by s(p, X) = 32 ,9,8(X). Then s is well defined

by Proposition 2.1. The following holds:

ProposiTION 2.3. The homomorphism s:%8,(A, B)— H(A, B; Z,) +
H(A,B;Z) + -+ + H,(A, B; Z,) is an isomorphism.

Proor. Put h,(A, B)=H,\(A, B; Z,) + H(A, B; Z,) + - -+ + H,(A, B; Z,).
Define the boundary operator d,: #,(4, B) — h,_,(B) by that of the ordinary
homology theory. Note that {h,, 9,} and {8,, 6} are homology theories
with compact supports and that s is a homomorphism from 93B,(4, B) to
h.(A, B) such that 9,08 = so0. Since h,(pt) = Z, and B,(pt) = Z,, where
pt is the space of one point, the homomorphism s:B,(4, B) — h.(4, B) is
an isomorphism. (cf. See Spanier [15].) q.e.d.

This proposition implies directly the following:

COROLLARY 2.1. Let (p, X)) and (@, X,) be in B,(A, B). Then
(@, Xi) is cobordant to (@, X,) in B,(A, B) if and only if (@).s8:(X) =
(o) 84 X)) in H(A, B; Z;) for all 1.

REMARK. Akin [1] showed this in the case of ungraded bordism
groups.

Let S*V S* be the one point union of two circles. Then S*V S is
a l-dimensional Z,-Euler space such that the modulo 2 Euler number
e(S* Vv 8 = 1. The following holds:
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COROLLARY 2.2. Let (p,X) be in B,(4,B). If ¢, [X]1=0 in
H, (A, B; Z,), then there exists (p, Y) in B,_,(A, B) such that (p, X) s
cobordant to (yom, Y X (S*'V S'), where w: Y X (S*'V 8)—Y 1is the
projection.

PrROOF. Let K" be the (n — 1)-skelton of the barycentric subdivi-
sion K of a triangulation K of X. Put |K"*| = X". Then ¢,s, ,(X) =
(| X" ), [X™*]. Let p: X** x (S* VvV S') — X" be the projection. Then
PuSai(X) = (@| X1, 00,8, (X" X (S*V SY)) by Proposition 2.2. By
induction, there exists (¢, Y) in B, (4, B) such that o, s,(X) =+, °
T, 8(Y x (S*Vv S8 for 0=<t=<m, where m: Y X (S'V S)—Y is the
projection. By Corollary 2.1, we have (@, X) is cobordant to (yom, ¥ X
(St v SY). q.e.d.

We need the following to prove Lemma 3.3.

ProrosITION 2.4. (Blanton and McCrory [4]). The k-th Stiefel-
Whitney homology class s,(P™) of the n-dimensional real projective space
P i3 equal to ,.,.Cpid[P¥l, where j:P*— P™ is the camonical in-
clusion.

3. Characterization of Stiefel-Whitney classes of block bundles
via the bordism group of Z,-Euler spaces. Let & = (E(¢), K, ¢) be a k-
block bundle over a simplicial complex K. Then there exist PL-homeo-
morphisms @,: ¢ X D* — E(g), called the charts, for all ¢ in K. (See
Rourke and Sanderson [14].) Put E(¢) = Up,(0 X 8D*). Then & = (E(&), K)
is called the sphere bundle associated with ¢.

Let ¢ = (E(), K, tx) and 9 = (E(), L, ¢;) be k-block bundles over
simplicial complexes K and L. A map (h, h): (E(g), K) — (E(y), L) is a
bundle map if

1) h: K— L is a simplicial map,

2) tyoh =hotg, and

3) for each ¢ in K, there exist charts ¢,: ¢ X D*— E(s) and ¢,:
k(o) X D* — E(h(o)) such that hop, = @,0(h|o x id), where id is the
identity of D*.

Let ¢ = (E§), X, ¢ty) and 7 = (E(®¥), Y, ¢,) be k-block bundles over
polyhedra X and Y. A map (h, h): (E(&), X)— (E(3), Y) is a bundle map
if there exist simplicial complexes K and L such that |[K|=X, |L|=Y
and that (&, h): (E(), K) — (E(%), L) is a bundle map.

REMARK. If a map (h, h): (E(¢), X)— (E(y), Y) is a bundle map,
then & =2*7. Conversely, if &= h*n, then there exists a bundle map
(h, h): (E(§), X) — (E(®), Y). (See [14].)
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Let &= (H(&), A,¢) be an n-block bundle over a locally compact
polyhedron A. Define E(&) to be the total space of the sphere bundle
associated with ¢ Then we will define a homomorphism e B,(E(),
E(¢)) — Z,, where B,(H(g), E(¢)) is the bordism group of compact Z-
Euler spaces. Let R be a regular neighborhood of A embedded properly
in R* for a sufficiently large. Let i: ACc R be the inclusion and let
p: R — A be the retraction. Suppose that p*s = (E(p*¢), R, ¢z) is the
induced bundle. Then there exist bundle maps (3, 7): (E(&), A)— (E(p*¢), R)
and (P, p): (E(p*¢), R) — (E(¢), A). For each (@, X) in B, (E(¢), E(¢)), there
exists an embedding &: (X, 0X) — (E(p*g), E(p*&)) such that & = 100,
By Transversality Theorem, we may assume that $(X) is block trans-
verse to ¢z: R — E(p*&). Then we define e¢.(p, X) as the modulo 2 Euler
number (@ (¢x(R))) of & cz(R)). We need the following to prove
Lemma 3.3:

LEMMA 3.1; Let (h, h): (E(&,), A,) — (E(&,), A,) be a bundle map. Then
e, (@, X) = e;,(hop, X) for each (p, X) in B,(H(E), E(E)).

