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1. Introduction. In [8] Sine showed an interesting mean ergodic
theorem. His theorem states that the ergodic averages (1/n) X7=i T
converge in the strong operator topology if and only if the fixed points
of T separate the fixed points of the adjoint operator T*, T being any
linear contraction on a Banach space. Later, this theorem was gen-
eralized and extended by Nagel [5] to a bounded right amenable operator
semigroup in a Banach space. Another generalization was also done by
Lloyd [4]. In the present paper we intend to apply the notion of
“ergodicity”, given for an operator semigroup in a locally convex topo-
logical vector space and originally introduced by Eberlein [3], and obtain
abstract mean ergodic theorems which generalize Sine’s, Nagel’s and
Lloyd’s ergodic theorems.

2. Definitions and examples. Throughout this paper, E will denote
a complete locally convex topological vector space (t.v.s.) and & a
semigroup of continuous linear operators on E. For x ¢ E we denote by
A(x) the affine subspace of E determined by the set {Tx: Te®}, i.e.,

A(.’E) = {y:y :gaiTix; gai :1) TiG@, 1=n< OO} ’

and by A(xz) the closure of A(z) in E. Let (T,, @cA) be a net of linear
operators on E. (T,, ac A)is said to be a (weakly) right [resp. (weakly)
left] S-ergodic net if it satisfies:

(1) For every xc E and all acd, T.xc Ax).

(II) The transformations T, are equicontinuous.

(III) For every xc K and all Te®,

(weak-)lim T, Tx — T,x = 0[resp. (weak-)lim TT,x — T ,x = 0] .

& is said to be a (weakly) right [resp. (weakly) left] ergodic semigroup
(in the sense of Eberlein [3]) if it possesses at least one (weakly) right
[resp. (weakly) left] S-ergodic net (T,, « € 4). Whenever (T, ac /) is a
(weakly) right and left both S-ergodic net, we call it simply a (weakly)
S-ergodic net. And if © possesses at least one (weakly) S-ergodic net
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(T, e d), S is said to be a (weakly) ergodic semigroup. (See also Day
[1].) Here we note that our definition of ergodicity is somewhat differ-
ent from that of Eberlein [3]. Instead of our condition (I), he used
the following stronger condition:

(S-I) For every z€ F and all ac 4, T.xccoSx, where co Sz denotes
the closed convex hull of the set {Tx: T e &}.

ExAMPLES. (1) Suppose either (i) 0€ & or (ii) M€ & (i =1, 2) with
M # N\, I being the identity operator. It follows, in either case, that
0c A(z) for every xc E. Thus the sequence (T,, n = 1), defined by T,=
0 for all » = 1, is an S-ergodic net.

(2) Suppose T is a bounded linear operator of spectral radius »(T)<
1 on a Banach space. If supyc,« ||(1 — 7) Do 7" T"|| < o, then & =
{T": n=0} is an ergodic semigroup. In fact, putting 7'.=1—7) S, " T"
(0 < r < 1), we have an S-ergodic net (T,, 0 < 7 < 1).

(8) Let C(&) denote the space of all bounded continuous functions
on &, & being equipped with the weak operator topology. It is then
easily seen that, for each f in C(&) and each S in &,  f and f; are
again in C(&), where ¢f and fy are defined by

sf(T) = f(ST) and f(T) = f(TS) (Te®).

A linear functional ¢ on C(&) is said to be a right [resp. left] invariant

mean if ¢ satisfies [[p]| =1=(1, ) and (fs, ) =(F, 1) [resp. {of, )=
(f, 1] for every Se® and all feC(S).

PROPOSITION 1. Suppose & 1is an equicontinuous semigroup of
linear operators on E. If there exists a right [resp. left] imvariant
mean on C(S), then & is a weakly right [resp. weakly left] ergodic
semigroup.

Proor. Let [(&) denote the space of all functions & defined on &
for which the norm is given by

Il = 3 16S)] < <o .

From Section 10 of Day [2] it follows that if C(&) has a right [resp.
left] invariant mean, then there exists a net (£, @€ 4) of elements in
1,(&) such that

(i) for every aed, & =0 on &, D £(S) =1 and {Se: &(S)>
0} is a finite set,

(ii) for every fe(C(®) and all Te®,
li:’nglsf(s)(&*ar(s) —&A(8)) = 0‘[1“€‘Sp- li‘{n Sg@f(s)(aT*sa(S) —&(8)) =0],
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where &,+0, and d,+£,(€l,(S)) are defined by
Ea*aT(S) = I“z;lg Ea(R) and BT*Ea(S) = Ea(R)

TR=S
for all Se@.

