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1. Introduction. Let / be a BMO-function defined on Rn, that is,

f(x)- \Q\A f(x)dx
JQ

dx <

where the supremum is taken over all cubes Q in Rn. Recently Coifman
and Rochberg [2] proved that / can be written in the form

(1) / = & - 92 + b

where gt (ί = 1, 2) is a function of bounded lower oscillation (BLO), that
is, there is a constant C* such that for any cube Q in Rn,

IQ lA 9i(x)dx - inf gt(χ) ^ C< (i = 1, 2)
JQ Q

and b is a bounded function. Furthermore they showed that g is a
BLO-function if and only if there is a nonnegative locally integrable
function F with JF* finite a.e., a positive number α and a bounded
function fc such that

(2) g = a\ogF* + h

where F* is the Hardy-Little wood maximal function of F, that is,

F*(x) = sup|Q|-1( F(y)dy .
xeQ JQ

In this note we will consider a martingale version of these results.
Let (Ω, F, P; (Ft)teB+) be a probability system which satisfies the usual
conditions. In the sequel assume that every martingale is continuous.
Then, by definition, a uniformly integrable martingale X = (Xt) is said
to be a BMO-martingale if sup* ess.sup i ^ X c — Xt\\Ft]< oo,

2. BLO-martingales.

DEFINITION 1. A uniformly integrable martingale X = (Xt) is said
to be a BLO-martingale if there is a constant C such that for all t

(3) Xt-Xΰΰ^C a.s.

We denote by BLO the class of all BLO-martingales. BLO is a
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subclass of BMO. Indeed, if X satisfies (3), then

E[\Xt - Xol lFJ = E[(Xt - XJI[Xt>=Xΰΰ}\Ft] + #[(Xo - Xt)I{Xt<Xos]\Ft]

= 2E[(Xt - X.)J(XίaXββl I Ft] + £ [ I . - X, I Ft] £ 2C .

Thus X is in BMO. Note that BLO is not a linear space and that every
bounded martingale is in BLO.

We will characterize the BMO-martingales by BLO-martingales.

THEOREM 1. Any BMO-martingale X can be written in the form

X= Γx - Γ2 + Z

where Yt (i — 1, 2) is in BLO and Z is a bounded martingale.

For the proof of (1), Coif man and Rochberg used the rather difficult
theorem of Carleson [1]. In the martingale theory, Varopoulos [7] gave
a decomposition of BMO-martingales for the proof of a martingale
version of the Garnett-Jones theorem [4]. He used the concept of
7-graded sequences of stopping times.

REMARK. The refree suggested that the factorization theorem in
Jones [5] might also have a martingale version. Namely, if W satisfies
the Ap-condition (p > 1), that is,

EKWt/WJw-viFi]'-1 ^ C a.s. for every t ,

then Woo can be written in the form W^ = UooVL~p

f where U (resp. V)
satisfies the Ai-condition (see § 3, Definition 3). This version was in the
mean time proved by Varopoulos [7, Addendum III]. Though he defines
the martingale satisfying the Ai-condition as a BLO-martingale satisfy-
ing the A -condition, it is easily seen that his definition is equivalent to
that of ours. As a result of this factorization theorem, we see that
any BMO-martingale is the difference of two BLO-martingales. Indeed,
we have only to note that ^[expαMcol^] satisfies the A2-condition for
some a > 0 for any BMO-martingale M.

DEFINITION 2. Let (1̂ =0,1,2,-.. be an increasing sequence of stopping
times. We say that (Tt) is a 7-graded sequence if there is a constant
7 between 0 and 1 such that

[{Ti+1<0]\FTi]^7 a . s .

for i = 0, 1, 2, . . .

Now we state the Varopoulos decomposition. For the proof see the
article cited above.



BMO-MARTINGALES 517

LEMMA 1. Let X be a BMO-martingale. Then there are two
Ί-graded sequences (T,) and (St), a positive constant α, and a bounded
random variable Z^ such that

( oo oo \

Z V T — V T \ \ rr
2-i -ί{rί<oo} 2_j ί{Si<OO) ^PROOF OF THEOREM 1. We show that the Varopoulos decomposition

gives the required one. Let U be a martingale defined by Ut =
J5[ΣΓ=i ί(rί<oo}|Fί]. We will see that U is in BLO. For that purpose,
fix a t and let An = {ω: Tn(ω) ^ t < Tn+1(ω)}, n = 0, 1, 2, . Clearly Ω =
UΓ=i -A«, An Π Am = 0 {n Φ m) and An is an element of both Ft and
jPΓft+1 for every n. Then