Proor. Let i,: A,C R, be the inclusions to regular neighborhoods
embedded properly in R* for « sufficiently large, such that there exists
an inclusion hy R, C R, with 4,0h =~ hpoi,. Let ., R,— A, be the
retractions for k =1,2. Suppose that pis, = (E(pi&,), R, () are the
induced bundles for k¥ =1,2. Then there exists the following bundle
maps

("ka, 1): (B(&r), Ay) — (E(DEE, By »
(Dry Di): (E(DEED, By) — (E(&), Ab) »
for k=1, 2, and

(hgy ka): (E(p}E), R) — (E(DFE,), R ,
such that hy is an embedding. For each (¢, X) in B, (E(&), E(£,)), there

exists an embedding @: (X, 0X) — (E(pFe,), E(p¥&)) such that & ~ 7,09 and
that $(X) is block transverse to ¢,: B, — E(p}s,). Then hrod(X) is block
transverse to /,;: R, — E(p}e,). Noting that hzo® =~ i,0(hop), we have
e (hop, X) = e((hpoP)(1(Ry))). Since {(R) = hz'(?,(Ry) and e, (p, X) =
e(P7(4(R)))), it follows that e (p, X) = e, (hop, X). qg.e.d.

LEMMA 3.2. Let £ = (H, A, ¢) be an n-block bundle over a locally
compact polyhedron A. Then there exists a unique cohomology class D(g)
in H*(E, E; Z,) satisfying {(D(¢), 9,8, X)) = ep, X) for each (p, X) in
B, (E, K).

PrOOF. First we will prove the existence of @(¢). Let @%g) =0 in
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HYE, E;Z) for i{=0,1,---, n—1. Define a homomorphism &=
B.(B, E) — Z, by 0"(p, X) = ep, X). If 9,[X]=0 in H,(E, E; Z,), then
by Corollary 2.2 there exists (v, Y) in B, (E, E) such that (p, X) is
cobordant to (om, ¥ X (S*V 8§), where 7: (Y X (S*V S8)) —Y is the
projection. Hence e,(@, X)=e.(yom, Y X (S*'V 8) = e, Y) - e(S* Vv §*) = 0.
Thus we can define @"(¢) as the cohomology class determined by &~.
As an induction hypothesis, we may assume that @"(¢), ..., O"*4(¢) are
determined so that {@"*?(¢), @, [X]) = 35z (D" (8), Py, s( X)) + e(p, X)
for p<i. Define a homomorphism &"+**+:B,,,,.(E, E)— Z, by &"+*(p, X)=
D=0 {@"(8), Py8,45(X)) + e(®, X). Suppose that ¢, [X]=0. By
Corollary 2.2, there exists (v, Y) in 3B,.(E, E) such that (¢, X) is
cobordant to (yom, ¥ x (S*V S')), where 7: Y X (S'V S8)— Y is the
projection. Note that w,(s,. (¥ X (§'V 8")) = 8,.4Y) for =0, ---, 4,
by Proposition 2.2 and that e.(yom, ¥ X (S'V S) = ey, Y). Then
O™ (@, X) =330 (@™ 9(8), Y4841 Y )) +ee(y, ¥). Since <@"(£),,8,4(Y))=
DUTi D (), Pi8uri(Y)) + ey, ¥), it follows that @"+*(p, X) = 0.
Hence we can define @"***'(£) as the cohomology class determined by
@+, By induction, cohomology classes @*(£) can be defined as above for
every k, so that the following is satisfied, (@"**(¢), @, [X]) = iz (@"+i(g),
Py8n45(X)) + (@, X) for each (@, X) in B,,.(H, E). Put 0(¢) = 3 0%¢).
Then for each (¢, X) in B,(E, F), it follows that

(D), 5,(X)) = 31 (OH®), .5(X))

= (0"(@), PusalX)) + 3, (0%E), Pu3u(X))

= e, X) .

Hence there exists a cohomology class @(¢) satisfying the assumption.

The uniqueness of @(&) can be proved as follows. Setting @ = @° +
Q' + .-+ + @ in H*(E, E; Z,), suppose that <&, ¢,s,(X)> =0 for each
(p, X) in B, (E, E). Clearly @°=0. Suppose that @ = 0, '=0, .-, #*=0.
Since (@, p,5,(X)> =0 for (p, X) in B, (E E), it follows that
(D", p, [X]) =0 and @*** =0. Hence ¢ =0 if (0, 9,5, (X)) =0 for
each (@, X) in B,(E, £). This means that the cohomology class &(¢)
satisfying the assumption is unique. q.e.d.

