NOTES ON FOURIER ANALYSIS (XXXIX)

GEN-ICHIRO SUNOUCHI
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This paper contains some remarks on the theory of Fourier series
and others. They will not contain a great deal that is important, but
they may be of some interest. This paper consists of the following articles
which may be read separately.

1. The integral of Marcinkiewicz and Zygmund.

2. The summability of the derived Fourier series by Riesz logari-
thmic means.

3. Maximal theorems on functions of H-class.

4. Applications of the method of Hardy-Littlewood concerning to the
proof of a maximal theorem.

5. A one-side localization theorem.

6. A problem of Zalcwasser.

7. Distribution of signs of the terms of conditionally convergent series.

1. The integral of Marcinkiewicz and Zygmund. Let ®(z) be
_analytic in the unit circle and ® (0) = 0, and let
1

1/2
9(6) =9:00) = {f(l -p)l?"(pei")lzdp}

0
and

1 1/r
9-(0) = {f(l —p)r? I<P'(pe"">|7dp}
0
where z = pe®®. Littlewood-Paley [12] proved the following theorem, whose
simple proof was given by Zygmund [327].

THEOREM 1.1. (Littlewood-Paley)

27 1/» 27 1/r b2 1
1.1 A,.{flwewurde} < {fg"(&)d@} gB,.{fww"@)]rde}, (1< 7 < 0o,
0 0 0

27 1/a 7 1/q
(1.2) {fg{;(@) de} < C,,{f]?)(e‘“’)lwe}, 2=5g< o),
0 J
2 1/p b11 1/p
1.3 Dp{flsb(e“’)l”de} < {fg;g<9>de}, 1<p=2),
0 0

where A,, By, ---. are constants depending only on r.
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Generalizing the parts of (1. 2) and (1. 3), the following theorem was
given by Marcinkiewicz-Zygmund [15] and the author {181

THEOREM 1.2. (Marcinkiewicz-Zygmund) If 1< 7 < oo, then

27 1/r 2 1'r 27 1/r
ad A [1wenraf < {[r0a) = 5| [ 19 a),
0 0 )
27 L 27 1/r
(1.5 { f 7(0)d8)} = Con | f [penlde) , 2<q< o,
’ ( 27 : . {l/r ] 27z. 1r
(1.6) Dp,,-lfltp(e")l’dej < -(fg,;w)de}, (1<p=<2).
0 0

If we put g=7 and p=7 in (1.5 and (1. 6) respectively, we get
(1.2) and (1. 3). Since the above integral g,(f) depends on the interior
values of the unit circle, Marcinkiewicz [14] defined another integral of
simple characters depending only on the boundary values, that is,

1/2

w@) = py(d) = {f[F(@ +8+FO—1t — 2F<6)]2/t3dt}
0

1/r

and = '
@) = {fme + 6+ g — ) — 2RO/ r+dt ),
0

where 0
F@) =c+ ff(u) du.
0

Then the following theorem has been proved.

THEOREM 1.3. (Marcinkiewicz and Zygmund)

1/r 27 1/r

27 27
.7 Ar{flfp(e"’)l"de} g{fww) o} gBr{fisD(eW)lrde}, 1< 7<),
0 0 0

27 1/q 2 1/a
(1.8) {f wi(0)db} < cq{f |9 (e®lde}, (2<q< ),
0 0
21 1/p 27 1/p
(1.9) Dy f |9 e®)|7do} < { f W06}, (1< p=2).
0 0

Marcinkiewicz [147] proved (1.8) and (1.9) and conjectured the validity
of (1.7). The proof of (1.7) was given by Zygmund [31]. Since Theorem
1.3 is the type of Theorem 1. 1, we shall generalize it into the form of
Theorem 1. 2.

