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Abstract. Liapunov functions of simple form have been used for the
study of stability properties of difference-differential equations. In this
paper we provide necessary and sufficient conditions for the existence of
such functions.

I. Introduction. In this paper we consider the existence of two
simple types of Liapunov functions for retarded linear autonomous
difference-differential equations. The study of the stability properties
of these equations was pioneered by Yoshizawa [11, 12], Razumikhin [9],
Krasovskii [8], Driver [2], and Hale [3].

Restriction to Liapunov functions of simple form leads to stability
criteria which are overly sufficient; on the other hand, such functions
are particularly desirable in specific applications where ease of computa-
tion is of primary importance. Here we provide necessary and sufficient
conditions for the existence of useful Liapunov functions having standard
simple forms for certain difference-differential equations.

Consider the difference-differential equation

(1.1) y(t) = Ay(t) + Σ Bky(t - τk) , t ^ 0 ,

with initial data

y(β) = viθ), -τ <, Θ ^ o ,
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where τk ^ 0, τ = maxfc τk, and the n x n complex matrices A, Bk are
given, as is the initial function v0: [ — τ, 0] —> C*.

Let us replace the above equation by an abstract evolution equation
on a Banach space X,

4(t)

x(0) = xo = (vo(O), v0) e igr(F) c X

where X = {x = (#, t j e C 1 x ^ ( [ - τ , 0]; Cw)|i/ = v(0)} with | |a | | χ =
v(0)||c»; the operator F has domain &(F) = {x = (y, v)eX\v' e

, 0]; Cw), v'(0) = Ay + Σ Γ ^ ^ ^ - T * ) } , where v'(ff) = (d/dθ)v(θ), and
is defined by Fx = (Ay + Σ?=i Bkv(-τk\ v') for all a; = (y, v) e &(F). It
it well known [7] that F is the infinitesimal generator of a strongly
continuous semigroup {S(ί)}ίέ0 of bounded linear operators S(t): X—>X; in
particular, for every xoe&(F), S(-)x0 is the unique strong solution of
(1.2).

We are interested in obtaining stability results for (1.2) (hence for
(1.1)) through the use of Liapunov functions.

DEFINITION 1.1. A continuous function V: % —> R is said to be a con-
tinuous Liapunov function for {S(t)}t}>0 on 1 if V(x) <5 0 for all x e X, where
V: X —> R is given by

V(x) = l i m i n f [ V ( S ( t ) x ) - V(x)]/t , x e X .

It is well known that if V is a Liapunov function on X, then V(S(t)x) ^
y(ί») for all t ^ 0, # 6 Z. The major difficulty encountered in using such

a conclusion to derive stability results is the construction of a suitable
Liapunov function.

In [1, 7] very complicated Liapunov functions have been shown to
yield necessary and sufficient conditions for stability and asymptotic
stability for (1.2), hence for (1.1). On the other hand, most attention
[3, 4, 8] has been centered on the use of functions having very simple
structure; in particular, functions of the form

(1.3) V(x) = y * R y + Σ ί ° v*{θ)Qhv{θ)dθ , x = (y,v)eX,
k=l J-τk

or of the form

(1.4) W(x) = sup v*(θ)Rv(θ) , x = (y, v) e X ,

where y* denotes the conjugate transpose of the column vector y, and
R, Qk, are nxn Hermitian matrices. Computing V:X—>R and W: X —> R
according to (1.2), we obtain
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(1.5) V(x) = A*R + Σ Qk)y + 2 Re Σ y*RBkv(-τk)
k=i / *=i

-f,v*{-τk)Qkv{-τk)

0 if y Λy < W(x) ,

and

(1 6) W(x) <
max JO, 2 Re y* [Ay + Σ Bhv{ - τ4) )j if y*Ry = ϊF(a;) ,

for all x = (T/, V) 6 Z; hence, 7 is a Liapunov function on 1 if and only if

(1.7)

+ + \ RB2 *'m RBm

0 ••• 0

0 - 0

0 0

< o

(i.e., this matrix is negative-semidefinite), while PΓis a Liapunov function
on X, if and only if

(1.8) Re

for all z0, zlf - , zmeCn such that z*Rz0 ^ ^*i2 f̂c for all k = 1, 2, , m.
We remark that under condition (1.8) the Liapunov function W(x) cor-
responds to a "Razumikhin function" [3, 7] of the form y*Ry.

