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1. Introduction. Let G be a discrete subgroup of the automorphism
group Con (n) of (n + l)-dimensional hyperbolic space Hn+1. We shall
associate in § 3 a certain number δ(G), 0 ̂  δ(G) ^ n, to G called the
exponent of convergence of the Poίncare series attached to G. It is related
to several of the geometric properties of G; these properties have been
the subject of many investigations but in [5] Sullivan has discussed these
exhaustively and completed them in several important points.

The question with which this paper is concerned is that of estimating
δ(G) for a given group G. In this it was prompted by a recent paper
[1] in this journal in which the authors find upper bounds for δ(Gλ * G2)
where Glt G2 are considered known and G2 * G2 is the free product of GA

and G2 in Con (n) formed by the Klein Combination Theorem, when this
is applicable. The technique is similar to the one used in [2] to bound
δ(Gλ * G2) from below. In [1] however the authors use a particular model
of G! and G2 and it seemed desirable to free the argument of this con-
straint. This will be done in § 3.

In § 5 we shall apply this estimate to show that, given n and ε > 0
there exists a discrete G c Con (n) with

(a) S(G)<ε
(b) G is of the first kind, which means that G does not operate

discontinuously on any non-empty open subset of the boundary of Hn+1.
The author had given a proof of this in [3] in the case n = 1, ε = 1/2
which used uniformization theory and the perturbation theory of elliptic
differential operators. This proof would not extend to the case n > 1.
Both J. Elstrodt and D. Sullivan indicated to the author that it would
be very desirable to give a geometric proof of this theorem.

The techniques used here do not depend on the dimension of the
hyperbolic space. Usually one is interested only in the cases n = 1
(Fuchsian groups) and n = 2 (Kleinian groups) but to cover these uni-
formly it is convenient to work with hyperbolic space of arbitrary
dimension. Although it is in principle well-known I have included a
brief summary, in §2, of the three basic models of Hn+1, along with
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the relations between them and those formulae which will be of use to
us here.

To return to the original question of estimating δ(G) for a given
group, let us remark that it is necessary to make rather more precise
what one means by "given". If one can 'list' the elements of G, as
happens with Schottky groups and some other free products, then one has

<5(G) = lim log Card {0 e G; L(xl9 gx2) ^ X}/log X

(see [5, Cor. 10]) where xl9 x2 are two fixed points of Hn+l and L is defined
in § 2. This method can be carried out on computers to compute δ(G)
as long as G is not too pathological. It would be interesting to know
effective bounds for

δ(G) - log Card {0 e G; L(xί9 gx2) ^ X}/log X,

in terms, say, of a given fundamental domain of G.
There are other senses in which G may be "given"—for example,

when n = 1, 2, by uniformization theory, or by group-theoretic con-
structions applied to another group—, but here very little is known.

2. Models of hyperbolic space. Although it is less frequently used
than the other models of hyperbolic space the easiest to introduce is the
Klein model. Let n ̂  1.

( i ) The Klein model. Let J be the (n + 2) x (n + 2) diagonal
matrix diag( —1,1, ••-,!); the associated quadratic form is

Let

G0(l, n + 1) = {A e GLn+2(Λ); there exists λ e R^ with AJ*A = λJ} ,

where *A denotes the transpose of A. This group has four connected
components. Let G0°(l, n + 1) be the connected component of the iden-
tity; then G0(l, n + 1)/GO°(1, n + 1) ̂  C2 x C2, where C2 is the cyclic
group with two elements. Let

be the positive light-cone. An element of G0(l, n + 1) either preserves
L+ or maps it into L~ = — L+. The subgroup of G0(l, n + 1) preserving
L+ has then two components, determined by whether the determinant is
positive or negative. Of course G0°(l, n + 1) preserves L+ and we shall
think of it as the "orientation-preserving" group with this property.

Next let
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PGO°(1, n + 1) = G0°(l, n + l)/{λl; λ e Λ?} .

This will be, by definition, Con (n). It would make no difference to the
discussion had we taken the full group preserving L+ as our starting
point rather than G0°(l, n + 1).

We project L+ through the origin to y0 = 1; the image is the unit
ball

Bn+1 = {ye Rn+1; y\ + y\ + + yl+1 < 1} .