THEOREM 1.4. If 1< 7 < <o, then
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27 1/r 2 1/r
(1.10) Ar{ f (cp(ew)lrde} g{ f ’(H)de f l¢(e‘°)l’d0}

0
1/r 1jr

i (0)de}<cq,r flfi’(e‘“’)lrdé'} (2<q< o),

0
1/1' 27 1jr

(L12) Dy, f I?’(e"’)l’dﬁ} { f uy(@)d6}, (1< p=<2).
0

PROOF. (1.10) is nothing else (1.7) due to Zygmund [31]. If we write
,Sup | F(O + 1) — FO)]/t = (O,

then we have
27 1/r

2 z rlg J1/r
{fuz(ﬂ)dﬂ} _ U‘ de{ |[F@ +¢t) + F(O —t) — 2| dt} ]
d ,

t(I—l

0 0

2z 3 . riq S1/r
FO+8)+Fo—1)—2F0)|* 0+1)+ Flo—1)—2F0)|*-*
:[fda{fl +)+Frt3 Ro)| IF1++F(tq) o)l dt} ]
0

rlq llr 1fr

r 27
=| f av{uwo>we} | f <<I><0>>“‘2/q>'m(a))wwe}

1[7 2/q
f f w(0)db)} }

1/r 1—-2[41 2

=col{f T} | w(mdﬂ}qu
0

0

1jr-1-2/q

< [{ f zfpr(e)do}
)

1r

< Cuf f I @lad |

0
by.the successive application of Holder’'s inequality, the Hardy-Littlewood
maximal theorem and (1.10). Thus we get (1.11).
The proof of (1.12) runs similarly. That is,

{ f 2;;(0)d9}m
’ rlz-1jr

{ “|FO+0)+FO—1—2F0)? |FO+0)+FRO—1—2Fg)** | } }
{

\.f tp+1 t&—y
L f do

0

f /2 1r

0

"l A0 58] 0]

IA

7[2.1)r
IF(0 41+ F(tfﬂ— t) — 2F(6)]* Ap,r((IJ(H\)“"pdt} ]

1A

IA
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1r

27
< By f (DOIPI" Cu(0))" )}
0

Since 0< p/2< 1, we get applying Hoélder’'s inequality,

27 1-p/2 27 pl2-1)r
scul{[oo} {[uwawn) |
° 1r ‘1)—11/2 27

§Cp’r[{f;:br(9)d"} [HS u;;(e)do}‘w}m

0
< D,,,r[{ f 2|n<p<ew )l7d6)}
0

1/r 1-p/[2 27

1/r-p/2
] [{f,q;(e)de} }
0
Thus we get

21 1fr 2z 1r_pja

{[ w@as} = Do { [ ‘T(p(e,,,),Tde}”’]"”“[{ [ ucoras |
0 0 0
{ oo )
0

which is the required.

By (1.10), we have

1r 27 1r

< Dy, [wic0)a8
= Der f “ }

2. The summability of the derived Fourier series by Riesz logari-
thmic means. Let

(%) ~—;~a0 + > (@n cos nx + by sin nx),
n=l

x+t) —fx—1) = Yu(t), Wu(t) = Y,(£) /[ (2sin t/2)

and

n(bn COS X — ay sin nx) = nB(x),
then
(2.1 S'Tf1= 2 nBu(x).

n=1
In this article we shall investigate Riesz logarithmic means of the series
(2.1). We begin with a preliminary lemma pue to Bosanquet [4].

LEMMA 2.1. (Bosanquet) Let ®(t) be integrable in the Cauchy sense
at t = 0 and tP(t) be Lebesgue integrable in (0,z). If we put
(2.2) Q) = ftf P(t) cos ut dt,
>0
then the series

%0«0) + 2w
=1
and *
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> au+1/2)

n=0
converge at the same time.

PROOF. Let
sm n-+ —1—>t

= La +2a(u)— -—fm) 2y

2s1n2t

and

7"‘2“(!‘/ +1/2)= Wf P(t) sin(#n “|]‘- l)ldt

=0 %o 2_sm?t

then we have

2Tn-1 — On — G-y = ﬁ—f P(t) tan»—;—-t ~sinnt dt = 0(1)

0
by the Riemann-Lebesgue theorem, since (¢(¢) € L(0,7). Similarly
20'n —Tn T Tn-1 = 0(1)
Thus we get the lemma.
THEOREM 2.1. Let V.(1) be integrable in the Cauchy sense at t =0,

and partial sums of S[V.(t)] be o(logn), and let S[V.(¢)] be (R, logn, 1)-
summable, then S'[f] is (R,logn,1)-summable at t = x.

