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This paper contains some remarks on the theory of Fourier series
and others. They will not contain a great deal that is important, but
they may be of some interest. This paper consists of the following articles
which may be read separately.

1. The integral of Marcinkiewicz and Zygmund.
2. The summability of the derived Fourier series by Riesz logari-

thmic means.
3. Maximal theorems on functions of H-class.
4. Applications of the method of Hardy-Littlewood concerning to the

proof of a maximal theorem.
5. A one-side localization theorem.
6. A problem of Zalcwasser.
7. Distribution of signs of the terms of conditionally convergent series.

1. The integral of Mareinkiewicz and Zygmund Let φ(z} be
analytic in the unit circle and φ (0) = 0, and let

and
(rl

9r(θ) = I I (1 - pY'1
0

where z = ρeίθ. Littlewood-Paley [12] proved the following theorem, whose
simple proof was given by Zygmund [32].

THEOREM 1. 1. (Littlewood-Paley)

(Γ Λ f Γ * ) 1 / r ( rl7C ϊ ι ; r

(1.1) Ar \φ(eiθϊVdθ^\gr(θϊdθ^Br\ \<P(eίθ)\rdθ, (1< r < oo),

(1.2) ί r
{

0 ϋ

{ r π }llf < rlπ }1IP

(1.3) £V(J \<P(eω)\"dθ\^\ \gv

3>(θ)dθ\, (1
0 0

where Ar, Br, are constants depending only on r.



72 GΓ. sraoucm

Generalizing the parts of (1. 2) and (1. 3), the following theorem was
given by Marcinkiewicz-Zygmund [15] and the author '[18].

THEOREM 1.2. (Marcinkiewicz-Zygmund) // 1 < r < oo, then
l/r

( I 1

α 4)
0

I ί f
I <^(0)Λ9} ^ α , | / I

(
< l 5) < (̂0)Λ9 ^ α , I φ(e? )\rdθ , (2 S g < oo),

U

1"' •"* 1"'
(1.6)

If we put q-r and p = r in (1. 5) and (1. 6) respectively, we get
(1.2) and (1. 3). Since the above integral gr(.θ) depends on the interior
values of the unit circle, Marcinkiewicz [14] defined another integral of
simple characters depending only on the boundary values, that is,

Γ™

o
and

( r
= | ί

-f)
V '

o

where /
F((9) = c + I

o
Then the following theorem has been proved.

THEOREM 1. 3. CMarcinkiewicz and Zygmund)

0 0 0

, rϊ* ^/« , J* x 1 ^

(1-8) \[μ%

o o

(1. 9) DP{ f \ ψ (eίθ) I *dθ\ < ] ί μξ(θ)dθ\, ( 1 < P < 2).
IJ J (J *

o o

Marcinkiewicz [14] proved (1.8) and (1.9) and conjectured the validity
of (1.7). The proof of (Ί. 7) was given by Zygmund [31]. Since Theorem
1. 3 is the type of Theorem 1. 1, we shall generalize it into the form of
Theorem 1. 2.

THEOREM 1. 4. If l< r < oo5 then
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Λ 2τc

(1.10) A ' 'rf v rr v rr r'
\\ \ <P(eίθ) 1 Γί»} S { I nr(θ)dθ\ ^Br\l \ <P(eίθ) \ rdθ\,

0 0 0
- « ,1/r ,,2* ,1/r

(1. 11) If μ£θϊdθ\ S CqM \φ«P)\rdθ\, (2^q< oo),
o o

(Γ 2* I/r

(1.12) Dp,r{\ \
0 0 .

PROOF. (1. 10) is nothing else (1. 7) due to Zygmund [31]. If we write
sup

0^t^2τε

then we have

\

r Γ

2 t / v 5 1 " r Γ
[ I ^{μ2(^)CΦ(^^-a} J ^ { I (

° l

J

- β * r ϊ

J [|J μr(0)dθ\ J

ι,r

i/r ι-ί/β 2* i r ϊ / a

0

by^the successive application of Holder's inequality, the Hardy-Li ttlewood
maximal theorem and (1. 10). Thus we get (1. 11).

