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1. Let {s,} denote the m-th partial sum of a given infinite series
>.a,. Let {p,} be a sequence of constants, real or complex, and let

P=p,+0++0,3 Pr=0_,=0, fork=1.
The sequence {t,}, given by

(L) = o Pt = popy Pt (Pas0),
defines the Norlund means of the sequence {s,} generated by the sequence
{p.}.

Then, the series 3 a, is said to be summable | N, p,|, if the sequence
{t.} is of bounded variation, that is, the series

(1.2) S [ty — tass

is convergent.

In the special cases in which p, = I'(n + a)/'(@)['(n + 1), ®> 0, and
9, = 1/(n + 1), summability |N, p,| are the same as the summability
|C, | and the absolute harmonic summability, respectively.

Let f(¢t) be a periodic function with period 27 and integrable (L)
over (—m, w). We assume without any loss of generality that the Fourier

series of f(t) is given by

(1.3) S (@, cos né + b,sinnt) = 3 A, ()

and Si f®)dt = 0.

We use the notations
P.(t) = p(t) = % (F@ + 8 + flo — B}

AMn) = Nn) — Mn + 1) 5
d\(t)
Tdt
[#] denotes the integral part of real number x .

= N();
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2. Recently, one of the present authors [10] proved the following
theorem, which is a generalization of theorems due to M. Izumi and S.
Izumi [3] and K. Kanno [5].

THEOREM A. Let {p,} be non-negative and non-increasing. Suppose
that {¢(n)} is @ positive bounded sequence and Nt), t >0, is a positive
non-decreasing function such that {Mn)p(n)/(n + 1)} is non-increasing.

If the conditions

o MR)k) _ o (Mn) = ..
2.1) SHEE -0 ( 5 ) n=12,
and
(2.2) | MC1) do)] <o

hold for some constant C(>2r), then the series

SMmpm) A ()
1s summable | N, p,|, at t = x.
If we replace the condition (2.2) by the condition
(2.3) MC/t)yp(t) e BV(0, ) for a constant C > 7,
then next theorems are known.

THEOREM B (M. and S. Izumi [4]). Let {p,} be a positive non-increas-
ing sequence and o = 0.
If the conditions

S 1 (log n)~
2.4) S5 =0 <—T—> for all n=1
and
(2.5) o(t)(log C/t)*e BV(0, &) for a constant C(>T)

hold, then the series >.,7-, A,(t) is summable |N, p,|, at t = x.

This theorem is a generalization of the theorems of T. Singh [13]
and O. P. Varshney [15].

THEOREM C (M. Mudiraj [9]). Let {p,} be a positive mon-increasing
sequence such that

(2.6) {AP,/p.)} 18 bounded
and



ABSOLUTE NORLUND SUMMABILITY 441

(2.7) P,/P, = O{(m/n)*}, where 0 < a<1, for m<n,

uniformly in m, n.
Let {p(n)} be a positive mom-increasing sequence such that the
series Siv_, p(nm)/n converges. If

(2.8) t-*gp(t) e BV(0, 70)

then the series
S ne A,

18 summable |N, p,|, at t = x.

Theorem C is an extension of the theorem due to S.M. Mazhar [7]
for the case 8 = 0. Putting Mt) = ¢t*, the condition (2.1) is deduced
from the condition (2.7) under the hypothesis of z(n) in Theorem C.

Now, S. Izumi [2] proved the following theorem.

THEOREM D. Two conditions

(2.9) (log 2m/t)f(t) € BV(0, )
and
(2.10) |, (og 2a/t) | dfit)| <=

are mutually exclusive.
Also, Y. Okuyama [11] proved the following theorem.

THEOREM E. Let Mt) be a non-decreasing function. If the condi-
tion

RCLIECIPE
0 t?

holds, then the condition (2.2) is equivalent to the condition (2.3).

Thus, by these Theorems D and E, we see that Theorem A does
not necessarily contain Theorems B and C.

In this paper, we shall generalize these Theorems B and C in the
following form.