PROOF. Let
‘I’m(l‘) =Y (2)/(2sint/2) € C
and
2.3 CLY.()] = ——-a(O) + Za(u) cos pt.
n=1
If we consider the series (2.3) when ¢ =0, this is equi-summable with

w

Dalp +1/2),

p=1
by the lemma 2.1. If we put
uy = a(n +1/2),
then we have

Attn—y = A (n —1/2) = 72rf W.(t) Acos(n —1/2) tdt

— frf«px(t)sinnzthBn,
0

that is,
2.4) BAU—y = B(Un—y — Un) = BBy = Un, Say.



76 G. SUNOUCHI

If we consider the relations of Su, and Sv.,, we get the relations of
S[Wi(2)] and STy(2)]. If we denote by U, Vi, and U, V¥, the »-th
partial sums and (R, log#, 1)-sums of Su, and Sv,, respectively, then by
(2.4) we have

Vn = Un (ﬂ + 1) un+1,
N
ZVn/ n+1)= ZUn/(n +1) = Dt

n=0 n=0
VS) = US,,I) - Un+1 + U
and

(2.5) VP/log(n + 1) = UP/log(n + 1) — Ussi/log(n + 1) + us/log (n + 1).

Since U, = o (logn) and UP/log(n + 1) »s, we have UP/log(n+ 1) >s.
Thus the theorem is proved.

COROLLARY 2.1.1. If
t

f | W(2t) — 2s|dt = o(2),

0
then &'[f] is (R, logn, 1)-summable to s at x.
PROOF. Since

t
f |t — 2s|dt = o(D),

we have S, = o(logn) and S [W.(t)] is (C, 1)-summable.

COROLLARY 120 If

f | Wa(t) — 2s|dt = O(¢) and f {W.(t) —2s}dt = o(2),

then there is a function f(x) such that @’[f] is not summable by (R, logn, 1)-
means.

PROOF. If UP/log (n+ 1) >s, then, since V®/log(n+ 1) > s under
the hypothesis, we have U+ = o (logz) by (2.5).

But there is a function W(¢) such as Uy.; # o (log#) under the condi-
tions of Corollary (cf. Izumi [87).

For the generalization of Theorem 2.1, we need a lemma due to Hardy
and Riesz [7].

LEMMA 2.2. If we put
G = 2 Co,

Ap<7T

C(w) = 2 (@0 — An)¥Cn = kaA(T)(w — 7 )-dr,
0

Ap<w
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then

'k + D [
™) = T+ ) f ) (o =yt du,
0

where k>0, m >0.

THEOREM 2.2. If "V.(¢) € C (integrable in the Cauchy sense), (R,
log #n, k)-means of & [V.(t)] are o(logw) and SV,(1)]is (R, logn, k + 1)-
summable to s, then S'[f] is(R,log n, k -+ 1)-summable to s at x.

PROOF. Put an= logn in the lemma 2. 2, then we write by U®(w)
and V®(w) omitting A the (R, log#n, k)-sums (see the notation of Theorem
2.1).

VO (w) = UV (w) — U*(w) + uy,
where
U¥(w) = >, .
An+1<w

By Lemma 2.2, we get
VED() = U D(w) — (k + DU (@) + uo,
V@ED(logu) = U¥D(logu) — (kB + DUM{log (u + 1)} + uo

and :
V@&+Dilogu) _ U%*Dlog u) — a1 U®{log(u+1)} {loglu-+1)}*+! Uy
(log u)r+1 (log u)*+! k+1) {log(u+1)}*+1  {log u}r+! +(log ufrt-
If
U®+D(log u)/(log u)t+! > s,
and

U®(logu)/(logu)* = o(logu),
then we have

V&+D(logu)/(logu)t+! > s,
which is the required.

COROLLARY 2.2.1. If Wu(t) € C and S [ V()] is (R, logn, k)-summa-
ble, then €f] is (R, logn, k + 1)-summable where k= (.

COROLLARY 2.2.2. If W.(1) € C, and VY (t)>s (R,logn,k) as s >0,
then ©Tf] is (R, logn, k+ 1+ &)-summable, where k>1, € >0. (=1,
& >0, provided that V.(t) € L instead of C).

PROOF Since W.(¢) >s(R,logn, k) as s >0 implies the (R, logn, k
+ &)-summability of E[W(¢)], (cf. Wang [24]).

COROLLARY 2.2.3. If V(1) € C and
t
f (Wa(t) — 25} dt = ot),

0
then &'Tf] is (R,1log n,2)-summable to s. More generally if W.(t) is (C,a)-
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summable (& =1) as t >0, then STf] is (R, logn, 1+ a)-summable.
PROOF This is evident from the Zygmund theorem [27, p. 62].