PGO°(1, n + 1) acts on Bn+l through the projection. We can describe
the action explicitly as follows. Let #eGO°(l, n + 1) be given by the
matrix (gtj) (0 ̂  ΐ, j <; n + 1). Then the jth component of g(y) is given by

g(V)i = (ff/o + Σ ff/<»*)/(0oo + Σ ffoitfi) (1 ̂  J ^ Λ + 1) .

The subgroup of PGO°(1, n + 1) which preserves 0 is S0(n + 1). It is
easy to see that PGO°(1, n + 1) acts transitively on Bn+1. This is our
first model of hyperbolic space.

Now define, for y, y' 6 Bn+1,

where ( , ) denotes the usual Euclidean inner product. Then, by con-
struction one has

LB(gy, gy') = LB(y, y') (g e PGO°(1, n + 1)).

Define also

is(g, y) = v
7
! - (gy, gy)/vΊ - (y, y)

and then one has

1 - (gy, gy') = j
B
(g, v)j

B
(g,»')(! - (»,»'))

and

Moreover one has explicitly,

3s(g9 y) = (^oo + Σ goiVj)"1

The function LB(y, y'} is closely related to the hyperbolic distance
between y and y'. This is however easier to establish in those models
of hyperbolic geometry where the hyperbolic metric and the underlying
Euclidean metric are conformally equivalent.

( i i ) The Poincare model. The underlying set in Euclidean space
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of this model is again Bn+1, but we shall denote it now by Dn+1 to indi-
cate the different context. Let

y ̂  yf(l + 1/1 -

h (x, x))

which are inverse to one another. One can regard Dn+1 as the image
of the projection of L+ onto the hyperplane yQ = 0 through ( —1, 0, •••,
0). This is a 'stereographic' projection. One has then an action of
PGO°(1, n + 1) on Dn+1 defined by

gφ(y) = φ(gy) .

It appears that in general there are no simple formulae describing this
action.

There is another construction of φ9 which I learnt from J. Elstrodt.
We consider Dn+l as the subset {(0, yl9 , ι/n+1); yl + y\ + + yl+1 < 1}
of Rn+\ Let Sn+1 be the subset {(y0, Vl9 - , yn+1); 05 + tf + + vϊ+i = 1}
of .Bn+2. Let now <px be the vertical projection upwards from Bn+1 to
Sn+1 and let ^>2 be the projection from the upper hemisphere of Sn+1 onto
Dn+1 through (-1, 0, , 0). Then φ = φ2 o ̂ .

Observe that φ has a continuous extension to the boundary of Bn+1

where it acts as the identity.
If one now defines LD(x9 x') = LB(φ~l(x)9 φ~l(x')) then one finds that

LD(x, aO = 1 + 2- ..ll.a;~/l|1.l..>.l,x .

where ||#||2 = (x9 x). We define

(2.1) Jn(flr f *) = (!

for which we have

(2.2) || 0* - flfαj' ||2 = jD(g9 x}jD(g, x')ll» - «' I I 2

and

(2.3) JDUiff*, x) = Jofai, gjfiJDfa, a?)

In this model the infinitesimal hyperbolic distance element is given by

ds* = i cteivα -IN ιi 2 ) 2 ,
form which one sees that if the hyperbolic distance between x and #' is
denoted by d(x9 x'} then

L(x9 x') = (1/2) cosh 2d(α, »') .

Moreover, an invariant volume element is given by



POINCARέ SERIES 361

dσD(x) = (1- \\x\\lΓn'1dm(x)

where m is the standard Lebesgue measure.
(iii) The upper half -space model. This is obtained from Dn+1 by

means of an inversion about (1,0, , 0). Let

We then define

f : D^ -» H^ x^(l-2xί+ \\x |

ψ-1: #"+1 -» Z>»+1 z h+ (1/4 + s0 + IMPΓdMI2 - 1/4, *,-••, *.) ,

which again are inverse to one another. This time one finds that if
La(z, z') = LD(γ-\z), iT'OO) then

£,*(*, s') = 1 + II * - *' IIV2 Im (s) Im («')

where

Im ((ZQ, zl9 , «J) = ^o

Let

and then one has

and

The infinitesimal distance element is

ds2 = |d«|2/4Im(«

and the volume element is

Λ^OO = 2-(n+1) Im ̂ -—

These constructs are all that we need of hyperbolic geometry.
The group PGO°(1, n + 1) also acts on the boundary Sn of J5n+1 or

Dn+1, and, as we have already remarked, the action is the same in both
cases. The boundary of Hn+1 we take to be R^ = Rn U {°°} where Λn is
that subspace defined by Im (z) = 0 and oo has the usual formal properties.