It is noted that the existence of a Liapunov function of either of
the foregoing forms is independent of the delays {τk}ΐ=1; hence so will
be any stability conclusions drawn from the use of such functions. This
remark suggests that the class of equations of the form (1.1) for which
such functions exist is narrow. In the sequel we give a characterization
of this class; moreover, we show by counterexample that there do exist
equations of the form (1.1) that yield asymptotic stability for all delays
{τ*}Γ=i and yet there exists no simple Liapunov function, having either
of the foregoing forms, that can be used to establish this fact.

II. The single delay case. In this section we consider the case where
equation (1.2) involves only a single delay (m — 1, τ = τλ).

Essential to our arguments is the following result.

LEMMA 2.1. Given n x n complex matrices M, N, P, with M and N
Hermitian, the following two statements are equivalent:
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(i ) M + N + e'*P + e-**P* £ 0 for all φeR.
(ii) There exists a Hermitian matrix Q such that

M+Q P 1

P* N-Qj-

PROOF. Noting that (ii) implies

N - Q] [_eiφl\
= M+ N+ eiφP + e~iφP* ^ 0

for all φeR, we see that (ii) implies (i).

To show the converse, note from (i) that if u(iφ) denotes the Fourier

u* (iφ) [M + N +

eίφP + e~iφP*]u(iφ)dφ <: 0; hence, by ParsevaΓs equation,

Γ [u*(t)(M + N)u(t) + 2 Re u*(t)Pu(t - l)]dt ^ 0 .
J-oo

Let u(t) = 0 f or t < 0 and u(t) = uk ΐor k ^ t < k + 1, k = 0, 1, 2, it
then follows that Σ?= o [ut(M + iV)ufc + 2 Re 6̂ίP 6̂fc_1] ^ 0 for all %A e Cn

such that {%}Γ=o e ϊ?, w_! Ξ 0.
Define the functional

J(w0) Ξ sup Σ K*(Λί + iSΓ)̂ ^ + 2Re

We note that -^0*(M + N)u0 ^ J(w0) ^ 0 and, therefore, J(0) = 0 and
J(uQ) is continuous at u0 = 0; furthermore, it is easily verified that
j ( W o ) = |7|V«> for all γeC.

We first wish to show that J"1/2( ) is a seminorm on Cn; it only
remains to be shown that J1/2( ) satisfies the triangle inequality. To
this end, consider positive real numbers α, β, such that a2 + β2 = 1, and
notice that, for arbitrary w, z e Cn,

J(w + z)= sup {uf(M + N)ux + 2Reu*P(w + «)

Σ [
A;=2

^ sup {(αttJ ίAf + NXauJ + 2 Re (αit1)*P(«-1M;)

+ Σ [(auk)*{M + N)(auk) + 2 Re (««»)*P(α«»-i)]}

+ sup {(Jβ«1)*(Λf + iVX/SttJ + 2 Re {βu,)*P{β~ιz)
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+ Σ [(βuk)*(M + N)(βuk) + 2 Re (βuk)*P(βuk^)]}

- Jia^w) + J(β-'z) = a~2J(w) + β-2J(z) .

If J(w)J{z) = 0, say J(w) = 0, it follows that J(w + z) ^ J(z); if not, let
α2 = Jυ\w)l[Jυ\w) + J1/2(s)], /32 = 1 - α2, and note that we obtain
J{w + s) ^ J(w) + 2Jυ\w)Jυ\z) + J(2). Therefore, J1/2( ) is a seminorm
on C\

We now wish to show that this seminorm satisfies the parallelogram
law. Let w0, zQ eCn, ε > 0, and note that there exist sequences {wk}ΐ=u

{Zk}k=ι£lt such that

J(w0) ^ ε + Σ [wί(M + N)wk + 2 Re wiPwk_,} ,

J(»o) ^ e + Σ [zOM + ^)«» + 2 Re

consequently,

2 Re(wk + «*)*P(w*-1 + ^-Jl/2 + Σ [(w4 - ^)*(Jlf + N){w, - zk)

^ 2ε + (1/2)J(w0 + «o)

As ε > 0 is arbitrary, 2J(w0) + 2J(z0) ^ J ( ^ o + «0) + J(wo — zo)'> by an
obvious change of variables and quadratic homogeneity, the reverse
inequality holds as well. Hence J1/2( ) satisfies the parallelogram law.

