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H.Nakano [42° has extended the results of W. Ambrose concerning his
"proper H-algebras" (see [1]), by introducing the notion of "Hubert alge-
bras". In his paper, he showed, among others, that, to each Hubert
algebra, there exists a distinguished extension of it (maximal extension)
which cannot be extended properly in any way ([4; Theorem 2.2]). After
he told to the author this result, W. Ambrose's second paper [2] concering
"H-systems" has appeared. Considering the inner relations of these notions,
the author was able to show that every Hubert algebra can be extended
uniquely to a maximal one, and the considerations of maximal Hubert
algebras and H-systems are the same thing, /. e. the "bounded algebra"
of an H-system is no other than our maximal Hubert algebra. The
structure of this algebra was also determined completely in some extent
(i.e., except that we have to introduce the separability assumption at a
certain point) by the use of the F. J. Murray and J. von Neumann's theory
on rings of operators.

In this paper we shall concern with the existence and unicity of a
given Hubert algebra and also some principal properties of the maximal
Hubert algebras deduced from it. As to the structure, we shall only give
the results, as the proof is considerably long though the method is not
so new. The fundamentals for the proof will be mentioned. The notions
and notations in [4; § 1] will be used freely.

The author expresses here his grateful thanks to Prof. H. Nakano for
his kind guide and advice to make him obtain these results.

1. The maximal extension of a Hubert algebra.
Let a Hubert algebra 5Ϊ in £) be giren.

DEFINITION 1. A Hubert algebra % in ξ> is called the extension of % if

21 is contained in %, and the multiplication and the adjoint operation in 2ϊ

are preserved in 2ί. If there exists no proper extension of 2ί we call the

Hubert algebra % maximal. If ϊ̂ is a maximal Hubert algebra and at the

same time the extension of $1 we call it the maximal extension of %.
We shall state the existence of the maximal extension of the given

Hubert algebra % and deduce some fundamental properties of it.

For this purpose, let us consider first the nature of the extension % of

an 21. As 2ϊ is contained in 21, there correspond to an arbitrary a £ 2ϊ two

I) Nυmbers.in brackets denote the number of literature at the end of the paper.
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sorts of bounded linear operators as operators υf right multiplication:
the one is the operator Sa which assigns for every x^% the element xaand

the other is the operator Sa which assigns for every x € 31 the element
xa. But as we assumed that the operations between element of % are
preserved in % the product xa, when considered in 5ΐ, is the same as when
considered in %, that is, SaX = S<a for all x <E % Now Sa and Sa are both
bounded linear operators and 51 is dense in ξ>, Sa and Sa have the same
extension over the whole £), since they coincide on a dense subset : Sa = Sa

(on %). We can consider also for every a € 21 the bounded linear operator
Ta :T&x - ax(x € 21), and by the above argument Tnx — Sxa = Sr,tf ( x € 50.
This shows that the linear operator which assigns for every x € 5ί the
element Sa/, where / is an arbitrary fixed element of &, is bounded for / € 51
and just the same as Tf. We shall proceed now keeping this fact as a key
to the further considerations of the maximal extension of 5ί.

DEFINITION 2. Let / be an arbitrary fixed element in £>. We denote
by ΊJ the operator which makes the element Sxf correspond to each x € 51.
That is

and in the same way we define the operator S°f (with domain %)
Sn

f: $>x=Trf C*€δl).
LEMMA 1: (i) T°f, S°f (f € H) are all linear operators with domain %
(ii ) If T°fx= Tpc (or S°fx - S>) holds for every x € % then f - g.
ciii) T°f+βg = aTf + βT°0, S°ΛJ+βg - aS} + /3Ŝ  (for arbitrary complex

numbers a, β).
We define next the adjoint element /* of an / € £>. Let us consider

an arbitrary sequence {̂ ^=1,2? •• -which satisfies
(1 ) J&€3ΐ (^ = 1,2,-••),

>

I t fol lows f rom this t h a t l im 11^ — ^ 1 1 = 0 and as we have \\xv'— Xμ.\\

= : xl — Λ:* !| by [3 theorem 1.7], w e see that l im ]| xv ~ %*μ \\ = 0 too. T h u s
r,μ->°°

limΛ:* exists. Consider now another sequence {yv},=i,2, ••••, which also
satisfies "(1), then we have lim (xv ~ yv) — 0 and by the same argument as
above we have lim (xl — yl) = 0, and a fortiori lim xv = lim jv̂ . Therefore
independently from the choice of the sequence {xv}v=Λ,2, which satisfies
(1), we have a definite element lim χv depending only on /. This element
we denote as f* and call the adjoint element of f. Then we have

LEMMA 2: (i) / € 51 implies f* € $, and this coincides with that which
is defined in % in advance.