For us the most convenient model with generally be the Poincare
model. The usefulness of the upper half -space model lies in that it allows
us to emphasize one point of the boundary. However for most of the
time we do not have to commit ourselves to any particular model and
we shall write H for a hyperbolic space, dH for its boundary, Con (n)
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for PGO°(1, n + 1), and L, j, d and σ for the functions constructed
above. Let H = H U dH.

3. The Klein Combination Theorem and estimates for δ(G). Let
G! and G2 be two discrete subgroups of Con (ri), and suppose that we are
given two open sets F19 F2 in H, H or dH. Let F denote the comple-
ment of Fj in the relevant set, which is the same for F1 and F2. We
shall suppose that

(1) ffF,n-F,= 0 if geGj -{!},/ = 1,2,
(2) jFVnίV = 0

Then it is easy to see that the group Gt * G2 generated by G! and G2 is
isomorphic to the free product of Gx and G2 and is also discrete since

(3.1) g ( F 1 f ] F 2 ) f } ( F 1 f ] F 2 ) = 0 (g e G, * G2 -{I}).

In fact, to prove the first assertion one writes down an arbitrary word
of G! * G2 and one verifies that, by induction and 1 and 2, the last asser-
tion holds; we shall see a refined version of this argument below. This
particularly simple version of the Klein Combination Theorem I learnt
from A. P. Beardon.

Let now G be any discrete subgroup of Con (n). Then we define

δ(G) = Inf {s >0; Σ L(x, gx'Γ < ™}
flreGf

This does not depend on the choice of x9 x' e H. One has

0 ^ δ(G) ^ n .

The problem with which we shall be concerned here is that of estimating
i * G2) given δ(Gj), δ(G2) and some sharper forms of Condition 2 above.

(For estimates from below see [2, Theorem 1 ff.].)
For these purposes we have to establish some inequalities. We shall

work in the Poincare model and we rephase (2.2) as

which we write in the form

3D(g^9 x) = JD(QΪ\ χf}3D(^y χ)\\ x' - ff&x IΓ/II βϊlχ' -
which we shall use to estimate j^g^g^ x).

Suppose now that g2 e G^ * G2 is of the form

1 1 ' 1 / 2

where 7^α) e Gα — {/}. Let us observe next that

6 F2

C
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if x e Fi n FZ. This follows by induction on the length of g2, since, by
the induction hypothesis 7ί1)7l2) (x) e F^aF^ by Condition 2), and so the
assertion follows since by Condition 1 7ί2)(jF2) c Ff. Moreover, if g± e
G! — {1} then g^x) e Ff. Thus with these assumptions about g19 g2 we
obtain

(3.2) ia(0iflr2, a) ̂  Jj>(02, ») Inf,
'Inf H f l f f V — w

For convenience we write ^(ffi) for the second factor on the right-hand
side of this inequality, so that the inequality now reads

If g 6 G2 — {7} then we can analogously define J21(flr).
We recall the following elementary lemma:

LEMMA 1. If x e Ft n F2 then

δ(G) = Inf {s > 0; ^ ̂ >(ff, a;)8 < 00} .

The proof of this will be left as an exercise for the reader.

LEMMA 2. This series Σffβ^ σ^Dίfff #)8 is dominated by

x ((( Σ Λ>(ft, ^)8)( Σ 4>ι(02)
8 + i)

PROOF. If fir 6 G! * G2 can be written in the form
/y(2)
>k

where 7^α )GGα — {1} then we shall refer to g as a (1,2) word; i.e., it
begins with an element of Gx — {1} and ends with one of G2 — {/}. Analo-
gously one can define (2, 1), (1, 1) and (2, 2) words.