The proof of Cl. 12) runs similarly. That is,
1"'

i/Ί
0

~\ Γ W C*\F\θ+t)+F(θ-t)-2F(θ}\p \Fΰ+f)+F(θ-t)-2Kθ}\*-» Jf\"

-\-]dθ(] t^ t^—. *;

t»+ί
\lr

l/r
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0

Since 0 < p/2 < 1, we get applying Holder's inequality,
•lit

0 0
l/rπ l-H/2Γ 2τε

Γ f f } (Γ

C^f/Φw} {/«(

C »[U :

- "" ' ^ i - μ/ ί- &TL ι/v-_.p/i

J L U p > J

0
l/r l-p/2 2* i/r

Thus we get

0

By Cl. 10), we have
Ijr 2« 1/r

0 0

which is the required.

2. The summability of the derived Fourier series by Biesz logari-
thmic meaus Let

'~FΓ&O + ^(ancos nx + I
n»ι

O - /(λ' - O = ^ C O , ΨίtCO - ΨsCO / C2sin ί/2)
and

w(^w cos ^Λ; — an sin ^Λ:) ^ nBn(x),
then

00

C2.1) ^'[/]Ξ2«β»(*)
w = ]

In this article we shall investigate Riesz logarithmic means of the series
(2.1). We begin with a preliminary lemma pue to Bosanquet [4].

LEMMA 2. 1. (Bosanquet) Let Ψ(i) be integrable in the Cauchy sense
at t = 0 and tφ(i) be Lebesgue integrable in (0, π). If we put

2 f*
(2. 2) a(μ) = ~ I ?̂CO cos μί dt,

->o
series
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2*0*+ 1/2)
μ = 0

converge at the same time.

PROOF. Let
o * smι»

~

and
n

m =^a(μ + 1/2) = —
μ = 0

then we have

2 f* 1
2m-i — σ w — σ n-i = — I £>(/) tan -~- ί sin nt dt = 0(1)

7Γ J Z
U

by the Riemann-Lebesgue theorem, since tφ(t) € L(Q, π). Similarly

Thus we get the lemma.

THEOREM 2.1. Let ψx(t) be integrable in the Cauchy sense at t = 0,
and partial sums of ©[ΨaXOH be 0(logn), and let SIJMΛ/OH ^ (R, logn, 1)-
summable, then @'[jG /s (R,logn,iysummable at t ~ x.

PROOF. Let
•φ

and

(2.3) SΓ^

If we consider the series (2. 3) when f = 0, this is equi summable with
n

2*ίA f c + 1/2),

by the lemma 2.1. If we put

then we have

2 f*
- 1/2) = ^ / ΨaCO Δ cos (w - 1/2) ί Λ

that is,

(2, 4) M Δ «»-ι = n(un-ι — Wn) = nBn = Vn, say.
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If we consider the relations of 2«n and 20Λ, we get the relations of
& DP*(Oj and Θ t ^ C O l If we denote by Un, Vn and Ug>, V%\ the n-th
partial sums and (#, logw, l)-sums of 2wn and Σίto, respectively, then by
(2. 4) we have

K = ί/» - (« + 1) un+1,
N N π

2 *v c» + 1) = 2 tf / (w + 1) - Σ"*+ι>

and

(2. 5) VgVlog(« + 1) = Uφ/lo&ζn + 1) - ί//i+1/log(rc + 1) + ^0/log (^ + U
Since £7Λ = 0 (log w) and U^/log (in + 1) ->s, we have ί/£Ylog ( » + ! ) - > s.
Thus the theorem is proved.

COROLLARY 2. 1. 1. //

/0is (R, logn, D-summable to s at x.

PROOF. Since

0

we have SΛ = 0(log/2) and ©L^XOll is (C, l)-summable.

COROLLARY 2. i. 2. //

t
Γ IΨsCO - 25|dί = O(ί) αwJ Γ {ΨxCO

0 0

is « function f(x) such that ©'[ft is Λ0ί summable by (^, logw, 1>

PROOF. If ί/^/log ( ^ + 1) ->5, then, since V™/ log (w + 1) -> s under
the hypothesis, we have £/n+1 = o (logn) by (2.5).

But there is a function ΨaKO such as Un+ι Φ o(logn) under the condi-
tions of Corollary (cf. Izumi USD).

For the generalization of Theorem 2. 1, we need a lemma due to Hardy
and Riesz [7Ί.