Define q : Cn x Cn -> C by

q(w, z) Ξ [J(w + z) — J(w — s)]/4 + [J(w + is) — J(w — ΐs)]i/4 ,

w,zeCn.

We note that q is continuous with g(w, w) = J(w) ^ 0, q(w, z) = q{z, w)9

and a standard argument [10] shows that

q(aw + w, z) = aq(w, z) + q(w, z) for all w, w, z e Cn, a e C .

Consequently, Riesz' representation theorem implies the existence of
a unique Hermitian matrix Q such that z*Qw = g(w, s) + z*Nw, z, w e Cn.

Finally, we note that, for every ^ e C * ,

> f c = 2
q(uu uλ) = J(wx) = sup Σ N W + ^)wfc + 2 Re Mf

<-*>*«.fc2

and therefore, for every uQ, u1
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q(ulf u,) + u?(M + N)uλ + 2 Re u?Pu0 <; J(u0) = q(u0, u0)

consequently,

u?(Q - N)uλ + uf(M + N)u, + 2 Re u?Pu0 ^ u*(Q - N)u0 ,

and we conclude that (i) implies (ii). •

Through the use of this lemma we can provide existence criteria for
Liapunov functions of the form (1.3) or (1.4) when equation (1.1) involves
only one delay; i.e.,

(2.1) y(t) = Ay(t) + By(t - τ) , ί ^ 0 ,

with m = 1, τγ = τ, B1 == B. In this case the function (1.3) has the
form

(2.2) V(x) - y * R y + J° y*(θ)Qv(θ)dθ , x = (y,v)eX,

for some n x n Hermitian matrices R and Q. The following theorem
gives necessary and sufficient conditions for (2.2) to be a Liapunov function
on 1 for (2.1).

THEOREM 2.1. Given arbitrary nxn posίtive-semidefinite Hermitian
matrices C, D, the following two statements are equivalent:

( i ) There exist R = iϋ*, Q = Q*, swc/fc that V given by (2.2) is a
nontrivial Liapunov function for (2.1) on Z ami

V(x) ^ - y * C y - v * ( - τ ) I > ι ; ( - τ ) , x = (y,v)eX.

(ii) There exists R = R* Ξ£ 0 such that

RA + A*i2 + C + D + e ί ί 4#£ + e~HB*R ^ 0 /or aZZ φ e R .

PROOF. By direct computation of F (see (1.7)), we find that V(x)
satisfies the estimate in (i) if and only if the 2n x 2n Hermitian matrix

VRA + A*R + Q + C BR

L R*B D-

is negative semidefinite; hence, Lemma 2.1 shows that (i) is equivalent
to (ii). •

This theorem leads to the following criteria for stability, asymptotic
stability and instability of the trivial solution (hence, by linearity, of
all solutions) of equation (2.1).

T H E O R E M 2 .2 . Let there exist nxn Hermitian matrices C, R, such
that
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(2.3) RA + A*β + C + eίφRB + e~iφB*R ^ 0 for all φeR .

Then, for all τ ^ 0, we foαve:

( i ) IfC^O and R > 0, ίfte trivial solution of (2.1) is stable.
(ii) // C > 0 ami i? > 0, ίfee trivial solution of (2.1) is asymptoti-

cally stable.
(iii) If C > 0 and y*Ry0 < 0 /o?* some τ/0 e CΛ, ίfce trivial solution

of (2.1) is unstable.