We consider first the partial sum

where g runs through the set of (1, 2) words of Gl * G2. If # has the
form 7ί1} 7{2) 7i2) then by successive applications of (3.3) we have

3D(09 *) ̂  ̂ 2W}) ^nWO 42WO:/z>Of >, a?) .

Raising this to the sth power, summing first over all possible 7}l), 7{2>,
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7i2), and then over k we obtain the following majorant for the partial
sum under consideration

Σ( Σ 4,(Λ)')1+1( Σ 4ι(fc)')* Σ
fc£0 ^eG^-U} <72eί?2-{J} geG2-{I]

The partial sum over the (2, 1) words is bounded by an analogous expres-
sion. Similarly the partial sum of (1, 1) words is dominated by

Σ( Σ 42(Λ)§)*( Σ 4i(fc)')* Σ JD(g,*y
fc^O fir16G1-{/} g2eG2-{I) geG^d}

and the partial sum of (2, 2) words likewise. Adding these and the term
corresponding to g = I we obtain the assertion of the lemma.

COROLLARY. If s> Max (δ(G1\ δ(G2)) is such that

Σ 4ι(Λ)')<l

REMARK 1. The arguments used here are those of [1, § 4], freed of
unnatural restrictions.

REMARK 2. Note that, from (3.3),

Λ2(0) ̂  jn(ff, g&) (g e G! - {/})

for any fixed g2 in G2. Thus in order that

Σ 42(0)8

^eOj-ί/}

should converge, it is necessary that s ^ d(Gλ). Likewise, if there exists
c > 0 such that \\wl — w2\\2 ^ c for w^Fi, w2eF2 then, taking #' in

and so, under these circumstances s > δ(Gj) implies that the series above
converges.

REMARK 3. The corollary is too general to be of much significance
as it stands. It is usually not all that easy to estimate J12 and J21.

REMARK 4. One can analogously find lower bounds which sharpen
those of [2]. Since we have no application for these in mind we shall
not discuss them here.

REMARK 5. One has a natural homomorphism θ: Gx * G2 — > Glβ Let
G12 be the kernel of this map. Then G12 is the normal subgroup generated
by G2 in Gl * G2. The methods used above can be applied to find upper
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and lower bounds for δ(G12); these are the same as those for δ(G^ * Cr2)
Akaza and Furusawa suggest in [1] that one should have

δ(G12) = 8(0, * G2) ,

at least when G2 is 'elementary'. This seems to be an over-hasty in-
ference. The question as to the relationship in general between 8(N) and
δ(G) where N is a normal subgroup in G is a difficult and only partially
answered one. The overall situation is unclear, but see [4] for some very
interesting results. At any rate one can have in some cases δ(N) = δ(G)
(see, for example, [2, Theorem 3 if]), whereas some examples are known
with δ(N) < δ(G) ([3, Theorem 4.4]).

4. Examples. As an illustration of these techniques we shall first
consider the case of the Hecke groups (?(λ) which operate on D2. We
shall continue to use the Poincare model. In this case elements of Con (1)
can be conveniently written since

operates on D2 by

" β\z) = (az + β)l(βz + δ)

where the arithmetical operations are carried out in the complex plane.
This identifies PSU(l, 1) with Con (1).

The group (?(λ) is generated by (j _9) and (X ̂  i"*^). We

take

f l + ίmλ — it

^V iwλ 1 — ΐmλ/'

and

F, = {x e S1; XQ > 0}

Then Condition 1 of § 3 is clearly satisfied since Fl is clearly a 'funda-
mental domain' for Gl and F2 is the one for G2 constructed by the method
of isometric circles. Moreover, if λ > 1 then Ff Π Fi = 0 and hence
the Klein Combination Theorem applies. The group GL * G2 will be denoted
by G(λ). We shall estimate δ(G(λ)) from above.