Let £ = (&, X,¢) be a block bundle. Let @(¢) be the cohomology
class defined as above. Define @W(&) by @) = *(U.U)'d(g), where
&(U.U)™: H*(E, E; Z,) — H*(X; Z,) is the Thom isomorphism of & Then
the following holds:

LemMA 3.38. If & is the block bundle induced by a wvector bundle
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over a locally compact polyhedron X, them the cohomology class W(g)
coincides with the dual Stiefel-Whitney class w(&) of w*(¢).

In order to prove Lemma 3.3, it is sufficient to prove the following
(ef. [12]):

1) Given a block bundle ¢ = (E(¢), A, ¢) and a map h: B— A, where
A and B are locally compact polyhedra, we have wW(h*e) = h*W(g).

2) For block bundles & and &, over locally compact polyhedra, we
have @(&) X W(&,) = W&, X &)-

3) For the canonical 1-disk bundle %' over the projective space P",
we have (") =1+ a + --- + a”, for the generator a of H'(P"; Z,).

Proor. 1) Let h*s = (E(h*&), B, tz) be the induced bundle. There
exists a bundle map (h, h): (E(h*g), B) — (E(€), A). Since (hop, X) is in
B (E(E), E(¢)) for (p, X) in B, (E(h*e), E(h*§)) and e(hop, X) = e(®, X)
by Lemma 3.1, it follows that (@(g), (ho®),s,(X)) = ee(®, X). Note
that ®(h*g) = h*0(¢) by Lemma 3.2. Since W(h*¢) = ¢5(Us.. U)h*0(&) and
Rhoty=¢oh, it follows that W(h*e) = h*oc*(U,U)"'®(¢), hence w(h*e) =
h*w(E).

2) Let ¢ = (E, B, ¢;) be block bundles over locally compact polyhedra
B, for i =1,2. Let E; be the total space of the sphere bundle associated
with &.  Since (P, X 9,),8.(Xy X Xp) = (P1)18,(X) X (P)8,(X,) for (p,, X3)
in B,(H,, E,), by Proposition 2.2, it follows that

(D(&) X P(&), (@1 X Po)x84(X) X Xo))
= {D(&), (P1)8x(X)){P(&), (P2)8+(X2))
= 361(¢1, X)) - 352(¢z, Xb)
= €,xe(P1 X Py Xy X X)) .

By the uniqueness of @(£, X &), we have 0(&) X O(&) = O(& X &), hence
w(&l) X "T)(&) = W& X &)

3) Let %' = (E"*, P, ¢) be the canonical 1-disk bundle over the real
projective space. Define h: (E**, 0E"*') — (P", pt) by the canonical iden-
tification E"*/0E"* = P". Then h,: H (E"", 0E™"; Z,) - H (P, pt; Z,)
is an isomorphism and ho¢ = j,, where j,: P*— P"*' are the canonical
inclusions. Let j,: (E* P**')— (E"*, P") be the canonical inclusions.
Then h,(7,, E*) = (j,, P¥). Note that h,:B(E"", dE"*) — B, (P, pt)
is an isomorphism by Proposition 2.3. Since B,(P"*, pt) is generated
by {(ji, P¥)}, we see that B, (E"", dE"*) is generated by {(J,, E*)}. In
order to prove the assertion 3), it is sufficient to prove

UpU ) A +a+ -+ a”), )8 EY) = en(dy, B .
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Let B be the generator of H'(P™*; Z,). Then Up=h*g and (*)'a’=
R*B'. Since hy o (53).8.(E*) = (41),8.(P"*), we have
UpUE) A+ a+ - + a”), J)s(E*)
=B+ B+ 0+ B, (G)us(PF) .
By Proposition 2.4, it follows that

(30):82(PY) = 3230.Conl)[P7]

Then
UpUE)M A+ a+ -+ a”), o) E)

k
=3 k+1Cp+1 =k.
p=1

Note that eu(j,, E*) = e(P**) = k. Hence
Ua U)X+ a+ -+ a), §)8ED) = en7,, B*) .
By the above, we have w(®") =1+ a + -+ + a™. g.e.d.
COROLLARY 3.1. Let v = (E, M, ¢) be the normal block bundle of a

proper embedding from a compact triangulated differentiable mamnifold
M into R:. Then

U, U @) 'w* (M), p,8.(X)) = e(p, X) for each (p, X)

in the bordism group B,(E, E) of compact Z,-Euler spaces, where E 1is
the total space of the sphere bundle associated with v.

ProoF. Since v is induced by a vector bundle, it follows that
KU, U (@) i(v), 8.(X)) = e (p, X) by Lemma 3.3. Since w*(M) = w(v),
we have

(U, U ()7 w* (M), pis(X)) = efp, X) . q.e.d.

