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1. Introduction. Let f be a BMO-function defined on R", that is,
cswp @ |f@ — 1@ r@ide|ds < o,

where the supremum is taken over all cubes @ in R". Recently Coifman
and Rochberg [2] proved that f can be written in the form

(1) f:gl'—g2+b

where g, (¢ = 1, 2) is a function of bounded lower oscillation (BLO), that
is, there is a constant C; such that for any cube @ in R",

|Q|~1§Qgi<x>dx —infg@=C (=12

and b is a bounded function. Furthermore they showed that ¢ is a
BLO-function if and only if there is a nonnegative locally integrable
function F with F'* finite a.e., a positive number a and a bounded
function h such that

(2) g=alog F’* + h

where F'* is the Hardy-Littlewood maximal function of F, that is,
F @) = sup [Q1] Fwy .

In this note we will consider a martingale version of these results.
Let (2, F, P; (F,),.r+) be a probability system which satisfies the usual
conditions. In the sequel assume that every martingale is continuous.
Then, by definition, a uniformly integrable martingale X = (X,) is said
to be a BMO-martingale if sup,ess.sup E[| X. — X,|| F,] < oo.

2. BLO-martingales.

DEFINITION 1. A uniformly integrable martingale X = (X,) is said
to be a BLO-martingale if there is a constant C such that for all ¢

(3) X, — X.=C as.
We denote by BLO the class of all BLO-martingales. BLO is a
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subclass of BMO. Indeed, if X satisfies (3), then

E[| X, — X.||F\] = E[(X, — X )ix2xa | Fi] + E[(Xe — X)ix,cx.0 | F1]
+ E[(Xw - Xt)I(X,sz)lFt] - E[(Xw - Xt)I(x,zxoo)IFt]
= ZE[(Xt - Xoo)Itxtgxw) |Ft] + E[Xoo - thFt] <2C.

Thus X is in BMO. Note that BLO is not a linear space and that every
bounded martingale is in BLO.
We will characterize the BMO-martingales by BLO-martingales.

THEOREM 1. Any BMO-martingale X can be written in the form
X=Y,-Y.,+Z
where Y, (1 =1, 2) is in BLO and Z is a bounded martingale.

For the proof of (1), Coifman and Rochberg used the rather difficult
theorem of Carleson [1]. In the martingale theory, Varopoulos [7] gave
a decomposition of BMO-martingales for the proof of a martingale
version of the Garnett-Jones theorem [4]. He used the concept of
v-graded sequences of stopping times.

REMARK. The refree suggested that the factorization theorem in
Jones [5] might also have a martingale version. Namely, if W satisfies
the A,-condition (p > 1), that is,

E[(W/W )| F]P*<C a.s. for every ¢,

then W, can be written in the form W, = U.V.?, where U (resp. V)
satisfies the A,-condition (see §3, Definition 3). This version was in the
mean time proved by Varopoulos [7, Addendum III]. Though he defines
the martingale satisfying the A,-condition as a BLO-martingale satisfy-
ing the A,-condition, it is easily seen that his definition is equivalent to
that of ours. As a result of this factorization theorem, we see that
any BMO-martingale is the difference of two BLO-martingales. Indeed,
we have only to note that E[expal.,|F,] satisfies the A,-condition for
some a > 0 for any BMO-martingale M.

DEFINITION 2. Let (T));=..,... be an increasing sequence of stopping
times. We say that (T,) is a +v-graded sequence if there is a constant
v between 0 and 1 such that

E[I(Ti+1<oo) ] FTi] é Y a.s.
for f[::O’ 1,2’ e,

Now we state the Varopoulos decomposition. For the proof see the
article cited above.
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LEMMA 1. Let X be a BMO-martingale. Then there are two
v-graded sequences (T,) and (S;), a positive constant «, and a bounded
random variable Z, such that

Xo = & 3 Trpmr = 3 Lisiem) + Zar

PrROOF OF THEOREM 1. We show that the Varopoulos decomposition
gives the required one. Let U be a martingale defined by U, =
ElYeIip,c)| Fi]. We will see that U is in BLO. For that purpose,
fixatandlet A, = {0: T, () £t < T, ..(@)},n=0,1,2 ---. Clearly 2 =

©» A, A,.NA,=@ (m#m) and A, is an element of both F, and
F;,,, for every n. Then

UL, = B 3 lnicor| o Ly = B[ L, 5 Iyt | F L,

= E[IA,, %}mgn + 1, i:%l Iy coy| F, }IA“

= IA,,E: IﬁT,;ét) + iZ%nrlE[Imoo: ‘Ft]IAn
= IA,n ;I(ri@o) + i:§‘+1 E[I(Ti<°°) IFt]IAn .