PROOF. By Lemma 2.1, condition (2.3) implies the existence of Q =
Q* such that

hence, Q ^ 0, V(x) ^ y*Ry, and F(#) ̂  —y*Cy for the function F(cc) =

τ / * β i / + \ v*(φ)Qv(φ)dφ, x = (y, v ) e X .

Using the semigroup notation of Section I, we recall that C ^ 0
implies F(S(£)α) ̂  F(x), ί ^ 0, x e X; hence, V(x0) ^ F(S(ί)^0) ^ y*(t)Ry(t),
t ^ 0. Consequently, if iϋ > 0 and ||a?0||χ ^ δ, there exists c0 ^ 1 such
that \\y(t)\\2

Cn ^ c0δ
2, t ^ 0; this implies that ||S(ΐ)&oll2* ^ c0δ

2 for all t ^ 0.
It follows that (i) has been proved; moreover, for R > 0, every motion
S( )xo:R

+-+X has bounded positive orbit y(x0) = \Jt^S(t)x0. It is well
known that, for (1.2), bounded positive orbits are precompact [7]; hence,
making the stronger assumption that C > 0 and noting that the largest
positive invariant set [11] in {x e X \ V(x) = 0} is {0}, we see that the
Invariance Principle [11] yields the conclusion that S(t)xQ ^ 0 as t —> °o,
for every xQeX, which proves (ii).

Now consider (iii), with C > 0 and y£Ry0 < 0 for some y0 e Cn. The
Invariance Principle shows that i(x0) is not precompact (hence, not bounded)
for some x0 in each neighborhood of 0 6 X; hence, x = 0 is unstable and
the proof is complete. 9

We remark that if only the hypotheses of (i) are satisfied, rather
than the stronger hypotheses of (ii), it may still be possible to employ
the Invariance Principle [5] to conclude asymptotic stability rather than
mere stability; one needs only to be able to show that the largest
invariant set in {xeX\V(x) = 0} is {0}.

Let us now consider the function W of (1.4),

(2.4) W(x) = s u p v*(θ)Rv(θ) , x = ( y 9 v ) e X .

Recall that, for this function to be a Liapunov function for equation (2.1),
it is required that
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(2.5) Re zϊR(Az0 + BzJ ^ 0

for all zOf zx e Cn such that z?Rz0 ^ zfRz^ By making the particular choice
z1 = eίφz0 we note that a consequence of condition (2.5) is that condition
(2.3) must hold for C = 0. Hence the existence of a Liapunov function
of the form (2.4) implies the existence of a Liapunov function of the
form (2.2), but not conversely unless, in (2.2), we have that Q = aR for
some a > 0. It follows that the class of equations of the form (2.1)
which admit "Razumikhin-type" Liapunov functions is a subset of the
class that admits Liapunov functions of the form (2.2).

III. The multi-delay case. In this section we generalize the results
presented in the previous section so as to encompass the case in which
several delays occur, as in equation (1.1).

For this purpose, we first present a generalization of Lemma 2.1.

LEMMA 3.1. Given n x n complex matrices M, Nk, Pk, with M and
Nk Hermitian, k = 1, 2, , m, the following two statements are equiv-
alent:

( i ) There exist Hermitian matrices Mk, k = 1, 2, , m, such that
M ^ ΣϊU Mk and> f°r e a c h k = 1>2> •> m> Mk + Nk + eiφPk + e~iφPt ^ 0
for all φeR.

(ii) There exist Hermitian matrices QkJ k = 1, 2, , m, such that

M Pi

P*

P2*

0 0

0

0

Nm-

PROOF. It is clear that (ii) holds if and only if there exist Hermitian
matrices Hk, k = 1, 2, , m, such that Σ? = 1 Hh 2; M + Σ?=i Q*

^ 0 , k = 1, 2, ••-, m .

Defining Mh = Hk — Qk and applying Lemma 1 for each k = 1, 2, , m,
we see that (i) is equivalent to (ii). •

As in the previous section, we will use this lemma to provide
existence criteria for Liapunov functions of the form (1.3) or (1.4) for
equation (1.1),
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(3.1) y(t) = Ay(t) + ΈBky(t - τh) , t ^ 0 .