4. Regular neighborhoods and Stiefel-Whitney classes. Let (R; R,
R; ) be a regular neighborhood of an n-dimensional Z,-Poincaré-Euler
space X in R%. Define a cohomology class U(p) in H* R, R; Z,) as the
Poincaré dual of ¢,[X] in H (R, R;Z,). Then [R]N o*U(p) = ¢,[X].
The following holds:

PROPOSITION 4.1. Let (R; R, R; ) be a regular neighborhood of an
n-dimensional Z,-Poincaré-Euler space X in R™*. Then there exist the
Jollowing isomorphisms:

1) t:HYX; Z,)— H"*"R, R; Z,) defined by t,(ac) = Ulp) U (p*)a.

2) t;: H(X, 0X; Z,)— H""*(R, 0R; Z,) defined by t.(a) = U(p) U (p*)'a.
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3) ts HiR, B; Z)) — Hi*(X;, Z,) defined by ty(a) = (9,)(a N U(P)).
4) t:H2(R,0R; Z,) > H(X, 0X; Z,) defined by t(a) = (@) (a N
U(e)).

PrROOF. Note that the diagram
HYX; Z,) ——-—-tl——> H*"R, R; Z,)
(xn| |i#10
HM(X, 0X; Z,) - H*(R, R; Z)

is commutative and that homomorphisms [X],, [R], and @, are isomor-
phisms. Thus ¢, is an isomorphism.

We can prove 2), 3) and 4) similarly. qg.e.d.

Let (R; R, R; ») be a regular neighborhood of a Z,-Poincaré-Euler
space X in R%. The k-th Stiefel-Whitney class w*(@) of @ is defined by
w¥p) = @*o(U(p)U)* Sa*U(p). The total Stiefel-Whitney class is w*(p)=
1+ w(@)+ - =" (U@)U)*Sq Ulp). If » has a normal block bundle

v, then w*(@) = w*(v). The following gives an alternative definition for
w*(X).

PROPOSITION 4.2. Let (R; R, R; p) be a regular meighborhood of a
Z,-Poincaré-Euler space X in R%. Then w*(X) U w*(p) = 1.

PROOF. Let 7: (R, R) — (X, 0X) be a deformation retraction. Let
UyeH* (X X X,0X X X;Z,) and UpecH*(R X R,0R X R;Z, be the
diagonal classes of X and R respectively. Note that the cap product
N(U(@) X 15): H¥(R x R,Rx RUR x R; Z) > H(R x R,R x R; 7)) is
an isomorphism. Since [R X R]N ((r x 7)*Ux U (U(p) X U@))) = (dp)4°
P.[X] and (LR [RIN (Ul@) X 1) = (dp)soP.[X], we have Up=
(r X )*Ux U 1z X U(p)). Since w*(R) = 1, we have Sq U = U,. Noting
Sq U(p) = r*w*(p) U U(p), we see that (» X »)*Sq Uy U (1z X r*w*(@)) U
A X Ul@) = X r)*Ux U1z x Ulp)). Note that the cup product
(1 X U@)U: H*(R X R; Z,) - H*(R X R, R X R; Z,) and »*: H*(R; Z,) —
H*(X; Z,) are isomorphisms. Then Sq Uy U (1 X w*(®)) = Uy. Since
[Sa Uy U Az X w*(@))/[X] = Sa Ux/[X] U w*(@) = w*(X) U w*(®), we have
only to prove Uy/[X]=1;. Note that [X]N Uy/[X] = (9,),([X x X]N Uy),
where p, is the projection of X x X to the second factor and that p,° 4:
X— X is the identity. Then we have [X]NUy/[X] =1, hence
Ux/[X] = 1;. q.e.d.

We need the following for the calculation in Section 5.

PROPOSITION 4.3. Let X and Y be Z,-Poincaré-Euler space. Then
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w* (X X Y) =w*(X) x w*(Y).

ProoF. Let Uy, U, and Uy,, be the diagonal classes of X, Y and
X X Y respectively. Then w*(X XY) = (SqUyxy)/[X X Y] = (SqUy)/[X] X
Sq Up)/[Y] = w*(X) X w*(Y). q.e.d.

In order to apply our main Theorem to Z,-homology manifolds, we
need Propositions 4.4 and 4.5.

ProPOSITION 4.4. Given Z,-homology manifolds X and Y, let +:
(Y,0Y) — (X, 0X) be an embedding with a normal block bundle v. Then
P*w*(X) = w*(Y) U w*(v).