LEMMA 2. 2. // we Put

CλOiO = 2 G *
λ/ι<τ

ω

(τ)(ω -r)*-1*-,
/

C λ (

--« —
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then

^ + W + 1) Γϊ;».\ _ «/V» - !

w ;1 ) Γ C m )

Γ

J
o

where k > 0, m > 0.

THEOREM 2.2. // Ψ*(O € C (integrable in the Cauchy sense), (/?,
log n, k)-means of <S [Ψa>COII ^^^ 0(logω) <zwd © [ΨajCOH *s (/?, log??, fe -f 1)-
summoble to s, then ©T/H ?sC^, l°g ^, ^ + 1.}-summable to s at x.

PROOF. Put \n^ log n in the lemma 2. 2, then we write by t/(fc>Cω)
and l/(A;)(ω) omitting λ the ( ^ log^, ^)-sυms (see the notation of Theorem
2.1).

where

By Lemma 2. 2, we get

F< f c + 1>(ω) - tΛ* + 1 >(ω) - (*

F<fc+3>(log^3 - C/(fc+1>Clog^) - (* + l)C7^{logC« + 1)} + w0

and

If

and

then we have

which is the required.

COROLLARY 2.2.1. 7/Ψ^co € C #mf ©CΨβCί)] « (R,
ble, then ©ΊjG is (R, log^, ^ + l)-summable where ^ ^ 0 .

COROLLARY 2.2.2. //" ΨβXO € C,
then ©ΊjG is (R, logn, k+l + εysummable, where k>I, 6 > 0. C* > 1,
θ > 0, provided that Ψ B (0 € L instead of C).

PROOF Since Ψ^Cί) -> s (I?, log w, A) as s-»0 implies the (R, logn, k
4- £>summability of eCΨ^CO], Ccf . Wang [24]).

COROLLARY 2. 2. 3. // ψx(t) € C and

/ = o(t),

U

6T/j 15 (R,logn,2) summable to s. More generally if ψβ(f) fs



78 G. SUNOUCHI

summable (a Ξ> 1) as t -»0, then ©T/U is CR, logw, 1 + a)-summable.

PROOF This is evident from the Zygmund theorem [27, p. 62].

COROLLARY 2.2.4. //
/ / , 1 \ 7 f * τ v Λ Λ 1 \

Ψa Cf) — 2s\dt ^ oίΠog-7-1 and \ Ψ » ( O τ ~ = o( log^r) ,V ί / j t v T /
0 ί

2A0w ©'[/] 2*5 (R,logn,2)-sumnιable to s at x.
PROOF This is immediate from Hardy's theorem [5] and Theorem 2.2.
Corollary 2.2.2. is proved by Matsuyama [16] under the more restricted

condition Ψ / O € L and the case a = 1 of Corollary 2. 2. 3 is given by
Wang [23]. But they prove these theorems by the direct calculation.

3. Maximal theorems on functions of H-class If

o
then we call the function /(z) belongs to H-class. Let

then we denote by <>Λ(0)and σ%\θ) the partial sums and the r-th Cesaro
means of the above series

Then we have the following theorem.

THEOREM 3.1. If f(z) € H, then

C3.1) ί max|σiε>C60 \dθ ̂  A ί \f(eίθ)\dθ, (£ > 0),
J n J
ΰ 0

Γ \ Γ
J n = J
C 0

(3. 3) f maκ\σ<-e\θ)/n*\dθ ̂  C f\f(eίθ)\dθ, (1 > θ > 0).
J » J

0 0

PROOF. C3.2) has been proved by Zygmund [30]. Without loss of
generality we can assume

Then we have

' »=ϋ

where S^ denotes ("C, ̂ )-sum of the Taylor series of f(z\ and

f(z)/α - z)™ =
Consequently
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+ C| max ^ + 0 / ^ ) 1 a.

Applying Zygmund's theorem [28], we have

Γm
J n

max I

Γ
ί
o

, ^

^ A J gK

Cί I max σ
o

\fζθ)\dθ.