Cϋ) Γ=f
βgY = α/* + βg* (for arbitrary complex numbers <x,β).
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ii/ii = ιι/* ii,
LEMMA 3: Let a € % /"€<&, then
c i )

PROOF : (i) We have only to prove (Saff = Ta*f. We construct a
.sequence {^}vei,2, for / as in (1). Then S Λ € 3ί(i/ — 1,2, ••••), and
Ίim S Λ = Sβ/, thus

)* = lim (SaXvϊ* = lim (*^)* = lim αX
V-?°° V->oo l/^co

= lim T#x* = To-/*.

( ii ) For arbitrary Λ;, jy € Si, we have

cτ>,3>) = cs*Λ )̂ = c/, cs,rr)
= (Sy*x,f) = U,Sy/) = (*,

ΊΓhus n c= 77.

LEMMA 4: // one of the linear operators T°f, TJL, Sy, S^, fs bounded

(on 31), #// others are bounded too.

PROOF : It suffices to show that, if T} is bounded, then T^, S°f are also

bounded.

Since TjL cr 7 "̂ by the preceding lemma and T« is bounded by the assump-

tion, Tfy hence T% is bounded.

To prove the case of Sp take an arbitrary Λ; 6 3ί. Then, using Lemma 3,
| ( S ^ | | = | | ( T ^ T | ] = | ! T χ | l ^ HI TJ5.IIIII* | | = H|7£||||f*J| 3 )

rthus Sj is bounded.
Put now

C 2 ) 2ί° = { / ; /€ €), 77 £5 bounded}.
Then

LEMMA 5: (i) 3ίθ /S.Λ linear manifold in ξ) «wt/ contains 31, therefore
%° is dense in ξ) ίoo.

C i i) // 7z belongs to 21°, *Λe« ^* Λ/SO belongs to 9ί°.
Now if ft belongs to s}i°, T£ and S,l are bounded linear operators. Thus

•these operators can be extended uniquely so as to have ξ> as their domains.
We shall write them indifferently by
,(3) Th, Sh (he%°)
resp., as there would occur no misunderstanding with the case of h <E 21,
in which the newly-defined Th or Sh is identical with which is defined from
the beginning (see the introductory considerations of this section). Fur-

2) For two operators A, B in ξ), the ralation .1 £ B means that B is a extension
of A.

-3) A being a bounded linear operator, |||^|] denotes its bound, i.e. the least real
number such that j[.ί/jΞΞ»||/J for arbitrary/ in the domain of A.
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thermore, we get from Lemmas 3 and 4 that

C 4 ) ΓΛ. = 7V, &. = SΛ (Λ € 2F).
LEMMA 6 : Lei h, k £ 21°,

( 1 ) 7A*,

C ϋ ) Tτhk —
(ίiίj) TΛfc
PROOF: ( 0 , Cϋ). Take a sequence {Ov=i,2, which satisfies ζl) for

&, then, since Th is bounded, we have

Thk = lim 7/Λ = lim SXyh,

and so, for arbitrary x 6 21,
SΛfc = lim S*S*¥h = lim S^ft = lim 7\(Λ^0

I/^oo I/->oo f-^oo

= Th lim^ΛΓ- Th l imSΛ = ThSxk = Γ / . T Λ

thus

| | S , r * * | | = | | t A 7 * * | | ^ HI ΓΛ HI | | |T f c | | | | [^ | | C*€?0.
This shows that T^fc is bounded, or, what is the same thing by the
definition of 2ί§, TTh]c € Ψ, and, at the same time, 7\ f c = ThTh.

(iii) for x <Ξ 9ί, we have
TτhτcX = TiiTicX = ThSxk = Ssχich = SxSich = Tskh%,

by the use of the above obtained facts (i), (ii). Thus T?Λfc = T ^ , and,
by Lemma 1 (πj), this is no other than 7}^ = Sfĉ .

LEMMA 7: 21° mίzy >̂̂  considered as a Hilbert algebra defining the*
product hk (h, kζψ) as

hk: hk= T f t * = Slch ( € 21°)
and the adjoint element of h C€ 21°) as the element h* which also belongs to
2ί° by Lemma 5 (Ίi).