COROLLARY 2.2.4. If
t T
‘ dt 1
f [Wact) — 251t = ot log 1) and f%(t)—t— = o(log 1),
0 t

then STf] is (R, logn,2)-summable to s at x.
PROOF This is immediate from Hardy's theorem [5] and Theorem 2.2.
Corollary 2.2.2.is proved by Matsuyama [16] under the more restricted
condition ¥.(¢) € L and the case @ = 1 of Corollary 2. 2. 3 is given by
Wang [23]. But they prove these theorems by the direct calculation.

3. Maximal theorems on functions of H-class. If

27
f [fredldd <M, <1,
0

then we call the function f(z) belongs to H-class. Let

f(e®) ~ 2 c,b.e”“",
k=0
then we denote by s,(6) and ¢9>(d) the partial sums and the 7-th Cesaro
means of the above series

Then we have the following theorem.

THEOREM 3.1. If f(z) € H, then

27 2
(3.1) f max| o (0) |df < Af 170\ db, (& >0),
0 " 0
(3.2) f max!s.(8)/log(n + 2)|d0 < B f 7¢é®) b,
[ * 0
27 27
(3.3) frr)lbaxlaﬁb‘f)(ﬁ)/nsldﬂ < Cflf(e“’)ldﬂ, 1>e>0).
0 0

PROOF. (3.2) has been proved by Zygmund [30]. Without loss of
generality we can assume

() =g%z), g(2)€ H.
Then we have

o

(D] — )1 = 21 SPzn,
n=0
where S denotes (C, k)-sum of the Taylor series of f(z), and

F(2)/(1 =2y = {g()/ (1 — 2)**+DI=)2

Consequently
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n.
1SS0 = ;ZS}L(IJ""’Z)(Q) SL-1+0ID(g)

v=0
n

< 2 lss(—1+e)/2)(g) E

v=0

n

— 2 IO’E,('HOIZ)(Q)IZ Cp-l+e
v=0
n

< 2 jol-1+In(g) — a-f,(“f)”)(gﬂz polie

v=0

n
+ D | In(g) |2y-tte,

v=0
n
|| = CIS,(ZE)(f)/nEI < CZ |0.5(—1+e)[2)(g) _ 0_'('(1+5)12)(g)lzlv
. v=0
+ Clmax g{+B (g5 |2,

Applying Zygmund’s theorem [287], we have

2 oo

2
fmax | 6$(N)| < Cf 2 la',(,(”“)’z)(g) - 0-5(1+5)I2)(g)|2/y 4o
n
bl i}

n=1

+C f | max o+ ()| %df
0

2 2
< Afg”(@)d&ng 170 | db.
0 0

Thus we get (3.1).
The proof of (3.3) is almost identical. Since

n

loo) | = 210l 779(g) — aft=2I()|* /v

y=0
+ Imax o000,
we have
2 2T N
[1maxagogymian< a [ 2 1os-0m0) — aa-orcglfpe do
v=0
0 ]

LA f max | o<-9ID(g) |2/ df
0

ng lgw)lwegcflf(ende.
0 0

THEOREM 3.2. If f(z) € H, then (3.1) is (C,&)-summable a.e.,(logn) is
conver gence factors of (3.1) a.e.and (n*) (1 >& >0) is (C, — &)-summability
factors of (3.1) a.e.
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PROOF. This is immediate from Theorem 3.1, except the last proposi-
tion. Since trigonometrical polynomials are dense in H-class, by the well-
known method from (3.3) we can conclude

a9 = o(nc), a.e.
Then applying the generalized Hardy-Littlewood theorem of the author
[20], (=) is (C, — €)-summability factors of the series (3.1) a.e.

4. Applications of the method of Hardy-Littlewood concerning the
proof of a maximal theorem. Hardy and Littlewood [6] have proved a
maximal theorem by the very elegant method. Their method seems to
have comprehensive applications. We shall give here some. Theorem
4. 1 is sharper than Titchmarsh's [22, p. 87] and Theorem 4. 2 is sharper
than Kaczmarz’s [10], but the proofs of them are easier.