^ w Σ I[Ti*t) + IA% Σ ^{Γ^OO} I Ft \^Λn

— IAK Σ IiTi^t] + Σ ^[-^{r,<oo} I Ft]IA

Thus

(CT, - C/J/^ = ( Σ E[IiTi<-,\Ft] - Σ /(r4<

Now let AdAn be an element of Ft. Then we easily see that A is
also an element of FTn+ί. By this fact and the definition of 7-graded
sequence, we have for every k ̂  1

Hence it follows that

(Ut - ux)iAn £ ( Σ y"-1 - Σ
\ f c l i+

Therefore U is in BLO. The same argument yields that the martingale
V defined by Vt = E[^T=iI{Si<^\Ft] is in BLO. Since aU and aV are
also in BLO and the martingale Z defined by Zt = E\Z*> \ Ft] is evidently
bounded, our theorem is proved.

3. The Ai-condition.

DEFINITION 3. A positive uniformly integrable martingale W = (Wt)
is said to be in the class Ax (or satisfy the ̂ -condition) if there is a
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constant C such that for all t

Wt/W» ^ C a.s.

LEMMA 2. X is in BLO if and only if E[exτρ α I M | Ft] is in the
class Aι for some positive number a.

PROOF. Let X be in BLO. Then, by the John-Nirenberg type in-
equality for martingales (see Meyer [6] p. 479), we have

for some positive numbers a and C. Hence dropping the absolute value
and the definition of BLO yield

( 4 )

Conversely assume (4). Taking logarithms in (4) and an application of
Jensen's inequality show that X is in BLO.

Now we will consider a martingale version of (2).

LEMMA 3. If W satisfies the A^condition, then there is a positive
uniformly integrable martingale M, a number δ between 0 and 1, and
a martingale H which is bounded and bounded away from zero such
that W<» = (MyH^, where M* = sup, \Mt\.

PROOF. Since W satisfies the ^-condition, by the reverse Holder
inequality for martingales (see Doleans-Dade and Meyer [3] p. 320), there
are two positive constants ε and C such that

An application of the Ai-condition to the right-hand side yields that

Now define a martingale M by Mt = E[WL+ε\Ft]. We have

(5) (M*)w+t) ^ CW^

and also have by Holder's inequality

( 6 ) W^ ^ (ΛΓ*)1/(1+i) .

Put δ = 1/(1 + ε) and Ht = E[(M*yδW«,\Ft]. Then W* = (M*)9^ and by
(5) and (6), ί ί is a martingale such that 1/C <; H ^ 1. This completes
the proof.

LEMMA 4. Let M be a positive uniformly integrable martingale, δ
a constant between 0 and 1, and H a martingale bounded and bounded
away from zero. Then the martingale W defined by Wt = E[(M*yHoo\Ft]
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satisfies the Aλ-condition.

PROOF. By the assumption on H, we have only to deal with the
case Wt = E[(M*y\Ft]. Let N be a uniformly integrable martingale
with J?[|Λ7Όo|] > 0. Then Kolmogorov's weak type inequality says that
P(N* >X)^(1/X)E[\NOO\] for all λ > 0. By this inequality and the
integration by parts, we have

( 7 ) E[(N*)δ] = E[(N*Y :N* > SUN,,|]] + E[(N*)δ: iV* ^ E[\N*|]]

> X)dX

Fix a ί. If E[\Mm—Λft|] = 0, then Mm = Mt and so ikL is ^-measurable.
Hence it is clear that

I Ft] = ^[sup E[Ma \ Fs]
s \ Ft] = E[ML \ Ft] = M? .

Next consider the case -E^IIC — Mt\] > 0. An application of (7) to the
martingale M's = Mt+S — Mt with respect to F's = Ft+S yields that

ΐ;[sup \MS-Mt\
s\Ft] £ (1/(1 - δ))E[\Meo - Mt11Ft]

δ .

Using the tr ivial inequalities aδ — bδ <, (a — b)δ and |α — 6 | ^ | α | + | 6 |

for α, b > 0 and t h e positivity of Λf, we have

for some positive constant C which depends on J. In both cases it
follows that

E[(M*)δ I Ft] ^ S[(sup Ms)
δ + (sup Ms)

δ \ Ft]

^ (2 + C)(sup Ms)
s ^ (2 + C)(M*Y ,

which is to be proved.

Combining Lemmas 2, 3 and 4, the following theorem is established.

THEOREM 2. X is in BLO if and only if there is a positive
uniformly integrable martingale M, a positive constant a and a bounded
martingale H such that X^ = αlogikf* + fL.
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