366 S. J. PATTERSON

We have to estimate ^(j _<>)) and ̂  + j* , I** )). In the

first case

,0 -ill •' Inf
w'eF,

a o\where & = ( Λ .). We take x = 0 in the inner expression on the right-\υ —i/
hand side, which yields a value greater than the infimum. This value
is 1, so that

0\

Likewise if g e G2 — {/} one has

// / \ <•-

= Inf l l f f - X O - w ' H 1 '
w'eί J

The denominator here exceeds ((i/~5~ — l)/2)2 since ^"'(0) lies on the circle
(»0 - 1/2)2 + xl = 1/4. Thus

//I + tmλ -imλ \\ /1/T+iY/ι , *Λ-ι
4J . Λ , J ^ ( - 9 - J (! + m λ )\ \ tmλ 1 — tmλ// v 2 /

Hence if s satisfies

/]/ 5 + ιy
\ 2 /2

then δ((?(λ)) ̂  s. By Cauchy's inequality

Σ (1 + m2λ2)-8 ̂
m=itO

Hence if s satisfies

then δ((r(λ)) ̂  s. In particular one sees that

ί(G(λ)) = 1/2 + OCλ-1)

as λ-> oo. This result was proved by Bear don by a similar method.

REMARK. The same method can be used to give lower bounds for
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One finds, for example, that if s is such that

4-' Σ (1 + w2λ2)-* > 1
mΦQ

then <5(G(λ)) ^ s.
Now we shall turn to a question which generalizes that which we

have just considered and which we shall need in § 5. We fix first two
groups Gl and G2 which we shall "decouple" by constructing Gx and hGJi'1

where h shall, in a certain sense, tend to infinity. Then Gt and hGJi'1

will have less and less interaction with each other so that one would
expect that δ(G1^hG2h~1) would approach Max (§((?!), δ(G2)). Our purpose
now is to give conditions under which this can occur.

Let H c Con (n) be a countable ordered set, so that we can speak
of /&-» oo (heH). We shall assume that we are given H, G19 G2, F19 F2

so that
(1) g(Fi)ΓίFί= 0 (f lreG y -{I})
(2) ίYΠACFΪ) = 0 (heH).

Let eZ(Slf S2) denote the Euclidean distance between the two sets Sx and
S2. Then we define

JTO = d(F;, hFt)
and

= Sup jD(h, w) .

THEOREM 1. Suppose that as h-+ °° in H

EάhΓΉM -> 0 .

Then

d(G, * (hGzh-1)) -> Max (§(£0, S(G2)) .

REMARK. This is a formalized version of Theorems 2, 3 and 4 in [1].

PROOF. We estimate Δ^(g) (geGl- {I}) and ^(hgh'1) (geG2- {I}).
The set hF2 satisfies Condition 1 of § 3 for hGJι~l and hence we can

apply the results found there.
The quantity Δ^(g) is easily estimated. We fix x' 6 Fl Π F2. Then

Sup H α ' - w l l 2

2 l l ,
Inf || g~lx' — '̂ |

w'ehFc

z

As we have already noted g~l(x') 6 JFV so that

JD(g-\ x') .
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Now we turn to ^(hgh'1); here we estimate the outer infimum by
choosing xf to be of the form hx" where x" e F^ ΓΊ F2. Then

Sup || hx" -w ||2

1*-1, to") .
Inf
w'ef

In this expression we first replace w by h(w) with w now in jP2

c. Then
we apply (2.2) to the numerator. We also apply (2.3) to the j-factor.
Finally, note that g~lx"eFϊ. We thus obtain

E,(hΓ Sup \\x" - w\\*jD(h, w)jD(h, ίΓVO^OΓ1, x") .

But now

3D(h9 w) <; E2(h) as we

and

a s g ~ x e ; .

Thus it follows that

ΛnCfrfl*-1) ^ ±E^E,(WJD(g-\ x") .

Thus if β > Max (5(̂ 0, δ(G2)) one has that

( Σ 4«(Λ) ) ( Σ 4ι(λftfc-l)§)
flTieG?!— {7} ff2eGf2-{I}

is less than

^(E^hΓEmn Σ ίΊ,(Λf »')•)•( Σ λ>(fc, «")•)•
^eβj-l/} ff2eί?2-(/}

From this and the corollary of § 3 the theorem follows at once.

REMARK. It seems that one obtains generally good estimates if one
chooses an xf (as in the definition of J12) to lie in F± Π F2. One can use
this to prove further results of the same type. For example, suppose
that d(Fί9 Fz) > 0 and that, if δ(GJ ^

diverges. Then it follows from the corollary to Lemma 2 that

d(G, * G.) > ίCGJ .