THEOREM 4.1. If f(t) € L* ( — o0, c0), L‘hen

rl ma.xf (e 2dt
-£
and
£ n 2 oo
f‘ n;baxff(t)e’“"/N/1og(|tl"'~}L zidt‘ dng(«i‘)f |f(#)|%dt.
| PROOF. Let F(u) be the Fourier transform of f(¢) € L? then we
have

\

f|f<‘t>{2dt=f|p<u>|=du,

— e~ (It =n
o , (t] >n)

and if we put
Gt = {

then the transform of Gn(f) is

=~ /2 sinnmx+w

By Plancherel’s theorem, we have

f f(tre = dt = \/ f Flu) S‘n”“‘—“-»”) du.

On the other hand, if we assume

f [fOl*t =1,  a) = {log([t] + 2},

A{n)} = Aw, n(x) = N,
and @ (#) be any function such that

f |®(u)|%du = 1,
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then

N
J= f?w?’(’x)dx f(te =t dt

-& -N

|
“ﬁ
g
S
g
&
]
\
=t
i
12,
B
w2
a
§
A

—co

: N
= \/ fF(u) duf ANP(x) ________Sln €2 dx.
X —Uu

-£
E

2 . sinN (x —wu) ,
&

-0 =&

]2

IA

H/\

X —u
where N = n(a;) and N, = n(x,).
On the other hand, since

—Uu

2 sin(x+4 u)
o X+ u
is the transform of Gu.(f), we have

WZ) TsinNin —w) sinN.(x—w)
V(4 X, —u X u "’
-?'1,2 2 gi
T X — X

—DN1,0

where N, = min (Nl,N>

RN f AmP () f A ) SN 8 2 20) g g,

X1 — Xz

2\/ f f{x PUx) 4+ Ny ¢z(x£\/}

-& -§
= (h+ T2/ 27,

sin Ny (% — %2)
X — X

H/\

say. Since

sin N-|,~_;<x1 —_ xfg)
X — X

C
= _lxl — % + N+ D71

we have

dx,
]1 <Cf 7\‘l\1¢) (xl)dxlf lx — x)l + (NI)Z + D!

s:

‘ZE
L, dx.
= Cf x?v;‘i"("ﬂdxxf !le ¥ (Ni + D!

-2F

dx dx,

81

fdu f Py SN 0 =) f AP (%) Smﬁ\c’?—(——’" L2
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<2c f Ny () dn 1og (26N, + 1) + 1)

—-&
s

13
gA(E)f PHxdx < AE).
-£
Similarly we have | J,| < A(g). The remaing part of the proof is
analogous- to the Fourier series case.

THEOREM 4.2. If we denote by S..n(x,y) the partial sum of the double
Fozmer serzes then

smm(x y) : 9
MaX e m + 2)/log (1 1 2) { dxdngf f |f(x, 3| *dxdy.
PROOF. Let
c(x) =sin(n + 1/2)x/(2sin x/2),
then

I 21
Son(x, ¥) = —;*f f flu, v)e{x — uic(y — vdu dv.
0

f ffz('x,y\dxdyz 1,

- -7

Let

and ®(x,y) be any function such as

fffp’(x,y)dxdy:

and put

2z

27 i s 4
= —;i‘f f A.JI,N‘/)(x,lexdyf ff(u, vICu(u — x)ex(v — ¥)du dv,
0 0 0

0

where
J An = {log (m + 2312 {log (n + 2112,
M = m(x,y), N = n(x,y),
then
= f ff(u v)du dvf f?u[ yP(x,Y) cn(u — x)ex(v — y) dxdy
and

27 L i 27 2
< ”1* f f du dv {f f A, yP(x,¥)Cu(tt — X)Cxy(V — y)dxdy} du dv
) v J 0

T N2 I i
du dv {f f Aoy, v P, Y1) Cn (U — x)Cwn (U — Y1) dxldyx}
0 0 0



NOTES ON FOURIER ANALYSIS 83

2 i
: {f f?\..v[z,zvg P (X2, ¥2)Cots(th — %) Crva(V — ypdx_-dyz}
0 D}

1 e e e
7t f f f f A,J[],le.‘l[g,]\r‘)l¢<xx,y1>l . lq)(x_”y:)l )
9 [\) 0 0

| €l — 2| - |y, (yn — y) | dxdx,dy,dy,,

IA

where

Mj.g = min (M.', Mg).
Since

A, wiAanav, | P,y o] - [P,y < ;‘{ 3[1,N1¢2(x17y1) + X:ﬁ[z,N.:?’z('xz,J’z)},
we have

