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I. Let D be a simply connected domain on z-plane, which contains z = 0
and z = oo belongs to its boundary. The boundary 1' of D consists of at
most a countable number of curves C, which extend to infinity in the both
directions. Let 2z, (|z,] = 7,) be the point on I', which lies nearest to z = 0,
then a circle |z| = »( > 7,) meets D in a number of cross cuts. We consi-
der only such cross cuts, which separate 2z = 0 from z = o in D and denote
them by 6@ = 1,2, ---., n= n(7r)).

We assume that # (7) is finite, but may tend to infinity for r—>oco. We

n
put 6, = >¢" and 7¢(r) be the total length
i=1

of .. @, divides D into n -4 1 simply con-
nected domains. Let D, be the simply con-
nected one, which contains z = 0, then D, is
bounded by 4, and a part of I".

We will prove the following theorem,
which is a generalization of Ahlfors’ defor-
mation theorem.

THEOREM 1. If we map D conformally
on |lw| <1 by w=7f(&z) (FO)=0), then the
tmage of O in |w| <1 can be enclosed in a finite number of circles K

(=1,2,-..., v(r)<u(r)), which cut |w| = 1 orthogonally, such that the
sum of radii is less than .
kr
. dr >
const. exp( - 7rf 78y /) V< k< 1),

70
where k is any positive number less than 1

When D is bounded by only one curve, then by Ahlfors’ deformation
theorem, we can prove easily that we can take 2= 1. Hence our theorem
is worse than Ahlfors’ deformation theorem, but is more general, since D
may be bounded by a countable number of curves.

PROOF.  First we map D conformally on J¢ >0 by &= @(z)
(#(2p) = o0, (0) = 7),then z = oo is mapped on a bounded closed set E of

masure zero on J¢ = 0. Let A{® be the image of g" then A{" is a Jordan

arc, whose both end points lie on J¢ == 0. Let A% be the finite domain,
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which is bounded by A% and 3¢ = 0. : we invert AY and A{® with respect
to I¢ = 0, then we obtain A®, ¢, waich lie in JI¢& < 0 and are symmstric
to AD, A®, We denote the area of A% by |AY| and the length of A{? by
|ASP], then

1AD] = 1801, 201 = L.
We put D© = AP + A®, > = A0+, then
(1) DO = 21aP], K] = 21A0.

By the isometric inequality,

47| DSP| < | P)3,
so that by (1),
(2) 27| AP = INP1%

Let L(») be the total length of A, = 2A®:
i=1 .

(3) L(r)= 2a\®],
i=1

then
L(r) = flfp'(rel"")irdé?,
67‘

so that
L(r) =< re(r)flsb’(re“’)l*rde,
o}‘
hence
" L(r? " (1o cpator]
(4) mmdrgf f|¢<re0)| rdrde.
r r 0

'

We see easily that the right hand side of (4) is at most ZiAﬁ‘)l, so that

i =1
by (2),
n n n 2
- L,(r_)z. &) &L I ¥,1,,( i >_ 1 2
ricry @ S 2P S g ZPIS 5, (ZN1) = 5 L%
or
= L(r)* .
(5) 27rf L dr < Lo
We put ’
_ [T L)
6 —_— —— |
(6> A7) yocry 4
then

2o ar
L(r) = —rd(r) a2
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so that from (5)

dr dx
Ty =T w0
hence integrating between 7,, », we have
L dr A7)
2”[ oy = 185G
or ’
_ [T Lo o [ _dr_
(7) A7) —f 607> dr < const. exp( - 271-[ Pe)) >

Since A{> can be enclosed in a circle of radius IXE.')IO, which has its center
on J¢ =0, if we denote A(7) the lower limit of the sum of radii of a -
finite number of circles, which contain {A\{} and each of which has its
center on 3¢ =0, then
(8) A = 2L(7).
Evidently there exists a finite number of circles A (i =1, 2, .-+, v=#)
which contain {A(%’} and each of which has its center on J& =0 and the sum
of radii is A(7).

From (7), (8) we have

©A(r)? B " odr
(9) 200 ~dr < const. exp( 27rf 1)) )

r0
Since by the definition of A(#), A(») decreases, when » increases, we
have for any 0 < k< 1,

T Ar)? " odr
(10) A(r)? f 7’0(1’) < a(r) dr < const. exp(—Zyrf ) )

kr To

r

Since 6(r) < 27, we have

(a1 A(r) < const. exp( — nf —;9%)—), 0 < k<.
7o
=i ~ - P —i _
By w = T wemap I¢ >0 on |w] <1 .and put w EORET] (=),

then /(0) =0 and w = f(z) maps D conformally on |w| < 1. Let A%’ be
mapped on a circle K, then K® [cuts |w| =1 orthogonally and the image
of ¢ in |w| < 1 by w = f(2) is contained in {K¥}. The sum of radii of
K3 is less than const. A(7), so that by (11), is less than

K7
const. exp( — 7zf 7&%), (0< k<),

0
which proves the theorem.