THEOREM. Let {p,} be non-negative and mon-increasing. Suppose
that (), t>0, is a positive mon-decreasing function such that tN'(E)/N(t)
1s nom-imereasing, t*N'(t)/N(t) is mon-decreasing and {Mn)p(n)/n} is non-
inereasing, where u(t), t >0, is a positive bounded function.

If the conditions
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o N(k)pk)
(2.11) ?;‘{ ) <oo,
o ME)E) _ o (Mn) _
@2.1) 52 "O<P,, >,'n—1,2,
and
(2.3) MCH)p(t) e BV(0, ) for a constant C(>m)

hold, then the series
S A, @)

18 summable | N, p,|, at t = .

If we put in our theorem \(t) = (log ¢)* and p(k) = 1/(log k)* (@ = 0),
then ¢\ (¢)/M(t) = a/(log t)*™* is non-increasing and t2\/(£)/\%(t) = at/(log t)*™
is non-decreasing. Further, we can easily see that

o Nk)k) . < 14
= k) Zﬁ k(log k)'** <

and

5 x(l%k(k) - 3 k; - =0 (xlgm) =o( <lo§:z>“) :

Thus our theorem contains Theorem B.
Similarly, if we put\(¢) = t*and p, = I'(n + @)/['(@)(n+1) (0 Za<1)
then Theorem C is deduced from our theorem.

3. We need some lemmas for the proof of our theorem.
LEmMA 1 (H. P. Dikshit [1]). Let {p.} be a given sequence, then for
any %, we have
n n—1
(1 —2) 3 pa® = pua™ — P& — 3, Apt
k=m lk=m
where n = m = 0.
LEMMA 2 (L. McFadden [8]). If {p,} s non-negative and non-increas-
ing, then for 0 <a <b<c, 0=t <7, and for any n, we have
b
2 peexp(i(n — kjt)| = APy,
where A s a positive constant, mot mecessarily the same at each oc-
curences.

LEMMA 3. Let \(t), t >0, be a positive non-decreasing function. If
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IN()/N(E) is mom-imcreasing and 2N (E)/Nt) is nom-decreasing, them we
have

S” cos kt dt‘ <4 N (k)

G D) for a comstant C(>r).

PROOF. By an integration by parts, we have
J:S"coskt dt:[sinkt ]”__1_8"_@{ 1 in Jot dt
» MCJt) MCE) o T do di x(C/t)}sm

_C(* Nt
A So ————tw( o) sin kt dt .

Since N(C/t)/tan¥(C/t) is non-decreasing and \'(C/t)/t*\*(C/t) is non-increasing,
we obtain

[J] sin kt dt

IA

S:/k X’(C/t)
o N(CE)
=k N(C[t) sinkt
So (Ct)  t a

(1)
=y

N (k)
= A—V(—k) .

Hence we complete the proof of Lemma 3.

%}
Je
¢
e

=|Q

7/k &3
_ S sin kt di
0 t

4. ProOOF OF THEOREM. By (1.1), we have

(1) e = 23 P MO0 A (@)
where
(4.2) Api(@) = %S p(t)cos(k + 1)tdt .

Hence we have by (4.1) and (4.2)
< P'n—k — P'n—k—l
35 (Bt — B ) va(@)

n n—1

(4.3) t,—t.

_ %g o(t) {z (P ot — P—;):EIL)x(k)p(k)cos(k + 1)t}dt .

k=1 n n—1

Now, we put
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g(t) = MClt)p(t) for O<t=m.
Then, by (4.2) and an integration by parts, we have

4.4 An@) = %g(n) SO QW dt — %S dg(t) S:————wsil(“c’/;)l)” du

Putting = = [C/2t], we have by (4.3) and (4.4)

St — el < 4lo@) 3 |3 (Tt - B )i || %dt‘
Al oo {55 (5 - ;,ﬂ"!‘)Mm ) | 0 |}
Al 3,13 (Pﬁﬂk L . ‘)Mk);( 1) c———°i((kc;;)1)“du’}

=L +1L+1,

say. By Lemma 3, we obtain

b Pair N(k)
I_A”X‘;;Z‘l( = PH)Mk);(k) e

_ N (k) (k) & v Paiy
= 4 508 ,,2,,<P,, g )

o N (k) (k)
=4 =1 N(k) <o

because the sequence {P,_,/P,}(k =1) is bounded, non-decreasing and the
hypothesis (2.11) holds.

