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In this paper we study a surface of revolution in the Euclidean
three space R:. The generating curve of the surface satisfies a non-
linear differential equation which describes the mean curvature.

The purpose of this note is to solve the differential equation by an
elementary method. Solutions are represented explicitly by generalized
Fresnel’s integrals which involve the mean curvature. Therefore, for a
given continuous function H(s), we can construct a 3-parameter family
of surfaces of revolution admitting H(s) as the mean curvature.

We shall remark that these computations are different from the one
in Delaunay [1]. About 140 years ago, he solved the differential equa-
tion under the constancy of the mean curvature and gave a method of
geometric constructions for such surfaces. For the proof, he first obtains
a solution of an evolute of the generating curve. By making use of
this solution, he found a representation formula of the generating curve.
Therefore these solutions hold only on some intervals on which the
evolute can be defined. It seems not to be simple to obtain a global
solution from his method.

Our calculations will easily find global solutions and the corollary
of the main theorem of this note describes all complete surfaces of revo-
lution with constant mean curvature.

During this research I stayed in Koln and received many nice
advices from Professors Peter Dombrowski and Helmut Reckziegel. By
their suggestions, my original computations could be simplified and gen-
eralized. And also I shall mention that Reckziegel got interested in
drawing graphs of these generating curves by making use of the com-
puter and obtained many beautiful pictures. He permitted me with favor
to include some of the graphs by his programming in this paper. The
author wishes to express his deep gratitude to both of them for helpful
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conversations and kindness.

1. Generating curve of a surface of revolution. Let (x(s), ¥(s)),
sel, be any C?-curve which is parametrized by the arc length and the
domain of definition I is any open interval of real numbers including
zero. We define a surface of revolution in R® by M = (x(s), y(s)cos 8,
y(s)sinf),sel,0 <6 < 2r. Then the first and second fundamental
forms of M are ds* + y(s)’d6* and (x"'(s)y’(s) — 2'(s)y"”'(s))ds® + x'(s)y(s)dd?,
respectively. By the regularity of the surface we may assume y(s) > 0
on I. The mean curvature H(s), by definition, satisfies
(1)  2H(s)y(s) — 2'(s) — 2" (8)y(8)y'(s) + «'(8)y(8)y"'(s) =0, sel.

We shall study this differential equation under the condition

(2) () +y'(s)=1, sel.

Multiplying (1) by 2'(s), it becomes 2H(s)y(s)x'(s) + x'(s)*(y(s)y”(s)—1) —
2'(8)x"(s)(y(8)y'(8)) = 0. By making use of (2) and its differentiated
formula, we get

(3) 2H(s)(y(8)2'(s)) + (y(8)y'(s)) —1=10.

On the other hand we consider another formula obtained from (1) by
multiplication of ¥'(s): 2H(s)y(s)y'(s) — a'(8)y’(8) — x""(s)y(s)(L — «'(s)") +
2'(8)y(s)(—2'(8)x”"(s)) = 0, which gives,

(4) 2H(s)(y(8)y'(s)) — (y(8)x'(s)) = 0 .

Combining (8) and (4) we obtain a first order complex linear differential
equation

(5) Z'(8) — 2tH(8)Z(s) —1 =0, sel,

where we put Z(s) = y(s)y'(s) + 1y(s)x'(s).

It can be easily solved by an elementary calculus. A general solu-
tion of (5) is

Zs) = {SO exp <~2i S: Hw)dw )dt} exp <2iS:H(t)dt)
+C exp<2i S:H(t)dt> ,

where C is a complex constant. It is convenient to introduce the fol-
lowing functions:

Fls) = S:sin (2S:H(t)dt )du . Gs) = S:cos<z§: H(t)dt)du .

Then the general solution of (5) is represented by
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(6) Z(s) = {(F(s) — ¢1) + «(G(s) + e)}(F'(s) — 1G'(9)) ,
where we put iC=—¢, + ic,. Since we have | Z(s)|* = y(s)’, we obtain,
for some constant C,
(7) Y(8) = {(F(s8) — ¢)* + (G(s) + e)}'*, sel.
Combining (6), (7) and Z(s) — Z(s) = 2iy(s)z'(s), we get

x'(s) = (G(s) + ) F'(s) — (F(s) — ¢)G'(8)

{(F(s) — e)* + (G(s) + o)}

Thus we obtained a family of generating curves which is denoted by

(8)  X(s; H(s), ¢, ¢y C5)

_ ([P (GQ) + ) F'(}) — (F(t) — ¢)G'(}) o a
- <S° {(F() — &) + (G@) + e} dt + o, {(F(3) = o)

+ G + o), sel,

where ¢, ¢, and ¢, are any integral constants. As the geometric mean-
ing of these constants we have

(9) X(0; H(s), ¢, ¢y €3) = (¢, {c] + €3},
(10) X'(0; H(s), ¢, ¢, €;) = (eu(c} + €)™, elct + ¢) ™) .

Since the integrand of the z-component of (8) converges to zero at
a point s, satisfying F(s,) — ¢, = 0 and G(s,) + ¢, = 0, the curve is conti-
nuous on I. Conversely for any continuous function H(s), s€ I, there
exists a subset T of R? such that for a (¢, ¢,) € T, we have (F(s) — ¢)*+
(G(s) + ¢,)* > 0, se I, because we may take T as the set complementary
to the regular curve {(F(s), —G(s)), se I} in R®:. For any vector (c, ¢,
¢, )T x R and given continuous function H(s), we define a curve
X(s; H(s), ¢, ¢, ¢;) by (8). Then it is directly verified that the curve is
parametrized by the arc length and satisfies (1). Summarizing up these
results, we have proved

, sel.