ProoOF. Let E be the total space of a normal block bundle v of
and let £ be the total space of the sphere bundle induced by v. First
we will prove that w*(#) = *w*(X), where ¢: E— X is the inclusion.
Put E=cl(GE —E). Let P={(®, -+, 2)|2.=0,%,_, <0} and Q =
{(&,, + -, %) | 2,20, X,_,=0}. Then R:=PUQ. Let P={(=, -, #.)|2.=0,
2,,<0}, P=Q=PNnQ and Q@ ={(x, -+, 2) |2, =0,2,,=0}. Note
that there exists a proper embedding ¢: X—R% such that ¢|E: (E; E, E)—
(P; P, P) and @lc(X — E):(cl(X — E), cl(0X — E), E)— (Q;}, Q) are
proper. (See Hudson [10].) Let (Rp; B;, Rp; @| E), (Ry; By, Ry; @|cl (X—E))
and (R; R, R; ) be regular neighborhoods of E in P, of cl(X — E)in Q
and of X in RS, respectively, such that R = R, U R, and R = R, U R,.
Define U(p|E) e H*(Rp, Rp; Z,) as the Poincaré dual of (p|E),[E]. Then
Ulp|E) = 7*U(p), where j: P— R% is the inclusion, hence w*(@|E) =
i*w*(@). Thus w*(E)=1+*w*(X). Note that U(yy)=U(p|E)U[(¢|E)*]*U,,
where (Bp; B»N P, R, U (RN P); 4) is a regular neighborhood of ¥ in R-.
Let +,: Y — E be the canonical inclusion. Then w*(yy) =vFw*(@|E) U w*(v).
By Proposition 4.2, we have fw*(E)=w*(Y) U w*(). Since ioqr, = a4,
we have *w*(X) = w*(Y) U w* (). q.e.d.

PROPOSITION 4.5. Let X be a closed Z,-Poincaré-Euler space. Then
(w*(X), [X]) = e(X), where e(X) is the modulo 2 Euler number of X.

The proof in the case of smooth manifolds given in Milnor [12] can
be applied to this proposition without any changes.

We need the following to prove Lemmas 5.2 and 6.2 in subsequent
sections.

LEMMA 4.1. Let (R; R, R; p) be a regular meighborhood of an -
dimensional Z,-Poincaré-Euler space X im R%. Suppose that a PL-
embedding f: (M, 0M) — (R, R) is given with a mormal block bundle & =
(B, M, f3), such that @(X) is transverse to & where M is a compact PL-
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manifold. Let U, be the Thom class of &. Let jz: E— R be the inclusion.
Define Y =@ of(M) and Xp =@ ojy(E). Let @z Xz— E and 4y
Y — M be embeddings defined by @z = jzto@ and 4y = fo(@|Y). Then
the following hold:

D (fe(M]N f*U@) = (Pr)[X:] N U..

2) [MIN U@ = (du)l Y]

ProOF. 1) Note that jzof; =f and [E]NU; = (fz).[M]. Hence
(fe)((M]1N f*U@) = (E1Nj:U@) NU,. Thus it suffices to prove
[B]10 j5U@) = (#).[Xz]. Let B = cl (R — ju(K)) and let jg: (B; B, R) —
(R; R, IE) be defined as the identity. Regard j, as a map j,: (E; E, E) —
(R; R, R), where E =cl(0E — E). Note that (j;),[E] = (j»),[R] and
[R1NU(p) = ,[X]. Hence (jz)([E]N (G)*U@) = (Jr)xo Pl X] = (dr)so
(Pe)[Xz]. Since (jp),: HY(E, E; Z,) — H™(R, R; Z,) is an isomorphism,
we have [E]N (Jo)*U(@) = (@) [ XE].

2) Note that [X:]N (@2)U: = (¥p)«[Y], where «;: Y — X, is the
inclusion. By 1), we have (fy),(M]nN f*U(p)) = (gDE)*o(q/rE)i[Y]. Since
Proyr = fropy and since (fy),: H(M, oM; Z,) — HY(E,E;Z,) is an
isomorphism, we have [M] N f*U(p) = (4u).[Y]- q.e.d.

5. Characterization of Stiefel-WNhit_ney classes via unoriented
differentiable bordism groups. Let (R; R, R; @) be a regular neighborhood
of an n-dimensional Z,-Poincaré-Euler space X in R%. Suppose that &,:

N.(R, R)— Z, is the homomorphism defined in Section 1. Then the
following holds:

LEMMA 5.1. For each (f, M)e N, (R, R), it follows that
U@) U (") w*(X), fL(M] N w*(M))) = &(f, M) .
In order to prove this lemma, we need the following:

LEMMA 5.2. Let f:(M,0M)— (R, R) be a PL-embedding with the
normal block bundle &, where M is a compact triangulated differentiable
manifold. If o(X) is transverse to &, then

(Up) U (™) w*(X), fIM] N w*(M))) = &(f, M) .

PROOF. We use the notations in Lemma 4.1. By 2) of Lemma 4.1, we
have <U(p) U (¢*)"w*(X), £ (M1 N w*(M))) = {f* (") w*(X) U w*(M),
()Y, Let 4x: Y — X be the inclusion. Note that foyr, = @oqy.
Hence (U(p) U (™) 'w™(X), f(IM]Nw*(M))) = {yiw*(X) U yiw* (M),
(YD = piw*(X) U yiw(), [Y]D = {piw*(X) U B(y3E), [Y]). Thus
KU@) U (@) w™(X), fu({M]Nw*(M))) = &,(f, M) by the definition of
€y q.e.d.
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PrROOF OF LEMMA 5.1. Let (f, M) be in R, (R, R). Then there exists
an embedding g¢: (M, M) — (R x D?, R x D*) such that g ~ f x {0} and
(p x id)(X x D?#) is block transverse to g by Transversality Theorem.
By Lemma 5.2, it follows that {(U(p) X 1) U[(p X id)*]7*w*(X x D¥),
9. [MINw*(M))y=¢,(f, M). Since {(U(P) U (P*)"w*(X), f ((M]1Nw*(M)))=
{U(p) X 1) U[(@ x id)*]"'w*(X x D*), g . (M]1Nw*(M))> by Proposition 4.8,
we have

(Ul@) U (@) 'w*(X), fu((M] N w*(M))) = &,(f, M) . q.e.d.