PROOF : We assert this by verifying the conditions of the definition
(cf.C4; §11).

( 1 ) We have already noticed that 2ί° is a dense linear manifold in £)
(Lemma 5 (i)λ

(2) To see that 2ί° is an algebra over the complex number field, it
only needs to show that^the associativity of the above defined multiplication
holds, others are obvious. But this also can be settled easily from

(M) I = CTA*) / = TThJ = ThTJ = THCTJ) = Th(kl) - h(kl).

( 3 ) By the formula (4), the required properties as the adjoint
element are clearly satisfied.

( 4 ) Because the product hk of h, k € 81° is defined as Thk, the opera-
tor associated with h which assigns to every &€Ξ2l° the element hk coincides
with Th on this linear manifold 21°. But as Tn is bounded, the former is
also bounded, whence it is clear, that, when we extend it continuously
over the whole space £>, it must coincide with Tn as they coincide on a
dense subset 2ί°.
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( 5 ) It suffices to show that if, for an / € €>, Txf = 0 for every x e 21°,
t h e n / = 0. But this is clear, as $1 is contained in 2ί° and by the remark
after (3), it follows that Txf = 0 is valid for every # € 21, and thus from
our first assumption we must have / = 0.

LEMMA 8: S2l° is an extension of every Hubert algebra 21 which is the
extension of 21. Thus, in particular, 21° is an extension of 21, which has no
proper extension, i.e. a maximal Hilbert algebra.

PROOF : Let 21 be an extension of 21.- Regarding to the linear operator
of left multiplication Tg with domain 21 which assigns to every x €. 21 the
-element ax, we have, as considered at the beginning of this section,

Tsx = S*0 = Ί\x (for arbitrary x e 21).

Therefore Ta = Ί\ as linear operators defined on 21. But by the assumption

Ta was a bounded linear operator, T% must be bounded on 21, therefore,

by the definition of 21° (cf. (2)), we have Iz e 21°, which asserts thst 31 cz 2ί°

as sets. To prove that 21 is a subalgebra of 21°, it needs to show that the

linear operation, the multiplication and the adjoint operation in 21 are
preserved in 21°. As to the linear operation, this is clear. And once we
have extended continuously the operator 7^ over the whole space (for an
arbitrary la € 2ί), we have Ta = 7£ (see (3)) as Ts = Ί\ (on 2ί). Thus

lib (defined in 91) = TgΊ> = lfb=lib (defined in 21°).

Next, setting the adjoint element of a ^ 21 considered in 2ί as a^*~3 we have

«*^ — la*^ = I a — ±a ~ J-a*

and a fortiori ar*^ = a* by Lemma 1.
From what we have shown, it follows that 21° is an extension of 21.

If we take as 21 in particular 21 itself, we are able to conclude that 2ί° is
an extension of 2ί.

Last of all we have to show that 21° is a maximal Hilbert algebra. If
there exists any extension of 21°, then it is one of the extensions of 21.
But what we have shown above says that such an extension must have 21°
as its extension, thus from the ^inclusion relation as sets, iwe know that
it coincides with 21°. Therefore 21° has no proper extension, which means
21° is maximal as Hilbert algebra in £). Thus our proof is completed.

Now we can state the following
THEOREM 1: Corresponding to each Hilbert algzbra 2ί in £>, a Hilbert

algebra 2ί° in <£> is determined in a unique way such that
( i ) W is a maximal Hilbert algebra.
(ii) Each extension of 21 has 21° as its own extension, and a fortiori is

the extension of 21.
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2. Maximal Hubert algebras.
Most essential property of a maximal Hubert algebra is expressed in

the following
THEOREM 2 A necessary and sufficient condition that a Hubert alge-

bra 9ί in €> should be maximal is that, if for an / € £> the linear operator
ΊJ or S} defined in Definition 2 is bounded, then this f necessarily belongs

to sr.
PROOF : Necessity. If 9ί is maximal, then the algebra 91° in Theorem

1 must coincide with 9ί. As 31° is defined by (2) in §1, we see that the
above mentioned condition is necessary.

Sufficiency. If 9ί were not maximal, then the algebra 91° is certainly a
proper extension of 91 : 9l°:z>91, 9ί°Φ9t. Thus there exists an element/ not belong-
ing to 91 while T® or SJ being bounded. This shows that our condition is.
sufficient.