JF=CJi+ 7,
where
o “ dx, dy.
=< 2 gy 2 2 .
J ﬁf f 7\‘4111,‘\7190 (xx,yl)dxldylff [t— 2] + (Mot 2)1 [Vi—ya| + (N1t 2)-1
L , " dx, ay.
éff)\qh,]ﬁ(p (xhyl)dxldy!ff Ix’l + (‘Ml +2)_1 ly_l + (1\;1_{_2)__1

§f f X:{,[I,quﬂ(x],y]) dxl dy1C10g (M] + 2) lOg (N} + 2)

-T =T

T T
gg[fﬁ@wwmgc
The analogous result concerning simple Fourier series, can be gotten
applying Abel’s transformation twice to Theorem 4.2.

5. A one-side localization theorem. A.Zygmund 29] has proved the
following localization theorem.

THEOREM 5.1. (zZygmund) If the Fourier cosfficients of f(x) are o(1]n)
and f(x) =0 in x, < xS %+ &, then S[f] converges to zero at the point x,.

It is evident that thz condition o(1/7) cannot bz transposed by O(1/n),
but there is a continuous function of the boundad variation, which Fourier
coefficients are not o(1/n). (cf.Zygmund[27,p.293]). Therefore the condi-
tion o0 (1/n) is not best possible.

Y
THEOREM 5.2. If 2 np./N >0 as N> oo, where p,= (@, + b)? and

n=1
an, b, are "Fourier coefficients of f(x), and f(x) =0 in %, < x<x+ &, then
S[f] converges to zero at x,.
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PROOF. Since

-
2 (nbn cOS nx; — nan sinunx)/ N >0

n=1
as N > oo, f(x) has not generalized jump at x,, that is
C L1+ +8 —flo—8)r>0
as £ >0. (cf. Sunouchi [197). From the one-side vanishing, we have
(C, 1+ &ftx+ 1) >0, as £ > 0.
Therefore .
(C, 14+ Efxg—t) >0, as ¢ >0,
and then
C 1+ {f(x+ 1)+ —1)}>0.
Thus ©[f] is (C,1 + 2&)-summable to zero at x,. On the other hand, since

N
> np/N >0,

n=1

as N— oo, €[f] converges to zero at x from the well-known Tauberian
theorem. Thus we get the theorem.

~

REMARK. 2 npa/N — 0 is a necessary and sufficient condition for the

n=1
function of the bounded variation to be continuous, from Wiener's theorem
[257. Therefore the .condition of the theorem 5.2 is best possible in a
sense.

6. A problem of Zalcwasser. Zalcwasser [26] has proved the follow-
ing:
If f(x) € L?0,2%), and su(x) is n-th partial sum of the &[f], then

N

lim |sp,(x) — f(2)]|/N =0, a.e.
e =1

provided that
B 2 1/vp; = O(D),
v=k

and he proposed the problem: whether (C,1)-mean is transposed by (C,a)
(0< a < 1) mean or not. If the strong summablility is replaced by ordi--
nary summability, then the problem is answered affirmatively.®

THEOREM 6.1. If f(x) € L* (0, 27), then sv(x) is (C, &)-summable
(& >0) a.e., provided that

P> 1wpy= O(1).
v=k

PROOF. Let us put

Py(x) = {va—1+l L e S pre”’yz}/’}’v,
where

*) Added in the proof. We have gotten the complete solution of Zalcwasser.
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T = (c;v—ﬁl + .-+ C;v)l"-",
and consider the series
n
> 7.
v=0

It is evident {®,(x)} is normalized orthogonal system and

Syi= 2= f {f(0))dx < oo.
v=y
0

n=0

Since

2. 2> 1/up} = O,

v==k

n
2%%( x) = Sp(x) is (C, 1)-summable by Zalcwasser’s theorem.

v=0

Since thas normalized orthogonal series of a function of L? which is
(C, 1)-summable is already (C,«a)-summable (@ >0) (cf. Kaczmarz-Steinhaus
[11,p.1827), the theorem is valid.

7. Distribution of signs of the terms of conditionally convergent
series. E. Cesaro (cf. Polya and Szegd [17, p. 25]) proved the following
theorem regarding to the distribution of signs of the terms of a conditio-
nally convergent series.