The following and Lemma 5.1 give a characterization of Stiefel-
Weitney classes.

LEMMA 5.8. Let (A, B) be a pair of polyhedra. Given @e
H*(A, B; Z,), if (@, f.(M]1Nw*(M))) =0 for every (f, M)eMN.(A,B),
then @ = 0.

PROOF. Let 0 =0°+ @' + --- + 0" for @'cH'A, B;Z,). Since
(@, f ((M]Nw*(M))) =<2, fo[M]) for (f, M)e%(4,B), <9,f.(M]n
w*(M))> = 0 for every (f, M) implies that @° = 0. Suppose that @° =0,
=0, ---,0*=0. Then <o, f ((M]Nw*(M))) = (®**, f,[M]) for (f, M) e
Neri(4, B). Hence, if (@, f,(M]1Nw*(M))) =0 for every (f, M), it
follows that @*** = 0. By induction on %, we have @ = 0. q.e.d.

6. Characterization of Stiefel-Whitney homology classes via un-
oriented differentiable bordism groups. Let (R; ﬁ, R; ) be a regular
neighborhood of an mn-dimensional Z,-Poincaré-Euler space X in RZ.
Suppose that e,: N, (R, R) — Z, is the homomorphism defined in Section 1.
Then the following holds:

LEMMA 6.1. For each (f, M)eNR (R, R), it follows that
U@ U (@) ([X1N)78,(X), f((M] N w*(M))) = e,(f, M) .
In order to prove this lemma, we need the following:
LEMMA 6.2. Let f:(M,0M)— (R, R) be a PL-embedding with a

normal block bundle & where M is a compact triangulated differentiable
manifold. If o(X) is transverse to &, then

(U@) U (@*) o ([X]1N)7"8,(X), fL(M] N w*(M))) = e,(f, M) .
Proor. By 1) of Lemma 4.1, we have (U(®) U (*)™ o ([X]N) s, (X),
LM N w*(M))) = Cw*(M) U f* o (P*)™ o ([X]N)78,(X), (fe) (@)Xl N
Uo)>. Note that jzofz = f. Then (U(p) U (@*)7 o ([X]1N)7s,(X), fL(M]N

w*(M)) = (U U (f5)7w* (M), (@e)[X:D) 0 3% e (@) o ((X]N)78,(X)).
Since there exists the commutative diagram
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H'X:Z) <~ H'®Z) —io HEZ)
l[X] n l((¢E)*[XE]) n
H*<X, 0X; Zz) T’ H*(R, cl (R — E); Z,) <(J_)— H*(E, E; Z,)
and since [X]N, ¢* and (j;), are isomorphisms, we have
(@) «[XED) N 5% e (@) o ([X1N)"8,(X) = [(Jo) 4] o Pss(X)

= (Pr)8x(Xp) -
Note that (U, U (f¥)w*(M), (958« Xz))> = e(Y) by Corollary 3.1. Thus
U(@) U (@*)7 o ([ X]N)'s,(X), fu(lM] N w*(M))) = e,(f, M). q.e.d.

PrROOF OF LEMMA 6.1. Let (f, M) be in N, (R, R). Then there exists
an embedding g: (M, M) — (R x D? R x D’ such that g ~ f x {0} and
that (@ x id)(X x D¥*) is block transverse to g by Transversality Theo-
rem. By Lemma 6.2, it follows that

{(U@) x D Up xid)*]™=([X X DIN)s.(X X D?), g, ((M] 0 w*(M)))
= e,(f, M) .

Since  (U(p) U (@*) o ([X]1N)"s,(X), fL(M]Nw*(M))) = {(Ulp) x 1)U
[(@ x id)*]™* o ([X x D?I1N)"'s, (X x D%, g.([M] N w*(M))> by Proposition
2.2, we have (U(p) U (@*)™" o ([X]1N)"s.(X), fu(IM] N w*(M))) = e,(f, M).

q.e.d.

Now we are in a position to prove the following theorem announced
in Section 1.

THEOREM. Let X be an ﬁ-dimensional Z,-Poincaré-Euler space.
Take a regular neighborhood (R; R, R; ¢) of X in R%. Then [X]Nw*(X)=
$,.(X) if and only if o, = 0.

ProOF. If [X]N w*(X) = s,(X), then &,(f, M) = e,(f, M). This
means o, = 0. Conversely suppose that o, = 0. By Lemmas 5.1, 5.3 and
6.1, we have U(p) U (*)"'w*(X) = U(®) U (@*)™ o ([X]N)'s,(X). Hence
[XI1Nnw*(X) = s,(X) by Proposition 4.1. g.e.d.