Thus

(U, = UL, = ( 3 Ellgcal F1= 3 I )L, -
i=n+1 i=n+1

Now let Ac A, be an element of F,. Then we easily see that A is
also an element of F, . By this fact and the definition of ~v-graded
sequence, we have for every k=1

E[I(T,,,H,«n) l Fz]IA,, = E[E[I{T%+k<°°) | FT
Hence it follows that

]IFt]IAn = 'Yk*IIA,,, .

n+1

(U, = UL, S (577 = 3 Tngea) Ly = /L = VL, -

Therefore U is in BLO. The same argument yields that the martingale
V defined by V, = E[3 Ii5,< | F}] is in BLO. Since aU and aV are
also in BLO and the martingale Z defined by Z, = E[Z.|F,] is evidently
bounded, our theorem is proved.

3. The A,-condition.

DEFINITION 3. A positive uniformly integrable martingale W = (W,)
is said to be in the class A, (or satisfy the A,-condition) if there is a
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constant C such that for all ¢
W,/W.,<C a.s.

LEMMA 2. X s in BLO f and only if ElexpaX.|F.,] is in the
class A, for some positive number a.

ProOF. Let X be in BLO. Then, by the John-Nirenberg type in-
equality for martingales (see Meyer [6] p. 479), we have

Elexpa|X. — X,||F,]=C

for some positive numbers a and C. Hence dropping the absolute value
and the definition of BLO yield

(4) ElexpaX.|F,] < CexpaX. .
Conversely assume (4). Taking logarithms in (4) and an application of
Jensen’s inequality show that X is in BLO.

Now we will consider a martingale version of (2).

LEMMA 3. If W satisfies the A,-condition, then there is a positive
uniformly integrable martingale M, a number o between 0 and 1, and
a martingale H which 1s bounded and bounded away from zero such
that W, = (M*)'H,,, where M* = sup, | M,]|.

PrROOF. Since W satisfies the A,-condition, by the reverse Holder
inequality for martingales (see Doléans-Dade and Meyer [3] p. 320), there
are two positive constants ¢ and C such that

E[Wit:|F,) < CW;re.

An application of the A,-condition to the right-hand side yields that
E[Wie|F]l < CWie.

Now define a martingale M by M, = E[Wi|F,. We have

(5) (M*)l’(1+£) é CWw
and also have by Holder’s inequality
(6) Ww g (M*)l/(H—s) .

Put 6 =1/(1 +¢) and H, = E[(M*)"W_|F,]. Then W, = (M*)’H,, and by
(5) and (6), H is a martingale such that 1/C < H < 1. This completes
the proof.

LEMMA 4. Let M be a positive uniformly integrable martingale, o
a constant between 0 and 1, and H a martingale bounded and bounded
away from zero. Then the martingale W defined by W,=E[(M*)'H.|F]
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satisfies the A,-condition.

ProoF. By the assumption on H, we have only to deal with the
case W, = E[(M*)’|F,]. Let N be a uniformly integrable martingale
with E[|N.|] > 0. Then Kolmogorov’s weak type inequality says that
P(N* > \) £ 1/ME[|N.|] for all x> 0. By this inequality and the
integration by parts, we have
(7)  E[N*)]=E[(N*): N*> E[|N.|l] + E[(N*)’: N* = E[| N..|]]

< 3§°° NP(N* > \dn + B[N |T
E[INI]
= 1/ — )E[| NI .

Fix a t. If E[|M.—M,|]=0, then M, = M, and so M, is F,-measurable.
Hence it is clear that

Elsup M} | F\,] = E[sup E[M..|F,]’|F\,] = E[M:|F,] = M; .
Next consider the case E[| M., — M,|]] > 0. An application of (7) to the
martingale M, = M,,, — M, with respect to F, = F,,, yields that
E[§gp |M, — M,)’|F,] = 1/Q — 0)E[| M.. — M,||F,}° .
Using the trivial inequalities ¢’ — b’ < (¢ — b))’ and |a — b| < |a] + |b]
for a, b > 0 and the positivity of M, we have
Elsup M!|F,] < CM;
for some positive constant C which depends on 6. In both cases it
follows that
E[(M*? | F,] < E’[(sxg) M) + (s111t) M) | F,]
=@+ C)sup M,)’ = (2 + CY(M™)
which is to be proved.
Combining Lemmas 2, 3 and 4, the following theorem is established.

THEOREM 2. X s in BLO 4f and only if there is a positive
uniformly integrable martingale M, a positive constant a and a bounded
martingale H such that X, = alog M* + H...
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