THEOREM 7.1. (Cesaro) If Dla, = oo where a,{ 0 and > a.&. converges
where &, = + 1, then

>

n n
lim inf ;11 > & =0=<limsup ; > &
— =0 v=1

H. Auerbach 3] provéd the partial converse of this which reads as
follows:

THEOREM 7.2. (Auerbach) If la, = o (@ =0), and an—0, then there
is an distribution of signs {&} such that

lim L Se=0 @==D

n—yco

and

2 anén

n=1
has an inferior limit | and superior L (I < L) which are preassigned arbitra-
rily.
On the other hand Izumi-Sunouchi [9] generalized Theorem 7. 1.
THEOREM 7.3. (Izumi-Sunouchi) If 3Sa,= o (a,=0) where an/pnad0
and San€, converges (&, == £ 1), then
n n n n
liminf > M.,\Ey/z w=0= lir;isup & m/Z -
v=1 g v=1 v=1

n-ye0 —
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The object of this paragraph is to give a converse of this theorem
analogous to Theorem 7.2.
THEOREM 7.4. If San= 0(an=0), an>0 and paftns; > 1, Suy =
(pn=0), then there is a dzstrzbutwn of signs {&,} such that ‘
llmz;b,, v Zy.,— 0
n-yoo
and >, a,&, has an inferior lzmzt l and superwr L (I< L) which are preas-
signed arbitrarily.
For the proof of this theorem, we need a lemma due to Agnew [1].
LEMMA 7.1. (Agnew) If Sa.,= o (an=0), then there is a sequence
{ni} such as wys1 — 1y, > o0 and 3, an, = 0.
PROOF OF THE THEOREM. If we denote by 3¢, the series which is
obtained by putting a.,, = 0 in the series X a, then we can select &, (+1
or — 1) such that

20

Ze =+ (a—a,)*+ (ag—a) £
converges. Since a, > 0, we have
> &a,=s.
If {n,} is the sequence of Lemma 7. 1, then since Xa,, = oo, we can
select &, such that

limsup > @€, = L — s
M->c0 *ol
m
lim inf > @& = 1 — s,
. We=>o00 k=1
by Riemann’s theorem.
Let {&} be the sequence derived from {é&,}, by replacing the #,-th term

by &x,.. Then since

2 a,€n = 2 a;l—g;b -+ Z anken,\.,
m m

limsup > @&, = L, lminf> @&, = 1.

M=o, n=1 M~yec y=1

Since {&,)} takes + 1 and — 1 alternatively and pns+:/px > 1, we have

lim > /Zm_o

e = 1 p=1
On the other hand since #yx.; — #—> c0 and pus:/p—>1, from the theorem

of Cauchy, we have

we have

2#“11
oy

lim ,l,c»— =lim —, " =0.

k—>co k->co
EM 7 2“1

i= nk ]+1
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Consequently

n / n
lim > by 201 = 0,

N> y=1 1

which is the required.

REMARK. If we introduce the Lebesgue measure in the space of the
dyadic sequences in the usual manner, then for almost all sequences {&,} we
have

n
.1 B
lim gey_o.

On the other hand,

MU->c0

n | n
lim > ,A,e,./ > m=0
r=1 v=1
only in a null set for some {u,} (cf. Maruyama [[13] and Tsuchikura [227]).
Theorem 7.2 gives an example from a full set, but Theorem 7.4 from a
null set.

In analogous manner we can generalize another theorem of Agnew [27.

THEOREM 7.5. If a seqitence {s.} is terminating in 0, 1, 0, 1,

then let lim As,= 1/2 where
>0

cey

As, = > @ (s
k=1
If {s.} is any scquence from 0 or 1 only, then let As,= 0 whonever

n / ‘ o
lim > s, /’ D=0 <;L,, =0, D p= 0, s> 1). On these hypothesis
v=1 )

r=1

we can conclude that A is regular.

Since the proof is analogous to Theorem 7.4 and Agnew [2], we omit
the proof.

REFERENCES

1. Aaxew,R.P., Subseries of series which are not absolutely cenvercent, Bull. Amer.
Math. Soc., 53(1947), 118—120.

2. Aaxew,R.P., Methods of summability which evaiuate sequences of zeros and ones
summable C;, Amer. Journ. Math., 70(1948),75—8l.