This Theorem can be applied to Z,-homology manifolds.
COROLLARY. Let X be an n-dimensional Z,-homology manifold with
or without boundary. Then [X]N w*(X) = s,.(X).

PROOF. Let 4: Y — X X D* be the embedding used to define e, and
€,. Note that 4 has a normal block bundle » in X X Df. Then Y is
a Z-homology manifold. Therefore »*w*(X x D#) = w*(Y) U w*(») by
Proposition 4.4. In view of the definition of ¢, and €,, we have o, =0
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by Proposition 4.5. Thus [X] N w*(X) = s,(X) by Theorem. q.e.d.

ExaMPLE 1. We construct a simple example of Z,-Poincaré-Euler
space X which is not a Z,-homology manifold. Let X, = D%{a, b, ¢} where
D?*=[—-1,1]* and a, b, ¢ are distinct points in oD% Then X, is a Z,-
Euler space. Let X, = cone 0X,. Then there exists a canonical PL-
homeomorphism ¢: 60X, »0X,, Put X=X, UX, Then X is homotopy
equivalent to S? and is not a Z,-homology manifold.

ExXAMPLE 2. We construct a little more complicated example of Z,-
Poincaré-Euler space X which does not satisfy [X] N w*(X) = s,(X). In
particular, X is not a Z,-homology manifold. Let X, be the quotient
space of [—1,1] x [0, 1] by the identification (—1,¢) = (0,¢) and (1, ) =
(0,1 — ¢t) for each ¢t in [0,1]. Then X, is a Z,-Euler space. Put Y =
0X,/([0, 1] x {0}). Let @:0X, — Y be the quotient map. Let X, be the
mapping cylinder of @. Then X, is a Z,-Euler space such that oX, =
0X,UY. Let X, = ([0,11?U[—1, 0»/{(0, 0), 1, 1)}. Then X, is a Z,-Euler
space such that 0X, is PL-homeomorphic to Y. Define X = X, U X, U X.,.
Then X is a Z,-Euler space and is homotopy equivalent to P2. Hence
w'(X) # 0. Since s,(X) =0, it follows that X is a Z,-Poincaré-Euler
space which does not satisfy [X] N w*(X) = s,.(X).

Appendix. Proof of Transversality Theorem.

A.1. BLOCK TRANSVERSALITY AND MOCK TRANSVERSALITY. Let M and
N be PL-manifolds. Suppose that f: M — N is a locally flat PL-embedding
and that X is a subpolyhedron of N. Then X is block transverse to f
in N, if there exists a normal block bundle v = (E(), M, fz) of f such
that X N E() = E@|X N f(M)). (See [2] and [14].)

Let f: (M, 0M) — (N, 0N) be a PL-embedding. The collars ¢,;: oM X
I— M and ¢,: 0N x I — N are said to be compatible with f, if foe,(x, t) =
¢,(f(x), t) for every (x,t) in oM x I. (See [10].)

Let X and Y be polyhedra and let K be a ball complex (ef. [2])
such that X =|K|. A proper PL-embedding f: Y — X is transverse to
K, if f7%(0) is a compact PL-manifold with boundary f*(do) and if the
PL-embedding f|f~(¢): f7*(0) — ¢ has compatible collars for every ¢ in
K.

In order to prove Transversality Theorem, we need the following.
The next section is devoted to its proof.

PropPOSITION A.l. (cf. Buoncristiano, Rourke and Sanderson [2]).
Let X and Y be polyhedra. Let K be a ball complex such that X = | K]|.
Suppose that a subdivision K' of K does not subdivide a subcomplex
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L of K and that a proper PL-embedding f: Y — X is transverse to K.
Then there exists a proper PL-embedding g: Y — X which 1is transverse
to K' and ambient isotopic to f relative to |L|.

Let M and N be PL-manifolds. Suppose that f: M — N is a locally
flat proper PL-embedding and that X is a subpolyhedron of N. We say
that f is mock transverse to X in N, if there exists a ball complex K
which contains a subcomplex L such that |[K| = N and |L| = X and if
S is transverse to K.

We also need the following to prove Transversality Theorem. We
do not repeat the proof here since an adequate proof is given in [2].

PropoSITION A.2. (Buoncristiano, Rourke and Sanderson [2, II,
Theorem 4.4]). Let M and N be PL-manifolds. Suppose that f: M — N
18 a locally flat proper PL-embedding and X is a closed subpolyhedron
of N. The PL-embedding f ts mock transverse to X in N if and only
if X is block tramsverse to f in N.

PROOF OF TRANSVERSALITY THEOREM. Noting the assumption of
Transversality Theorem, there exists a normal block bundle v=(E{), M, fz)
of f to which a regular neighborhood R of NN X in X is transverse
in N. Let K be a ball complex such that blocks E(o) of v are balls of
K, that |K| = N and that K|R is contained in K as a subcomplex. Then
f is transverse to K. Choose a subdivision K’ of K which does not
subdivide K|oN and which contains a subcomplex K; of K’ where
|Ky| = X. Put L = K|oN. Then by Proposition A.1l, there exists an
PL-embedding g: M — N which is transverse to K’ and ambient isotopic
to f relative to |L| =oN. Thus ¢ is mock transverse to X, and X is
block transverse to g by Proposition A.2. q.e.d.