We recall that we are interested in a function V having the from
(1.3),

(3.2) V(x) = y*Ry + Σt\ v*{θ)Qkv{θ)dθ, x = (y,v)e%,
k=l J-r f c

for some n x n Hermitian matrices R and Qk, k = 1, , m.

THEOREM 3.1. Given arbitrary n x n positive-semidefinite Hermitian
matrices C, Dk, k = 1, 2, , m, ίfte following two statements are equiv-
alent:

( i ) There exist R — 22*, Qk = Q*, such that V given by (3.2) is a
nontrivial Liapunov function for (3.1) on 1 and

V(x) ^ -y*Cy - l ^ t - r ^ t - r j , x = (y,v)eX.

(ii) There exist R = R* =έ 0, Mk = Λff, ŝ cfe ίΛαί i?A + A*i2 + C ^
, /or eαcfe fc = 1, 2, , m,

+ e~iφBtR ^ 0 /or αίί ^ 6 iί .

The proof of this theorem follows immediately from application of
Lemma 3.1, by the same arguments as in the proof of Theorem 2.1.
This result immediately leads to

THEOREM 3.2. Let there exist n x n Hermitian matrices C, Mk, R
such that RA + A*R + C ^ Σ?=i -M* αwd, for each k — 1, 2, , m,

Λffc + e^i?5fc + e~iφBtR ^ 0 /or αlί ^ e R .

, /or all τk^0, k = 1, 2, , m, ^
( i ) IfC^O and R > 0, ίfee trivial solution of (3.1) is stable.
(ii) IfC>0 and R > 0, £/&e trivial solution of (3.1) is asymptoti-

cally stable.
(iii) If C > 0 and y*Ry0 < 0 /or some τ/0 £ Ĉ> £fee trivial solution

of (3.1) is unstable.

We omit the proof of this theorem since it parallels that of Theorem
2.2. As for Theorem 2.2, we remark that it may be possible to conclude
asymptotic stability in certain applications satisfying the hypotheses of
(i) but not those of (ii); this merely requires a more detailed application
of the Invariance Principle [5].

The remarks made in Section II regarding the existence of a
"Razumikhin-type" Liapunov function (i.e., of the form (1.4)) apply here
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as well; existence of this type of Liapunov function implies the existence
of a Liapunov function of the form (3.2), but the converse need not hold
unless Qk = akR, k = 1, 2, , m, for some real ak > 0.

IV. A converse question on asymptotic stability. If the hypotheses
of conclusion (ii) of Theorem 3.2 are satisfied, then asymptotic stability
of all solutions of

(4.1) y(t) = Ay(t) + Σ Bhy(jb - τk) , t ^ 0 ,
k=

irrespective of the values of the delays τk, k = 1, , ra is guaranteed.
It follows that no function V of the form (1.3) will be a Liapunov
function with R > 0, V(x) <; — y*Cy, C> 0, unless equation (4.1) is
asymptotically stable for all delays. Given this observation, and recalling
the power of the In variance Principle [5], it is natural to ask the following
question: given that the trivial solution of (4.1) is asymptotically stable,
irrespective of the delays τkf k = 1, , m, does there necessarily exist
a Liapunov function of the form (1.3) with R > 0? This is essentially
the question posed by Hale (see [4, p. 108]).

To investigate this question, let us recall a recent result [12] that
characterizes those (m + l)-tuples of real matrices (A, Blf , Bm) such
that the trivial solution of (4.1) will be asymptotically stable irrespective
of the delays.

THEOREM 4.1 [12]. The trivial solution of equation (4.1) is asympto-
tically stable for any set of τk ^ 0 if and only if

( i ) the real parts of the eigenvalues of A + Σ?=i Bk we negative,
and

(ii) for all φkeR, A + Σ?=i eiφkBk has no nonzero imaginary
eigenvalue.

Thus, in the case of real matrices A, Bl9 , Bm1 our question is
reduced to the following: do the hypotheses of Theorem 4.1 imply the
existence of Hermitian matrices R > 0, C ^ 0 , Dk7>0 and Mk, k =
1, , m, such that statement (ii) in Theorem 3.1 is true?