Let us put T, = D5 &(S)S.. We shall prove that the net (T,, ae
A) is a weakly right [resp. weakly left] S-ergodic net.

To do this, fix an xe F and an x* e E* arbitrarily, E* bemg the
dual space of E, and define a function f on & by the relation: f(S) =
{Sx, x*> for all S€&. Since & is equicontinuous, f is a bounded func-
tion on &, and hence f is in C(&). It follows that for all Te &,

lim (T, Tx — Tz, *) = lim SEé F(S)(Eax0,(S) — £.(8))
=0 [resp. limTT,x — T,x, x*) = 0],

and therefore we have weak-lim, T,Tx— T,« = 0 [resp. weak-lim, TT,x—
T.x = 0]. Clearly, (T,, acA) satisfies conditions (S-I) and (II). The
proof is complete.

3. Abstract mean ergodic theorems.

THEOREM 1. Let E be a complete locally convex t.v.s. and S a
semigroup of continuous linear operators on E. Suppose (T,, acA) is
a weakly right S-ergodic net, and define

D = {x € E: weak-lim T,x exists}

and

T.x = weak-lim T, (xeD).

Then we have:

(@) D 1is a closed linear subspace of E such that TDc D for all
Te®.

(b) T.Dc D and T, is linear and continuous on D.

() T,T=T., on D for all Tc®.

ProoF. It is easily seen that D is a linear subspace of E. Since
(T,, ¢e ) is a weakly right S-ergodic net, it follows that "D c D and
T.T =T, for all TeS. Thus (c) is proved. To see that D is closed,
we show that D is complete. Let (x;) be a Cauchy net in D. Since
the transformations 7T, are equicontinuous, (7T..x;) is also a Cauchy net
in E. Thus if we let
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x = liﬂm z; and y = lim T.x,,
8

then, given a weak convex neighborhood U of 0¢ E, there exists a £,
such that

Toxg,—ye@/3)U and T, (x — wx,;)e(1/3)U
for all aeA. Since T.rs;, = weak-lim, T,x;, there exists an «, such
that
T.xs, — Toxs, € (1/3)U

for all @€ 4 with @ >a, Then, for all «ac 4 with a > «,, we have

Tox —y = Ty x — x5,) + Taxs, — Tos, + Tolts, — Y

e3)U + 1)U + (13U =U,

S0 that y = weak-lim, T« and xe€D. Thus (a) is proved. By (a), T.x €
A(x)c D for all xeD and all @€ 4, and this implies that T.Dc D. It

is easily seen that T, is linear and continuous on D. The proof is
complete.

From now on we shall always assume that (T,, ac ) is a weakly
right S-ergodic net, unless the contrary is explicitly specified. Let &*=
{T*: Te®} denote the adjoint semigroup of &. Define

F={xek: Tx = x for all Te&},
D(F)={xeD: T.xeF},
D) ={xeD:. T.x = 0},
and
F* = {g*e E*: T*x* = ¢* for all T*e&*}.
Then we have

THEOREM 2.

(a) F and D(F') are closed linear subspaces of E such that F C
D(F)c D.

(b) T.DF)c D(F) and TD(F)c D(F') for all Te®.

(¢) TT,.=T.T= T, on D(F) for all Te®.

(d) D(0) s the closed linear subspace of E determined by the set
{x — Tx:xe€ E and TeS}.

(e) yeA@)NF if and only if xe D(F) and y = T.x.

PRrROOF. Since (a), (b), and (c) are direct from Theorem 1, we omit
the details.

To prove (d), we first notice that D(0) is a closed linear subspace
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of E. If we denote by N the closed linear subspace of E determined
by the set {x — Tx:xe E and Te®&}, then Nc D(0), since weak-lim,
T,Tx — T,x = 0 for every xc€ E and all Te&S. Now suppose zx,c D(0).
If x* e E* satisfies (y, #*) = 0 for all y e N, then z* ¢ F'*, because {x—
Tx, x*) = 0 for every xc F and all TeS. Thus

(T %) = (Tutty, £*) = (0, 2*) =0,

because T.x,c A(x,). Hence, by the separation theorem (see, for ex-
ample, Theorem 3.5 of [6]), x,€ N. This proves (d).