0 0

Thus we get (3. 1>
The proof of (3. 3) is almost identical. Since

+

we have

max σ
J

<A 2 \^'1'e
J v = 0
0

r*
+ A max I σ«l-^2\g)\z/n* dθ

J n

o
J* J*

^B] \g(θ)\2dθ<C] \f(θ)\dθ.

r1** dθ

0 0

THEOREM 3.2. // f(z) € H, then (3.1) is (C,£)-summable a.e.,(lognϊ is
convergence factors of (3.1) a.e.and (nζ) (I > 8 > 0) is (C, — S)-summability
factors of (3.1) a. e.



80 G. STOϊΌUCHI

PROOF. This is immediate from Theorem 3. 1, except the last proposi-
tion. Since trigonometrical polynomials are dense in //-class, by the well-
known method from (3. 3) we can conclude

er<-6> = o(nζ), a. e.
Then applying the generalized Hardy-Li ttlewood theorem of the author
[20], (τx6) is (C, — £)-summability factors of the series (3.1) a. e.

4. Applications of the method of Hardy-Littlewood concerning the
proof of a maximal theorem- Hardy and Littlewood [6] have proved a
maximal theorem by the very elegant method. Their method seems to
have comprehensive applications. We shall give here some. Theorem
4. 1 is sharper than Titchmarsh's [22, p. 87] and Theorem 4. 2 is sharper
than Kaczmarz's [1(Γ], but the proofs of them are easier.

THEOREM 4. 1. If fφ € L2 ( - oo, oo), then

r
/

max/ fWe-*« dtl

and

\ PROOF. Let F(u) be the Fourier transform of fφ € L2, then we
have

» r r
I \f(f)\"dt= I \F(u )\*du,

and if we put

Γ(^-i-e~M d̂ l s«'
G a ( t } - \ 0 , (W>»)

then the transform of GnΦ isBy PlanchereΓs theorem, we have

On the other hand, if we assume

\fφ\*dt = 1, \φ

and ψ (u) be any function such that

-ί
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then

/ = I \NΦ(x)dx\ f(t)e-ivtdt

- έ -Λ-

: Y f "
7Γ J

jdu
X

,
dx.

J f^ Γ
7Γ I I

Γ'
I

-ξ

sin CΛΓ+

-oβ -ξ

where Nι = W(Λ]) and ΛΓ2 = n(χ.^.
On the other hand, since

/ 2 si
\~τr

is the transform of G»ι(ί), we have

^\2 Γ" s i n -ΛΊ ^ΛΊ - «) s i n ^
j J ^ - ^ --

- f » A r " * Λ - / ^ sί
- J e ιe M- ^ π

where A 1̂}2 = min

i v "§ Xι —

say. Since

we have

_

- (/1+Λ)/V27Γ ,

Γl

ΛSC/
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g 2C f ^ΦKxJdxi log{2ξ(N, + 1) + 1}

-ξ
rζ

 a

-ξ
Similarly we have | / j | <Ξ A(f). The remaing part of the proof is

analogous- to the Fourier series case.

THEOREM 4.2. If we denote by Smjn(x,y) the partial sum of the double
Fourier series, then

f f 'max- /τ—Γ^^^x'J^—^==^ dxdy<:κ[ f \f(x,y >\*dxdy.
j J m,n vlog(w-f 2)vlog(w-f 2; J J

— Tt —It —It —It

PROOF. Let

C(l(x} = sin (n + l/2)AΓ/(2sin#/2),
then

1 f*f*
SMtn(x, yϊ = — - I I f(u, v)cm(x — u)ca(y — v)du dv.

0 0

[ \ f\x,

Let

and <p(x,y) be any function such as

I ί ^ 2 U,y) dxdy = 1,

— It — 7Γ

and put

1 f*f* f*Γl*
J = -— r I I \M>NΦ(x,y}dxdy I I f(u, v^cχ(u — X)CN(V — yϊdu dv,

00 00

where
ί \m,n - {log (m + 2}1-'2 {log (n + 2}]/2

;

M -
then

and

/ = τ~~τ i I f(u,v)dudv\ I \MiN
(P(xJy)Cjι(<u — X)CN(.V — y) dxdy

0 0 0 0

i r 2 * Γ 2 Λ f f2* r'27" i 2

/- <; — r I I du dv i I I \u,NΦ(x,y)Cχ(u — ΛΓ.)̂ vCz; — 3;) JΛ: J y | ίfw ί/t;
0 υ 00

- — Γ I I du dv -i / / λ.¥ιjAvι ΦdXijyi) cχι(u — Xι)c^v — jVi) dxLdy t\
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/ I λjia.jva Φ(

o o

/ / f λ.w&wtl'Pt.xi

where

Since

we have

where

,,fβ,

£tfι,a(#ι — #3) I I c^.aOi - ^,) | dxλdχ.zdy λ

Mj, 2 = min (Λfi, M 2 ) .