This question has an affirmative answer in the scalar case (i.e., A =
aeR, Bk — bkeR). Indeed the conditions of Theorem 4.1 become, in
this case

(4.2) a + Σ h < 0 ,
fc=l

(4.3) α + Σ | 6 A | rgO .
fc
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Hence, letting R = 1, C = 0, Dk = 0, and Λf* = — 2|δfc|, it is immediately
seen from (4.3) that all conditions of statement (ii) in Theorem 3.1 are
satisfied, and, therefore, there exists a Liapunov function of the form

(4.4) V(x) = |2/Γ + Σ \ Qk\v{e)\2de, x = (y,v)eX,

for some Qu Q2, •••, QmeR, such that V(x) <; 0. From the proof of
Lemma 3.1, it is easily seen that the Qk must satisfy

- 2 \ b k \ + Q k b k l A - i 2 . . . »•

hence, Qk = \bk\ is the only possible choice, and we obtain

V(x) = 2(0 + Σ Ih\) Iy |2 - Σ IhI [y - (sgn bk)v(-τk)Y

for all x = (y, v) e Z.
Although C ^ 0 and result (ii) of Theorem 3.2 may not apply, the

Invariance Principle [5] can be employed directly to show that, under
condition (4.2), this Liapunov function does establish asymptotic stability.

The above question, however, has a negative answer at the vector
level, as we can show through a counterexample. Indeed, in (4.1) let
m = 1 and

A =
-1

1

a 0

0 -a

for some aeR. It is easily verified that the conditions of Theorem 4.1
are satisfied if and only if α2 < 2. On the other hand, it is not possible
to satisfy condition (2.3) with any R = #* > 0, C = C* ^ 0, when
a2 > 1. Indeed, suppose 1 < a2 < 2 and

(4.5) R(A + e'+BJ + (A + e^'B^R ^ - C for all φ e R ,

where C = C* > 0 and

/3eC, δeR,

Satisfaction of (4.5) implies that, for all φeR,

- 2 + 2a cos φ + 2Re/3 - 1 - 2/3 + 3 +

_-l - 2/3 + δ - 2iα^ sin ^ - 2 Re /3 - 2δ - 2δα cos

For this to be so, it is necessary that

-2δ(l + a cos φ) <: 2 Re β ^ 2(1 - a cos 0)

0 .
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for all φeR, and this is impossible for 1 < a2. Hence, for 1< a2 < 2, we
have an example displaying asymptotic stability for all τ ^ 0, but having
no nontrivial Liapunov function of the form (1.3).

V. Additional remarks. In this section we present two additional
results based on the use of a simple Liapunov function of the form (1.3).
The first of these provides a sufficient condition for, and an estimate on,
exponential decay of solutions. The second provides sufficient conditions
for stability and asymptotic stability that are simpler than, but not as
"necessary" as, those of Theorem 3.2.

In the result (ii) of Theorem 3.2, and also (ii) of Theorem 2.2, we
have concluded only asymptotic stability; without additional assumptions,
this conclusion can be strengthened to exponential stability by employing
yet another function, closely related to the function V of (1.3),

(5.1) Vδ(x) Ξ y*Ry = (y,v)eX,

where R = R*, Qk = Qk, and δ is a positive real number. Computing
Vδ: X —» R according to (1.2), we obtain

(5.2) Vδ{x) = y*(RA + A*R + Σ y + 2 Reg V*RBkv(-τk)

- Σ v*(-τk)QM-τt) - SΣ Γ e™+^v*(θ)Qkv(θ)dθ ,
fc=l k=lj-τk

x = (y,v)eX .