The condition on G^ can be verified for some classes of groups, see, for
example [2, § 2] and [5, Theorem 8]. Such inequalities were first proved
by Beardon who used them to show that if G is not elementary then

0.
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5. Groups of the first kind. The objective of this section is the
proof of Theorem 2 below. The history of this result has already
been referred to in § 1 and further details can be found in [3]. One
should note that, in [3], it was suggested that if G3 (j ^ 1), G^ c G2 c
G3 c: are subgroups of a discrete subgroup G of Con (n) and (J^i GV = ̂
then one should have

lim δ(Gj) = S(G) .

This has since been proved by Sullivan in [5, Cor. 6]. It forms an es-
sential part of the proof of Theorem 2.

Let G be a discrete subgroup of Con (n) which we take to operate
on Dn+1. Then the limit set L(G) of G is the intersection of all non-
empty, closed, G-invariant subsets of Dn+1 (or Sn). A group G is said
to be of the first kind if L(G) = Sn, and of the second kind otherwise.

THEOREM 2. Let ε > 0 be given. Then there exists a discrete sub-
group G of Con (n) of the first kind with δ(G) 5* ε.

The condition that δ(G) ^ ε expresses that G should be "small"; that
G be of the first kind means that G should be "large". The point of
the theorem is that the two notions are in general independent of one
another. Cf. however, [5, Theorem 22 ff]. If one considers instead of
closed subsets of Sn measurable subsets then one can show that whenever
d(G) < n/2 then there is a measurable subset U of Sn such that

(a) Ul)gU= 0 (g*I)
(b) meas (Sn - \Jβ*σgU) = 0,

where meas denotes the ^-dimensional Lebesgue measure on Sn. For a
discussion of this property see [3].

PROOF. We choose a countable dense ordered subset ζl9 ζ2, ζ3, of
Sn. Choose el9 ε2, a strictly increasing sequence of positive numbers,
such that ε, -» ε. Let U be an open neighborhood of 0 with U c Dn+1.
Then we shall construct a sequence of discrete subgroups

G! C G2 C G3 C

such that
(a) δ(G,)^ey,
(b) ff(ZOn U= 0 (g 6 G, -{/}),
(c) ζlfζ,,ζ,, •• ,ζ,eL(G;).

This will clearly suffice, since, if G = \J3 Gj then G is discrete by (b),
of the first kind by (c) and that δ(G) <^ ε holds follows from the result
of Sullivan quoted above.

The construction is thus inductive; we suppose that G3 has already
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been constructed and we shall now show how to construct Gί+ί. There
exists a set F3 z> U such that gFά Π Fs = 0 when g e G3- — {/}; indeed
we can take F, = U.

If ζy+1 e L(Gj) then we take GV+I = G> Suppose now that ζy+1 g L(Gy).
We shall also assume that G5 has no elements of finite order apart from
the identity. As it happens Gj will be a free product of infinite cyclic
groups, and this condition will also be preserved in the inductive step.
It therefore follows that ζί+1 is not a fixed point of any element of
Gj — {I}; for if it were, that element would be of infinite order and ζy+1

would then belong to the limit set of this cyclic group. To verify this
one shows, for example by computing the stabilizer of (1, 0, 0, , 0) in
the Klein model, that the stabilizer of oo in the upper half-space model
is the set of maps of the form

(A, z) ι-» (λz0, λA(z) + 6)

where λ > 0, A e S0n, z,beRn. It is clear that any discrete infinite
cyclic subgroup of this group has oo as a limit point.

Thus as ζy+1 g L(Gy) we can find an open neighborhood V of ζy+1 in Dn+1

such that

VΓ]g(V) = 0 (g e G, -

We can, and shall choose V such that

= 0 .

Thus we can take Fs = U U V which therefore satisfies the condition
above and moreover ζy+1 e Fs.

Now we shall construct a cyclic group Γs and an open set Φ3 such that

ΊΦό Π Φj = 0 (76 Γ j - {/}) .