-It —It

Λ1t Tt

Γ f P^IΓ;

- ί Γλ

,J J \VI,
— Tt —it

;/7k.

i Γ f -|^Γ|
-f-

! dy.Clog (Ml + 2) log (7VT + 2)

The analogous result concerning simple Fourier series, can be gotten
applying Abel's transformation twice to Theorem 4. 2.

δ. A one-side localization theorem- A. Zygmund [29] has proved the
following localization theorem.

THEOREM 5.1. (Zygmund) If the Fourier coefficients of f(£) are o(l/n)
and fix} = 0 in xn < x<L x$ + β, then &[Γ\ converges to zero at the point XQ.

It is evident that tha C3ndition o(l/ n} cannot ba transpDsed by O(l/n},
but there is a cαntinuius function of tha b~>uαdad variation, which Fourier
coefficients are not o(ljn). (cf. Zygmund [27, p. 293]). Therefore the condi-
tion o(l/n} is not best possible.

THEOREM 5.2. as

an, bn are ^Fourier coefficients of f(x), and f(x} = 0 in x^
&[f\ converges to zero at XQ.

, where PΛ^ (an + ^ ) 1 / 5 2 and

8, then
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PROOF. Since
N

2 (nbncos nx() — nansin nx^)/ A/" -> 0
n = ι

as JV->oo, /"(#) has not generalized jump at #0, that is

(C, 1 -f £.) {/"(Λb 4- ί) - f(x0 - f)} -> 0
as Z->0. (cf. Sυnouchi [19]). From the one-side vanishing, we have

(C, 1 + £)/U0 -f *) -» 0, as * -> 0.
Therefore

(C, 1 + £)/(#o - *) -» 0, as t -> 0,
and then

(C, 1 + f) {/"(̂  + t) + /(Λb - t)} ->0.

Thus ©C/̂ l is (C, 1 + 2£>summable to zero at xϋ. On the other hand, since
N

2 n p,,/N -> 0,

as 7V->oo? @[/H converges to zero at x from the well-known Taυberian

theorem. Thus we get the theorem.
N

REMARK. 2 npn/N-+ 0 is a necessary and sufficient condition for the

function of the bounded variation to be continuous, from Wiener's theorem

[25]. Therefore the .condition of the theorem 5.2 is best possible in a

sense.

6. A problem of Zalcwasser. Zalcwasser [26] has proved the follow-
ing:

If /"(#) € L2(0;2τr); and sw(aO is n-th partial sum of the (5 [/], then
j\r

lim 2 I SPV(X) — f(x) I IN = 0, a. e.

provided that

and he proposed the problem: whether (C7l)-mean is transposed by (C,αO
(0 < oί < 1) mean or not. If the strong summablility is replaced by ordi-
nary summability; then the problem is answered affirmatively. **>

THEOREM 6.1. 7 / * / U ) € L 2 (0, 2τr)5 then SPV(X) is (C, a}-summable
(oί > 0) a. e., provided that

PROOF. Let us put

ΦvW = fe,-ι+ι e**1"**1* -f
where

*} Added in the proof. We have gotten the complete solution of Zalcwasser.
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and consider the series
n

2γ^(*).
v = U

It is evident {£>„(#)} is normalized orthogonal system and

272 = 2 ^ = f <fwydx<°o.
v=4) ?l=U J

0

Since

ί 2 2 V ^ = 0(1),
ι/ = fc

?i

2 7 " ^ " ^ Ξ Spv(x) is (C, l)-summable by Zalcwasser's theorem.
v = 0

Since the normalized orthogonal series of a function of L2 which is
(C, l')-summable is already (C, tf )-summable (# >0) (cf. Kaczmarz-Steinhaus
Γll,p. 182Ί), the theorem is valid.