To prove (e), let yec A(x) N F. Given a weak convex and balanced
neighborhood U of 0c¢ E, there exists a neighborhood V of 0e¢E (in
the topology originally given in E) such that

TV c(1/2)U

for all @e 4, since the transformations T, are equicontinuous. Choose
o, Txe A(x) so that

Y —‘EaiTier.
=1

Since (T,, « e 4) is a weakly right S-ergodic net, then there exists an
«, such that

T.Tw — Tae (1/2 z:, |ail>U

forall =1, -.--,n and all «¢e€ 4 with &« > @, Then, for all a4 with
a > a,,

y—Tax =Ty — TxeT(Za(Tx—m))

+T.Ve S a,.<1/2 s |ai|>U LU =U,
i=1 i=1
thus y = weak-lim, T,x and xeD(F). The converse implication is
obvious. The proof is complete.

THEOREM 3. C is a closed linear subspace of T.D and separates
F* if and only if T.D = C and D = E.

ProoF. TFirst suppose that C is a closed linear subspace of T.D
and separates F'*. Write
DC)={xeD: T.xeC}.

D(C) is a closed linear subspace of D, and thus it is also a closed linear
subspace of E. Let x* ¢ E* be such that (x, z*) = 0 for all xecD(C).
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Since, by Theorem 2, x — Tx € D(0) C D(C) for every xz € E and all Te S,
it follows that z* € F'* and hence

(T.x, x2*) = {x, 2*) =0 (x e DC)) .

Thus 2* = 0, because C = T.D(C) separates F'*. This and the separa-
tion theorem imply that D(C) = E.

Conversely, suppose T.D =C and D = E. For an x*cF* with
x* # 0, choose an x € E so that {x, *) = 0. Then we have

(T, 2*) = <z, a*) + 0,
which proves that C = T.D separates F'*. The proof is complete.

COROLLARY 1. Let E be a complete locally convexr t.v.s. and & a
weakly right ergodic semigroup. Then the following conditions are
equivalent:

(a) There exists a (umique) continuous linear operator P on FE
such that, for every xc E and all Te®,

PrecA(x) and PT=TP=P*=P.

(b) E is the direct sum of F and N, where N is the closed linear
subspace of E determined by the set {x — Tx:x € K and TeS}.

(e) F separates F'*.

(d) The set {xeE: Alx)N F # @) is weakly dense in E.

PrOOF. (a)= (d): Obvious.
(d)=(e): For an z*ec E* with z* =0, take an x€ E such that
{x, *> # 0. If ye A(x) N F then we have

(Y, a*) = (@, a*) + 0.

Hence the implication (d) = (c) follows.

(e) = (b): Let (T,, «ac 4) be a weakly right S-ergodic net, and define
D and T, as in Theorem 1. It is then clear that FF = T.Fc T.D,
therefore if F' separates F'* then Theorem 3 implies that T.D = F and
D = E. Now Theorem 2 implies that TT., = T..T = T, (on E) for all
Te®&. Therefore any x€ E can be written as 2 = T.x + (x — T.x),
where T.x € F and ¢ — T.x € D(0) = N. Clearly F N N = {0}.

(b) = (a): Suppose E is the direct sum of F and N. Then, by
Theorem 2, we have D = E. Hence, letting P = T, (on E), (a) follows.
This completes the proof.

COROLLARY 2. Let E and & be as in Corollary 1. Then the follow-
ing conditions are equivalent:
(a) For every xc E, 0c A(x).
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(b) E = N.
(e) F* = {0}.
(d) The set {xc E:0c A(x)} is weakly dense in E.

We omit the proof of Corollary 2.

PROPOSITION 2. Let E be a complete locally conver t.v.s. and & a
semigroup of continuous linear operators on E. Suppose that & posses-
ses a weakly left S-ergodic met (T,, ¢ e A) satisfying condition (S-I).
If the set {Tx: Tc®)} is relatively weakly compact in E, then A(x)N
F+0@.

PROOF. Since E is a complete locally convex t.v.s., Krein’s theorem
(cf. Theorem IV. 11.4 of [7]) implies that co Sz is again weakly compact.
On the other hand, we have T(ocSx)cocSx and weak-lim, TT.x —
Tx =0 for every Te&. Thus, it follows from an easy compactness
argument that there exists an x in co Sx which is a fixed point of &.
This completes the proof.
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