We shall arrange that ζ, +1 shall be in the limit set of Γά. We shall also
construct an ordered set H3- of elements of Con (ri) such that ζy+1 is a
fixed point of each element of Hs and moreover if V is an open neigh-
borhood of ζ, +1 in Dn+1 then Λ(Φ}) c F for all sufficiently large h (in the
sense of the order on JTy). In particular, for h large enough (ΛΦJ) c Fs.
We shall also arrange that δ(Γd) = 0. With these assumptions we need
only verify that if

77T / T. \ ___ J/ ΊTIc
Miι\ιl) = CL\Γ j,

and

= Sup
«7 y
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then

since then, by Theorem 1, δ(Gj * (hΓjh"1)) — > d(Gf) as /&->°o, and so for
suitable /& we have

(a) δ(Gj * ΛΓjfc-1) ^ εj+ί

(b) F, n AΦ, => tf,
and, since by the Klein Combination Theorem the translates of Fs Γ) hΦ3

under Gά * hΓόh~l are pairwise disjoint, we see that Gj+1 = G3- * hΓ^h'1

satisfies the conditions of the inductive step.
It now remains to describe the construction of Γ3-, Φ3 and H3-, and

to verify that the objects constructed have the properties claimed. To
do this it is best to refer to the upper half-space model of hyperbolic
space, and we shall make ζy+1 correspond to «>. We observe again that
the group fixing oo consists of elements of the form

(z0, z) ι-> (λz0, λAz + 6)

with the same convensions as above. First of all we fix λ0 > 1 and let

Λ = {(*o, z) i-" λ0

m(^0, »); m e Z] .

Then oo is a limit point of this group and δ(Γs) = 0.
Next let

Φt = {aj; l< ||α;| | < λ0} ,

which satisfies

ΊΦi Π Φj = 0 (76 Γs - {I}) .

Now choose bQeRn, \\b0\\ = λj/2 and set

Hs = {x^ 2m(x - 60) + bQ;meN} .

This is a hyperbolic semigroup for which bQeΦ3- is the repulsive fixed
point and oo the attractive fixed point. This means, in the Poincare
model, that for any neighborhood V of ζj+1 in Dn+l for all sufficiently
large h in Hs one has

h(Φfγ c V ,

as required. Moreover, since Fs is an open neighborhood of ζy+1 this
statement is also valid for V = jPy. Further one has, again for large
enough h,

d(h(Φ$, FJ ^ c, > 0 .

Thus Gj and hΓjh'1 satisfy the conditions of the Klein Combination
Theorem, and also

^ c, > 0 .
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It therefore remains to check that

Sup jD(h, w) -+ 0
weΦc.

as h — > oo .
This involves computing jD(h, w) and it is convenient to work in the

upper half -space model of hyperbolic space. We choose, as in § 2, maps

ψ: D
n+1 -> Hn+1

ψ-ι: JJ«+ι _» j0»+ι

so that ιKC/+ι) = °° To be able to make use of our earlier formulae we
suppose that ζί+l = (1, 0, •••, 0), an assumption that involves no loss of
generality.

If z e Hn+1 then

where Im: #n+1 -» ΛΪ was defined in § 2. h e if,- then has the form

Λty-'GzO) - iΓWs - δ0) + δ0) ,

so that

jD(h, ir-w) - a - iity-wii yα - ii^-wii1)
2m(l/4 + Im (z) + || s ||2)

1/4 + 2W Im (3) + || 2-(* - δ0) + δ0 1|2 '

Since z lies in {z: \\z — δ0||
2 ̂  c} for a certain c > 0 we have to verify

that this expression tends uniformly to zero on such a set as m -> oo .
Let y = Im (2), 5 = (z\ + + 22)172; then we have to verify that in the
region

τ/2 + R2 ̂  c , y > 0, Λ > 0

the expression

2m((y + 1/2)2 + R2)/((2my + W + (2W#)2)

tends uniformly to 0 as m — > <̂ > . If we let A = -B2 + 2/2 then the expres-
sion is

2m(A + y + l/4)/(22wA + 2TO2/ + 1/4) .

If 2m+1c Ξ> 1 then one sees that this is, as a function of y, increasing.
However since y ^ A1/2 this means that the expression is bounded by

2W(A1/2 + l/2)2/(2wA1/2 + 1/2)2 ,

which is itself a decreasing function of A, and so is bounded by

2-(cι/2 + ι/2)'/(2V2 + 1/2)2
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which tends to zero as m —> °°. This proves the assertion and with it
the theorem.
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