A.2. PrROOF OF PROPOSITION A.l. In order to prove Proposition A.1,
it suffices to prove the following:

LEMMA A.l. Let X and Y be polyhedra. Let K be a ball complex
such that |K| = X. Suppose that a subdivision K' of K does mot sub-
divide a subcomplex L of K and that a proper PL-embedding f: Y — X
18 transverse to K. Then there exists a proper PL-embedding g: Y — X
transverte to K' and an ambient isotopy F: X X I — X X I relative to |L|
between f and g such that F(o X I) = ¢ X I for each ¢ in K.

We will prove this lemma by induction on the dimension of X. For
the induction step, we need the following:

LEMMA A.2. Let M be a compact PL-manifold. Let K be a ball
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complex such that |K| = D". Let fi: M — D" be a proper PL-embedding
such that f|oM: oM — oD" is transverse to K|0D". Then there exists an
PL-embedding g: M — D™ transverse to K and ambient isotopic to f
relative to oD".

We need the following to prove Lemma A.2:

UNIQUENESS THEOREM OF COLLARS. (Hudson and Zeeman [9]). If ¢,
and ¢, are two collars of M, then there exists an ambient isotopy F of
M fized on oM such that ¢, = F,oc, and F, is the identity, where F(x,t) =
(Fy(), t)-

LEMMA A.3. Let 4 be a ball complex which contains only one n-ball
such that |4| = D™. Let A be the subcomplex of 4 containing all balls
except the n-ball and one (n — 1)-ball. If X is a compact PL-manifold
and if o PL-embedding f: X — |A| is transverse to A, then there exists
a PL-embedding F:X X I— D™ transverse to 4 such that F(z, 0) = flx)
for every x in X.

PROOF. Since there exists a PL-homeomorphism 4: |4| X I — |4| such
that h(y, 0) = y for every y in | 4|, an PL-embedding F: X X I — |4| can
be defined by F(zx,t) = h(f(x),t). Clearly F is transverse to 4 and
F(z, 0) = f(x). q.e.d.

Proor oF LEMMA A.2. Clearly there exists a subdivision K’ of K
which does not subdivide K|oD" such that 6D X I = |K’ — | for some
n-ball ¢ in K’. Note that the ball complex K’ — ¢ collapses to K|aD".
By if dim M = n, there is nothing to prove. Otherwise by using Lemma
A.3, we can construct a subpolyhedron X of |K' — ¢| such that X
collapses to f(0M) and that the inclusion i: X C|K’' — o] is transverse to
K' — 0. Since the inclusion i has a normal block bundle (see [2]), X is
a PL-manifold. Therefore there exists a PL-homeomorphism #: oM x
I— X. Define f:o0M x I—|K’ — a| by f=ioh. Then f is transverse
to K' — 0. By the uniqueness theorem of regular neighborhoods (see
[10]), there exists a collar ¢;:0D" X I — D™ such that ¢,(0D" x I) =
|K’' — 0| and ¢,(f(x), t) = jo f(x, t) for (z,t) in AMx I, where j: |K'—o|—
D" is the inclusion. Let ¢:0MxI— M and ¢,: 0D X I — D™ be compatible
collars with f. By the uniqueness theorem of collars, there exists an
ambient isotopy F: D"XxI— D"XxI relative to D" x I such that F, is the
identity and ¢,= Foc,, where F(x, t)=(F,(x),t) for every (x,t) in D" xI.
Define g: M — D" by g = F,of. Note that f is transverse to K’ — g.
Thus ¢ is transverse to K’, and hence g is transverse to K. g.e.d.

PrROOF OF LEMMA A.1. We prove Lemma A.1 by induction on the
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dimension of X. The case dim X = 0 is trivial. Suppose that Lemma
A.1 holds whenever the dimension of X is smaller than # + 1 and
assume that dim X =n» + 1. Suppose that a PL-embedding f: Y —- X
is transverse to a ball complex structure K of X. Then f|f*(|K"|):
FJK"|) = |K"| is transverse to K", where K" is the m-skelton of K.
Put (K") ={oseK'|cc|K"|}. By induction assumption, there exist a PL-
embedding g: f*(| K"|) — | K| transverse to (K")’ and an ambient isotopy
G: K"xI— K"x1I between f|f*(K"|) and g relative to |K"|N|L| such
that G‘—(a X I) =0 x I for each ¢ in K*. Clearly there exists an isotopy
G: X x I— X x Irelative to | L| such that G| K" x I = G and G(o x I) =
o X I for every o in K. Thus we may assume that f is transverse to
K", where K* = (K")' U (K — K*). Applying Lemma A.2 to PL-embed-
dings f|f%(0): f%(o) — 0o for all ¢ in K — K", there exists a PL-embed-
ding ¢: Y — X transverse to K' an ambient isotopy F: X x I - X x I
between f and g relative to |K"| U |L| such that F(¢ x I) = ¢ x I for
every o in K. q.e.d.
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