7. Distribution of signs of the terms of conditionally convergent
series. E. Cesaro (cf. Pόlya and Szego [17, p. 25]) proved the following
theorem regarding to the distribution of signs of the terms of a conditio-
nally convergent 'series.

THEOREM 7.1. (Cesaro) // ][X = oo tυhere atί^Q and Σ«»<9» converges
ivhere εtl = .± 1, then

n n

lim inf - 2 £„ < 0 < lim sup — 2 £„.
rt->°° w w t ~~ ~~ »->« w Π t

H. Auerbach [3] proved the partial converse of this which reads as
follows :

THEOREM 7.2. (Auerbach) If ^an = oo (an > 0),
/s an distribution of signs {Sv} such that

n

lim 1 2 ^ = 0 (θ,= ± 1)
^ n ^

and

/zαs «̂ z inferior limit I and superior L (/ < L) which are preassigned arbitra-
rily.

On the other hand Izumi-Sυnouchi [9] generalized Theorem 7. 1.

THEOREM 7. 3. (Izumi-Sunouchi) // 20n = oo (0Λ > 0)
<7̂ <r/ ^an£>ι converges ( £ Λ — ± 1 ) ,

lim inf 2 ^ ^ 2 Â  S 0 g lim sup
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The object of this paragraph is to give a converse of this theorem
analogous to Theorem 7. 2.

THEOREM 7. 4. lfΣan= oo(«n ^ 0), an -> 0 ««rf ^n/^ + 1 -> l, Σ/*» - °o
there is a distribution of signs {£,} such that

n . n

lim 2 ^£J 2 /^ = 0
w->°° , Γ ι ' r = ι

>; #tt£ n has an inferior limit I and superior L (/ <Ξ D which are preas-
signed arbitrarily.

For the proof of this theorem, we need a lemma due to Agnew [1].

LEMMA 7.1. ( Agnew) // Σ Λ Λ = oo (tfn^>0), fΛew £A0r0 /s « sequence
{wfc} swc/i <7S %.+1 — % -> co and Σanj6 = oo.

PROOF OF THE THEOREM. If we denote by Σ < the series which is
obtained by putting anjc = 0 in the series 2 «», then we can select ^ ( + 1
or — 1) such that

converges. Since «w -> 0, we have
CO

2 £X = s

v = l

If {ttfc} is the sequence of Lemma 7. 1, then since 2«« f t = co, we can
select 6nk such that

in
lim sup 2 #»*£»* - L~ s

m *~ *=ι
m

lim inf 2 β ^ ^ = J — s,
m^oo fc=1

by Riemann's theorem. ^
Let {<?»,} be the sequence derived from {£„}, by replacing the %-th term

by £njc. Then since

2 a»en = 2 Λ i f » + 2 *»*£»*»

we have
?>ι m

lim sup 2 β»^» = L, u m i n f 2 α«̂ » — ^
m-^oo, Π ? w->βc r ι = l

Since {£v*} takes + 1 and — 1 alternatively and μn+ι/μn-> 1, we have
n i n

i i m 2 ρ& 1 2 ^ = °
w->°° v = l / „ = !

On the other hand since w^+i — wfc-> oo and μn+j/μn-*l, from the theorem
of Cauchy, we have

lim ^ = lim nk

 = 0.
"
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Consequently
n , n

lim 2 p£vl 2 P; - °>
n^°° v = l ' „ = !

which is the required.

REMARK. If we introduce the Lebesgue measure in the space of the
dyadic sequences in the usual manner, then for almost all sequences {£„} we
have

n

lim --1-2^= 0.
n-^ U ^

On the other hand,

" ^ ~ Γ = l /• v = ι

only in a null set for some {μv} (cf. Maruyama [13] and Tsuchikura [22]).
Theorem 7.2 gives an example from a full set, but Theorem *7. 4 from a
null set.

In analogous manner we can generalize another theorem of Agnew [2Ί.

THEOREM 7.5. // a sequence {s^ is terminating in 0, 1? 0, L ,
then let lim As,, = 1/2 where

// {s«} 2S <2τίy sequence from 0 or 1 only, then let AslL = 0 whenever

. On these hypothesis

we can conclude that A is regular.

Since the proof is analogous to Theorem 7.4 and Agnew [2Ί, we omit
the proof.
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