THEOREM. Let (x(s), ¥(s)), se€l, be the generating curve, parametr-
1zed by the arc length, of a surface of revolution whose mean curvature
at the point (x(s), ¥(s), 0) is given by H(s). Then for some constants
¢, ¢ and ¢, we have (x(s), Y(s)) = X(s; H(s), ¢y, ¢, ¢;), s€I. Conversely
for any given continuous function H(s), s € I, we take a vector (c,, ¢, ¢;) €
T x R. Then we can construct a surface of revolution by means of (8)
wn such a way that the mean curvature is H(s) and the initial data
are given by (9) and (10).

REMARK 1 (Reckziegel). We have a nice relation between the curva-
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tures of the curves (F(s), G(s)) and (x(s), ¥(s)): The curvature k(s) of
the curve (F(s), G(s)) is given by —2H(s). Conversely for any contin-
uous function k(s), the curve (S:sin<S:k(t)dt>du, S:cosq:k(t)dt)du )has
the curvature —k(s). From this curve we can construct the generating
curve of a surface of revolution whose mean curvature is k(s)/2.

2. Surfaces of revolution with constant mean curvature. We assume
that the mean curvature is a constant function. If the constant is
zero, then we have F(s) = 0 and G(s) = s, which gives

X(s; 0, ¢, c,, c5) = (S: c{et + (& + )} 3t + ¢, {c} + (s + )} > .

This is a catenary for each ¢, = 0. The corresponding surface of revo-
lution is a catenoid.

The case of the non-zero constant function is interesting. If we
put H(s) = H(+#0), then (8) gives, after some simplifications and parallel
translations of the z-axis and the arc length,

s 1 + Bsin 2Ht
11 X(s; H, B) = S -
(b (s ) ( o{1l + B* + 2B sin 2Ht}'*

b

1 2 : 1/2
ﬁ{l+B + 2B sin 2Hs} ), SER,
where B is any constant. It is easily verified that (a) X(s; —H, B)=
X(s; H, —B), (b) X(s; H —B) = X(s — n/2H; H, B) + a constant vector,
(e) X(s; MH, B) = (1/\)X(\s; H, B), A > 0. Therefore it is enough to con-
sider only the cases of B=0 and H > 0.

X(s; H,0) is clearly a generating line for a circular cylinder.
X(s; H,1) is the only continuous curve and represents a sequence of
continuous half circles over the z-axis which have the same radii. The
corresponding surface is a sequence of continuous spheres which have
the same radii. According as 0 < B <1 or B> 1, the smooth curves
X(s; H, B) have different figures. If we assume 0 < B< 1, then the
function «(s) is monotone increasing as the parameter s goes to the
positive infinity but in the case of B > 1, it is not monotone. Never-
theless we know lim 2(s) = o (s — o) in both cases, because X(s; H, B)
is periodic and has the period n/H, which are proved in the following
way: We have

X(s + z/H; H, B) = X(s; H, B) + <—é%—§:g(t)dt, 0) ,

where we will define, for each B = 0,
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g9(t) = (1 — Bsint)(1 + B* — 2Bsint)™*
+ (1 4+ Bsint)(1 + B*+ 2Bsint)™?, 0Zt<nrm.

This satisfies g((w/2) + t) = g((x/2) — t). In the case of 0 < B<1, we
have clearly Sng(t)dt > 0. If B is greater than one, then by simple cal-
culations we éan show g(¢) > 0 on (0, z/2), which also implies ng(t)dt>0.
Therefore we obtained the 1-parameter family of complete s%rfaces of
revolution with the same constant mean curvature. This is Delaunay’s
theorem for complete metrics.

COROLLARY. Any complete surface of revolution with constant mean
curvature 18 a sphere, a catenoid, or a surface whose generating curve
18 given by X(s; H, B) for some B.

REMARK 2. By (11) we have y*(s) — (1/H)y(s)x'(s) + (1 — B?) 4H*® = 0.
This differential equation was studied by Sturm [1]. He derived this
equation from the Euler equation of some variational problem. By his
results, one can see that the curve X(s; H, B) has the geometric char-
acterization by Delaunay: In order to see the generating curve of a
surface of revolution with constant mean [curvature, let us roll along
the axis an ellipse or a hyperbola of which the major axis is equal to
1/H. Then the focus will describe the generating curve which we seek.

REMARK 3. In [2] Eells explains the work of Delaunay in connec-
tion with the theory of harmonic mappings. I came to know the paper
in a conversation with Professor D. Ferus in Berlin. Professor S. S.
Chern kindly also informed me of the paper.

In Figure 1, which was drawn by the programming of Reckziegel
and the computer of Universitat zu Koln, any curve represents the
CONSTANT MEAN CURVATURE SURFACES
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generating curve of a surface of revolution whose mean curvature is
1/2 and 0 < B< 1. Figure 2 means the case of H =1/2 and B> 1. We
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shall remark that in Figures 1 and 2, all curves are arranged in such a
way that they have the same tangent vectors (1,0) and (—1,0), re-
spectively, at (5, |1 — BJ).

3. Surfaces of revolution with H(s) = s/2. If we take H(s) = s/2 as
the mean curvature of a surface of revolution, then we have

(F(s), G(s)) = (So sin(/2)du , S:cos(uz/Z)du> ,

which is the spiral of Cornu and each component functions are Fresnel’s
integrals. From this famous curve, we can construect many surfaces of
revolution admitting s/2 as the mean curvature. Figures 8 and 4 re-
present two of those generating curves whose initial data are ¢, =0,
¢,=—1and ¢, =5 and ¢, = 1/2, ¢,=—1"3/2 and ¢, = 5, respectively.
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