3. AversacH, H., Uber die Vorzeichenverteilung in unendlichen Rzihen, Studia Math.,
2 (1930), 228-—230.

4. Bosaxquer,L.S.,, Note on differentiated Fourier series, Quart. Journ. Math., 10

(1939), 67—74.

5. Harpy, G. H., The summability of a Fourier series by logarithmic means, Quart,
Journ. Math., 2 (1931), 107—112.

6. HarpY, G. H. axp LrrrtEwoop, J. E.,, On the partial sums of Fourier series,
Proc. Cambridge Phil. Soc., 40 (1944), 101—107.



88 G. SUNOUCHI

7. Haroy G.H. axp Rigsz, M., The general theory of Dirichlet series, Cambridge
tracts (1915).

8. IzuwmrS., Notes on Fourier analysis (XVI), Tohoku Math. Journ., 1(1950), 144—166.

9. TzumyS. anp Suxoucui, G., On Cesaro’s theorem, Proc. Phy. Math. Soc. Japan,
16 (1938), 297—302.

10. XKaczmarz, S., Zur Theorie der Fourierschen Doppelreihen, Studia Math., 2 (1930),
91—-96.

il. Kaczvagrz,S. axp Srerzmavs, H., Theorie der Orthogonalreihen, Warszawa (1936).

12. LirrLEwoop, J.E. axp Parey, R. E.A. C, Theorems on Fourier series and power
series (1), Proc. London Math. Soc., 42 (1937), 52—89.

13. Maruvama, G, On a problem of 8. Xakutani, Monthly of Real Analysis
(Japanese), 2 (1948).

14.  MaRCGINKIEWICZ, J., Sur quelques intéerales da type de Dini, Annales Soc. Polonaise
Math., 17 (1938), 41-50.

15. MARCINKIEWICZ, J. AXND Zvemuxp, A., A theorem of Lusin, Duke Math. Journ.,
4 (1938), 473—485.

16. Marsuyaya, N, On the Riesz logarithmic summability of the derived Fourier
geriey, Tohoku Math. Journ,, 1 (1949), 91—94.

17. PorLya, G. axp Szead, G., Aufzaben und Lehrsitze aus der Analysis, Berlin
(1925), Vol. 1.

18. SuxoucHI, G., On the strong summability of Fourier series, Proc, Amer. Math.
Soc. 1 (1950) 526-533.

19. Suxouvcni, G., Quasi-Tauberion theorems, Tohoku Math. Journ, 1 (1950), 167
—185.

20. SuxoucHl. G., On a theorem of Hardy - Littlewood, in preparation.

21. Trreavarsia, E.C., Intreduction to the theory of Fourier integals, Oxford (1937).

22. Teucuigurs, T., On a problem of S. Kakutani, Monthly of Real Analysis
(Japanese), 2 (1948). On some divergence problems, Tohoku Math. J., 2(1950),30—39.

23. Waxg, F. T.,, On the summability of the derived Fourier series by Riesz’s
logarithmic means, Tohoku Math. J., 40 (1935),237—240.

24, Waxg, F.T., On the summability of Fourier series by Riesz logarithmic means,
11, Tohoku Math. J., 40 (1935),273—292.

25. Wiexer, N., The Quadratic variation of a function and its Feurier coefficients,
Journ. Math. and Phys., 3 (1924),72—-5%4.

26.  ZALCWASSER, Z., Sur la sommabilité des séries de Fourier, Studia Math., 6 (1936),
82—88.

27. Zyeyuxp, A., Trigonometrical series, Warszawa, (1935).

28. Zvyewuxp, A., Sur Vapplication de la premiére moyenne arithmétique, Fuand.
Math., 10 (1926), 356—362,

29. ZyeMuxp, A Uber einseitige Lokalization, Jahresh. Deut. Math. Ver., 39 (1930),
47-52.

30. ZyeMuxp, A., On the convergence and summability of power series on the circle of
convergence (1), Fund. Math., 30 (1938), 170~ 196.

3l.  Zvemuxp, A., On certain integrals, Trans. Amer. Math. Soc., 55 (1944), 170—204.

32. Zyeuuxp, A., Proof of a theorem of Littlewood and Paley, Ball. Amer. Math.
Soe., 51 (1945), 439—446.

MaraEMATICAL INsTITUTE, TOHOKU UNIVERSITY, SENDAT.