Since
‘ cos(k + Lju t
80 MC/u) du‘ = MGt
we have
= a{ agw {5 M) S, (Bamt — Pamam
MCt) #= P,_.
t 41
o <k>p<k>}
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by virtue of the hypothesis that \(k) is non-decreasing and pu(k) is
bounded.
By an integration by parts, we have

‘eos(b+1u o _ sin(k + 1)t C CNCE)
S° MCw) du (k + DMC/E) * I + 1) So PO sin(k + 1)t d¢ .

Thus we obtain

IséAS Idg(t)l{ I ”_;2 k;( P Plgn"ll)x(k)#(k)&?l(ckjl;)t‘}
A o { 5,3 (B B P ' O

= Is1 + Isz ’
say. By the same method as that used by Y. Okuyama [10], we have

P, P, sin(k + 1)t | _
(G~ =) M) T RCCR)

Thus we proved the finiteness of I,. On the other hand, by the similar
estimation as |J| in the proof of Lemma 3, we have

ERY(YN o\ ()
SO A Sindk + 1 dt) <480 for 0<isa.

Thus we have

S (P P\ ME)K) BN (B)
In=4) 149 { g‘mz( P, P._/k+D V(k)}

|
= 4 gy {EXOLB 5 (Fos Do)

7\,(]0) n=2r+2 P” Pn__1
N(E)pk) & (Puoi P
k=2c+3  \(k) n=zlc ( P, P, >}

s 4| 14 { 5 XOE0)

_.I_

= 4 1dgw)| <=

by virtue of the hypothesis (2.11). Thus, by I, and I,,, we see that I,

is finite.
Collecting the above estimations, we have

nz=1|tn - tln—l! <oo.

Therefore, we complete the proof of our theorem.
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5. In this section, we consider some applications of our theorem.
COROLLARY 1. If1>a=0,8=0,a+ B<1, and
(log C/t)’p(t) e BV(0, 7) ,
then the series

S A,(t) . )
nz;o Tog(n + 27 1s summable |N, 1/(n + 2){log(n + 2)}*|
at t = x.

For a« = B8 = 0, this corollary is due to O.P. Varshney [14].
COROLLARY 2. If a >0 and
(log C/t)p(t) € BV(0, 7) ,
then the series

2‘0 A, (t) s summable |N, {log(n + 2)}*/(n + 2)|

at t = x.

Corollary 2 is due to M. Izumi and S. Izumi [4]. This corollary
does not hold for a = 0 by Pati’s theorem [12], and the case ¢ =1 in
the corollary is due to O.P. Varshney [15].

COROLLARY 3. If
(log log C/t)’p(t)e BV(0,m)  for 0=p8<1,
then the series

3 A, (1)

2 log(n + llog log(n + By - T mabte [N Hn o 2logtn =+ 2)

at t = 2.
COROLLARY 4. If a >0 and
(log log C/t)p(t) e BV(0, ) ,

then the series

i A is summable |N, {loglog(n + 2)}*/(n + 2)log(n + 2)|
»=0 log(n + 2)

at t = w.
COROLLARY 5. If a =0 and
t™*p(t)e BV(0, w) ,
then the sertes
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,na
1 {log(n + 1)}

at t = x, where ¢ > 0.

Ms

A, (t) 1s summable |C, a|

n

Il

For Corollary 5, the reader is also referred to K. Matsumoto [6] for
the case 8 = 0.

As these corollaries are similarly proved, we shall prove here only
Corollary 1.

PROOF OF COROLLARY 1. In our theorem, we put »,=1/(k+ 2){log(k + 2)}~,
ME) = {log(t + 2)}f and p(k) = 1/log(k + 2). Then we have

_ < 1 ~ t—a
b= T otega T o = loglk + 2177,
) N’(k)#(k) 0 1 -
2Tl = ARG T olesh 2T -

and

2 Nk)Pﬂ =0 ({log(n—i 2)}1—“) =0 @n)) '

Hence we see that all assumptions of our theorem hold. Therefore, the
proof is complete.
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