COROLLARY : A maximal Hubert algebra is closed. (Cf. [4 § 2J).
PROOF: Let 9ί be maximal. We take from 9ί a sequence {av~}v=ιi2i

satisfying
ave% (* = 1,2, ••••), lim α,

Then, for an arbitrary x € 91,
= lim || Tajx\\ S

and this shows that T» is bounded, and by the preceding theorem / £ 9L
This shows that 9ί is a closed Hubert algebra.

We next consider the relation between our Hubert algebras and W.
Ambrose's H-systems. CSee [2]. His definition will be freely used in the
sequel). As he remarked, the most essential part of his definition is (5):
Lx* — Lx = //, Rx* = Rx* = rx*. By this the bounded algebra 91 defined in
C3) turns to be a maximal Hubert algebra.

That 9ί is a Hubert algebra is easily verified by examining each article
of the definition. Especially, as a € 9ί implies a € 91, each operator La has,
along with its adjoint operator, the whole space «ξ> as its domain, and so
is bounded ([2; Lemma 2.2]). This permits us to accord his notations
with ours. Thus, if a 6 51, La = Ta, Ra=-Sa, and if / € €>, //= T}, rf = S^
And the adjoint element /* introduced by his assumption (5) is, as he
assumed | | / j | = \\f*\\ in advance, only needed to be defined for the elements
of 9ί. Under these circumstances, we show that, if T°f is bounded, / € 9ί.
From (5), we obtain

Lp = 7JT, Lf = T^/, /?/ = S£" in turn.
Now as T^y S^. are bounded as we have seen already (Lemma 4 in §1),
Lf and Rf must have the whole space £> as their domains. Thus, for an
arbitrary ΛΓ 6 €>, the products /JT and xf axe both well defined, and by the
definition of 91, we must h a v e / € 9ί. Therefore 91 is a maximal Hubert
algebra.
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We shall state this result as a theorem.
THEOREM 3: The bounded algebra % discussed in the argument of

W. Ambrose's R-system is a maximal Hilbert algebra. Thus our arguments
on Hilbert algebras run essentially in the same line as his.

3. Structure of a maximal Hilbert algebra.
In what follows we always assume that 21 denotes a maximal Hilbert

algebra in £).
The operators Ta, Sa associated with each a €: 91 are bounded linear

operators in «ξ), and we shall denote the sets of all these operators as
T, S:

T = {T«; «€?(}. 8 = {Sa;ae 31}.
As, for all a, b <E 21, Ta and Sa are mutually commutable along with
their adjoint operators (which have the same forms), we see, by expressing
the commutator algebra0 of a set of operators N as N',

T' D 8 , S7 => T.
Moreover, as we know, the smallest algebra of operators which comprises
the identity operator and each T and S, that will be designated by B, (T, 1
and BfS , l ; resp., is T" and S"5):

R(T,1 - T", R(8,D =8".
But as we can show below, T" = S', S" = T' in reality, thus the above

algebras are commutator algebras of one another.
THEOREM 4 : If AeT or 8', then AW - {Aa a e 91} c: 91.
PROOF : Let A € 8' and a € 9(. Then, as AS* = S*A for any x e 91,

we see that
|| 7"l*i| = || S»Aa |] = ASxa \\ ^ ||| A ||| [| S,a\\ = III A ||| | |7^||

S I M III |!| T β III ί/x||
namely Ί%, is bounded on 21. This proves that

THEOREM 5 : 8' = T" - B(T, 1), T' - 8" = RcS, 1).

PROOF : For us, the proof of S' c: T" suffices.
Take arbitrarily A 6 8' and B e T then., for every x, y € 21,

(i4#) Ooo = A (B {xy)) = A (x(By)) = (AΛ) (By) = 5 ((A#):y)
- 5 (A OoO) = CJBA) (xy),

and a fortiori AB = £A on 9ί9ί. But as 9ί9ί was complete in ξ) (Cf [3
Theorem 1.6]), this shows AB = £A. From this S'c: T" is clear.

DEFINITION 3: We put S' as M. Then M is an algebra of operators,
whose commutator algebra W is equal to ϊ r . We call these M, M' the
algebras of left and right multiplications resp.

43 i.e. the set of all those bounded, linear operators with domain § which
commute with A and A* for arbitrarily taken Λ.^N. Of. [5;II, Definition 3].

Here and in what follows,an algebra of operators means that it is not only the
algebra in the algebraic mean but also it is closed with respect to the adjoint
operation (of operators) and closed in the weak topology of operators, cf. [5; I I ] .