Under the hypotheses of (ii) in Theorem 3.2 there exist C = C* > 0,
R = R* > 0, Qk = Q* such that the Hermitian matrix

RA 4- A*R + C +

BζR

B*R 0

RB2

0

0

RBm

0

0

-O.J

is negative-semidefinite. Consequently, Qk ^ 0 and the use of these
matrices in V5 leads to

Ϋ,(x) ̂  -δV,(x) + y*(RA + A' R t e+δτ"Qk)y
fc=l /
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^ -δVδ(x) -y*\C-δR-Σ (eδ^ -

Since C > 0, we may now choose a J > 0 so small t h a t Vδ(x) ^ — δVδ(x),
which leads to t h e es t imate

(5.3) Vδ(S(t)x) ^ e~δtVδ(x) for all t ^ 0 , a? e X .

Consequently,

(5.4) y*{t)Ry{t) ^ e-H\v*(0)Rv0(0)

12

"oi l*for all £ ̂  0, implying the existence of c0 ^ 1 such that ||S(£)flc0

^~oί||^olix for all t ^ 0, #oeλ. It follows that the hypotheses of (ii) in
Theorem 3.2 (hence, of (ii) in Theorem 2.2) actually imply exponential
stability of the trivial solution, with exponent —δt/2 such that δ > 0
and C ^ 3R + Σ?=i (e5r/c ~~ 1)Q*; hence, δ depends on the delays τk, k =
1,2, . . . , m .

Turning to the second remark we wish to make, we refer again to
the function V of (1.3), recalling that V is a Liapunov function for (1.2)
if and only if (1.7) holds; i.e.,

(5.5)

RA + A*R

Bfl

B*I

+

I

I

RBι

-Qx

0

RB2 ••

0 ••

-Qt

•Ri

• 0

• 0

B1R 0 0 -Qj

for some R = R*, Qk = Qi, k = 1, 2, , m. Theorem 3.1 shows this
condition to be satisfied if and only if the statement (ii) of that theorem
is true for C = 0, Dk = 0, k = 1, 2, , m. Unfortunately, this state-
ment may be difficult to verify and does not suggest an explicit
construction for the matrices Qk. In certain applications it may be
desirable instead to simply "guess" a plausible form for Qk = Q£, and
then search for some R = R* such that (5.5) holds. We will now describe
a simple technique of this type.

Condition (5.5) implies that Qk ^ 0 with null space no larger than
that of RBk. Hence, let us suppose Qk to be of the form Qk = B*RZkRBk

for some Zk = Zt > 0, k = 1, 2, , m. Then (5.5) will be satisfied if
there exists R = R*, Zk = Zt > 0, such that

(5.6) RA + A*R £ - Σ {BtRZkRBk + Yk)
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where Yk is a Hermitian matrix that inverts Zk on the range of RBk

(Yk = Zk1 if det 1222?*I Φ 0). In fact, a careful review of the proofs of
Lemmas 2.1 and 3.1 reveals that if (5.5) can be satisfied by some R =
iϋ* E£ 0, Qk — Q*, then it can be satisfied by some R = 22* ^ 0, Qk = Qk,
with Qk of the form we have suggested. Hence, satisfaction of (5.6) by
some R = 22* ΐ 0, Zk = Zf > 0, is necessary and sufficient for the
existence of any non-trivial Liapunov function of the form (1.3) for
equation (1.2).

Condition (5.6) certainly will be satisfied if there exists R = 22* >̂ 0
and real numbers βk > 0 such that

(5.7) RA + A*22 + ± {βkB*kRBk + β?R) ^ 0 .

Although much more restrictive than our necessary and sufficient con-
ditions, the comparatively simple condition (5.7) is certainly sufficient to
ensure that V is a Liapunov function on 1 for (1.3) with Qk = βkB*RBk,
and that the trivial solution is stable if 22 > 0; moreover, V is given by

V(x) = y*^RA + A*R + ^ΣΛβkBϊRBh + βk

ιR)

- βΛv ~ βkBkv(-τk)YR[y - βkBkv(~τk)] , x = (yfv)eX.

Hence, under (5.7), if 22 > 0, it is possible to use the Invariance Principle
[5] to provide conditions sufficient for asymptotic stability; for example,
it is easily found that the trivial solution is asymptotically stable if
R = iϋ* > 0 and βk > 0, k = 1, 2, , m, are such that inequality (5.7)
holds strictly.
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