2. With the same notation as §1, let u,(z) be a harmonic function in
D,, such that #,.(z) =1 on ¢, and #.(z) =0 on the remaining part of the
boundary of D,, i. e. u,(z) is the harmonic measure of ¢, with respect to
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D,. We will prove:
THEOREM 2. Fcr any point z in D, such that | z| =< p,

Kr
U (2) < c<p>exp( — f )

O< k<),
where C(p) depends on p only.

PROOF. We map D conformally on |w| < 1 by w = f(2) (f(0) = 0), then
by Theorem 1, the image of ¢, in |w| < 1 is contained in a finite nurnber

of orthogonal circles K& (i =1, 2,----, n= n(r)), such that the sum of
radii is less than
A~k
(1) const. exp (—— 7:} —7%7”) O < k<.
Let K9 meet |w| =1 at ay, B: ar;d put
(2) Y = arg (Bi/a;) >0,
then by (1),
n Er d

3 + < const. — _ar

(3) ‘z:;\[f < const exp( nf 7’9(?’))

7o
Now K¢ drivides |w| < 1 into two parts and let A{> be that part,
which contains z=0. A% is bounded by a part of K¢ in |w| <1 and an
~~
arc B:a; on |w| = 1.
Consider
w — Bi

(4) v»,-(w):argw__a{,

then it is easily seen that
vi(w) = 7/2 + Yi/2 on the part of K in [w]| <1

= /2 on the arc B/,E,. on |w| = 1.
Hence if we put
(5) U: () = 2 (u(w) — ¥/2),
then
(6) Ui(w) =1 on the part of K in |w] < 1,

=0 on the arc @i on |w| =1
We put
(7) Uw) = 2Uiw), A= [JaP,
i=1 i=1

then U(w) is harmonic in A, and from (6),
(8) U(w) =1 on the boundary of A, in |w| < 1,

=0 on the boundary of A, on |w| == 1.
Let by w = f(2), us(z) become U (w) in |w| < 1, then U.(w) is harmonic
in A, and since the image of g, is contained in {K{’}, we have from (8),
U-(w) =< U(w) on the boundary of A,, so that
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U(w) = U(w) in A
Let D® be the part of D contained in |z] <p and A® be its image in

lw| < 1. If w lies in A®, then since U;(0) == —\71,7-

k]

Ui(w) < const. ¢,
where const. depends on p only. Hence by (3),
n 3

u,(2) = Up(w) < U(w) < const. > ¥ < const. exp< — ,,f l’;)

“= 76(7)
where const. depends on p only, which proves the thorem. '

3. Let A be a connected domain on z-plane, which contains z = 0 and

= co belongs to its boundary. The boundary of A consists of at most
a countable number of curves {C}. We divide {C} into two classes {C}
={C} + {C"}, where C’ are closed curves and C” are open curves, which
extend to infinity in the both directions.

We add the insides of C’ to A and D be the resulting domain. D is
simply connected and is bounded by {C”}. We call D the associated do-
main of A. We define §,, r6(7) for the associated domain D of A as in
§1.

THEOREM 3. Let w = f(z) be regular in A and [f(2)| < A on its boun-
dary and M(r) be the maximum of |f(z)| on ihe part of |z| = r contained
in A. If there exists a point zy in A, such that |/ (z,)| > \. then

K
log log MX(D = zf 75(77)" — const. , 0< k<1).

PROOF. log*[f(z)/A]| is subharmonic in A and vanishes on its bound-
ary. We extend the definition of log*|f(z)/A| in D by putting log*|[/(2)/A]
= 0 insides of C’, then log*|f(z)/A| is subharmonic in D.

We define #,(z) as Theorem 2, then log*|f (2)/A] =< log(M(7)/A\) » ur(z)
on the boundary of D,. Since log*|f(z)/A! is subharmonic in D,, we have
log*| f(2)/A] < log (M(7)/\) u,(2) in Dy,

especially at z,,
0 < log*| f(zD/A| = log (M(7)/\) * ur(20).
Since by Theorem 2,

ki
#,(29) < const. exp( — ”J rg(f;f) ), V< k< 1),

we have
My (T oar
log log N = T PO const.
which proves the theorem.
From Theorem 3, we can deduce easily Ahlfors’ theorem" on the num-

1> L. Ahlfors: Uber die asymptotischen Werte der meromorphen Funktionen endli-
cher Ordnung. Acta Acad. Aboensis. Math. et Phys.6 Nr. 9 (1932).
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bar of asymptotic values of an integral function of finite order. An analo-
gous theorem as Theorem 3 was proved by H. Milloux® and A. Dinghas®,
but they assume that the boundary of A consists of only one curve.

From Theorem 3, we have:

THEOREM 4. Let f(2) bz regalar in a domain A, which contains z =90
and z = oo belongs to its boundary and |f(z)| < A on its boundary.

/A

e T dr M((r)
}g}}(ﬂf acry — log log —— ) o0, O<k<),
then | ()| =<\ in A, where r(r) is defined for the associated domain D
of A.

As a spzacial case, we have the following theorem, which is an exten-

sion of the classiacl theorem of Lindeléf and Phragmén :

COROLLARY. Let f(z) be regular in a domain A and |j7(z) | <\ on ils
boundary and let 0(r) <0 for r =r,.
If
log M (7)

lim T

I'>eo

=0,
then | f(2)| <\ in A.
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