53 Of. C5;II,Satz 7.].
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Z = M Π M' is a commutative algebra of operators, which we call the
centre of 2ί.

Thus we are led naturally to the idea of making use the theory of
rings of operators as developed by F. J. Murray and J. von Neumann.
Without exposing in its detail, we state here our final resuls on the structure
of a Hubert algebra.

For an arbitrary projection operator P belonging to Z, P5ί constitutes a
maximal Hubert algebra in P ξ), and their algebra of left (right) multi-
plication is M(p) (M'(p)) obtained from M(M') by contracting each operator
of it to P$. (Cf. [5; §11.3]). Thus the centre of P© is Z(p>. If we
name a projection operatior P Φ O in Z, which has the property that the
only projection operator Q: Q € Z, P > / Q Φ O is P, minimal, then, for
such P, the centre of P2ί consists of constant multiples of the identity
operator 1(P) in P21: Z<p> = {a. lp}, and the algebras of left and right
multiplication M(p>, M (P), form a couple of factors (Cf. H3 Chap. III]).
Be the whole of these minimal projection operators {P\}\ε\, and let Po =
1 - UλβΛPλ, t h e n

C i .) PO| Pλ(λ € A) are orthogonal to each other (and thus, for any
a, b chosen from distinct P02l, Pλ2l (λ € A), ab = 0).

(*ii_) The centre of P02l does contain no minimal projection operator.
Cϋi.) Each Pλ2l (λ € A) has the above simplicity condition.
The ideal in 2ί defined in [4; §5] being no other than P2ί for some

projection operator P in Z, we can classify our maximal Hubert algebras
in two completely different types:

Simple case: The centre of 2Ϊ consists of only the constant multiples
of the identity operator 1: Z = {#-1}.

Purely non-simple case: 21 does contain no simple ideal, or, what is
the same, centre of 21 does not contain minimal projection operators.

And
THEOREM 5: A maximal Hilbert algebra can be decomposed into the

direct sum (in the algebraical sense and in the sense as Hilbert spaces^) of
simple Hilbert algebras and a purely non-simple Hilbert algebra.

THEOREM 6: Simple Hilbert algebras can be classified into two different
types according to the nature of the norms of units (Cf. [4; §4]) in it:

(' I ) These values have a minimum. This case is the very one which
is characterized in [1] and also in [4 § 5].

(II.) The infimum of these values is equal to 0. In this case the
algebra of left (riφQ multiplication is a factor of case (Π.) (cf [3 Theorem
VIII].), and also here the most general case is constructed as TOTAL MATRIX
ALGEBRA with elements in some simple Hilbert algebra containing an identity
element. The study of algebras containing an identity element is the same
with that of the factors of case (Π.)

THEOREM 7 A purely non-simple Hilbert algebra is obtained from a
family of Hilbert algebras 21* defined on a continuous measure space % (i. e.
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which contains no points of positive measured by an INTEGRATION PROCESS
(or, according to J. von Neumanns terminology, as a generalized direct
sum, cf. [61).

By the result of £6], we also see that:
THEOREM 8: When £> is separable, we can take the measure space % as

the interval [0,1H with ordinary Lebesgue measure, and in that case, 21*
can be made into simple Hilbert algebras.

Of course, the meanings of the "total matrix algebra" in Theorem 6,
and the "integration process" in Theorem 7 must be explained in detail.
But I want to promise it in another place. 6)

LITERATURE

C 1 ] W. AMBROSE: Structure theorems for a special class of Banach algebras, Trans.
Arner. Math. Soc, Vol. 57 (1945).

( 2 ] W. AMBROSE: The L*-system of a unimodular group T, Trans. Amer. Math. Soc,
Vol. 63 (1948).

( 3 ] F. J. MURRAY AND J. VON NEUMANN: On rings of operators, Ann. Math., Vol.37
(1936).

[ 4 ] H. NAKAXO: Hilbert algebra, this Journal. 2nd ser. Vol. 2(1950\
( 5 ] J. VON NEUMANN: Zur Algebra der Funktionaloperatoren und Theorie der nor-

malen Operatorea, Math. Ann., Bd. 102 (1929>
( 6 ] J. VON NEUMANN: On rings of operators. Reduction theorey, Ann. Math., Vol.50

(1949).

MATHEMATICAL INSTITUTE, TOKYO UNIVERSITY, TOKYO.

6> It will appear in the Mathematical Journal of the Okayarna University, vol. 1.




