
Tόhoku Math. Journ.
29 (1977), 439-448.

ON THE ABSOLUTE NORLUND SUMMABILITY
FACTORS OF FOURIER SERIES

Kόsi KANNO AND YASUO OKUYAMA

(Received May 10, 1976)

1. Let {sn} denote the n-th partial sum of a given infinite series
Σ an- Let {pn} be a sequence of constants, real or complex, and let

Pn = Po + JPIH ^Vnj P-k = P-k = 0, for k ^ 1 .

The sequence {tn}, given by

(1.1) tn = ±.± Pn_ksk = J

defines the Nόrlund means of the sequence {sn} generated by the sequence

{P.}.
Then, the series Σ an is said to be summable | N, pn \, if the sequence

{tn} is of bounded variation, that is, the series

(1.2) Σl*.-t-il
Λ = l

is convergent.
In the special cases in which pn = Γ(n + a)/Γ(a)Γ(n + 1), α > 0 , and

pn = l/(n + l)f summability \N,pn\ are the same as the summability
IC, a I and the absolute harmonic summability, respectively.

Let f(t) be a periodic function with period 2π and integrable (L)
over (—7Γ, TΓ). We assume without any loss of generality that the Fourier
series of f(t) is given by

(1.3) Σ (an cos nt + bn sin nt) = Σ -A»(*)

and Γ /(ί)dί = 0.

We use the notations

φx(t) = <p(t) = i - {/(« + t) + /(» - ί)}
2

= λ(%) - λ(n + 1)

= v(t)

[α;] denotes the integral part of real number x .
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2. Recently, one of the present authors [10] proved the following
theorem, which is a generalization of theorems due to M. Izumi and S.
Izumi [3] and K. Kanno [5].

THEOREM A. Let {pn} be non-negative and non-increasing. Suppose
that {μ{n)} is a positive bounded sequence and λ(t), t > 0, is a positive
non-decreasing function such that {X(n)μ(n)/(n + 1)} is non-increasing.

If the conditions

(2.1) Σ m K k ) = 0 ( ) ,
*=» kPk \ Pn I

and

(2.2) [\(C/t)\dφ(t)\<°o
Jo

hold for some constant C(>2π), then the series

is summable \N, pn\, at t = x.

If we replace the condition (2.2) by the condition

(2.3) X(C/t)φ(t) 6 BV(0, π) for a constant C > π ,

then next theorems are known.

THEOREM B (M. and S. Izumi [4]). Let {pn} be a positive non-increas-
ing sequence and a ^ 0.

If the conditions

(2.4) Σ-L = Q(Q°g"n foralln^l
k = nkPk \ Pn I

and

(2.5) φ(t)(logC/t)aeBV(0, π) for a constant C(>π)

hold, then the series Σ«=i ^n(^) ^s summable \N, pn\, at t = x.

This theorem is a generalization of the theorems of T. Singh [13]
and 0. P. Varshney [15].

THEOREM C (M. Mudiraj [9]). Let {pn} be a positive non-increasing
sequence such that

(2.6) {A(PJpJ} is bounded

and
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(2.7) PJPn = 0{(m/n)a}, where 0 < a ̂  1, for m ̂  n ,

uniformly in m, n.
Let {μ(n)} be a positive non-increasing sequence such that the

series Σ~=i μ(n)/n converges. If

(2.8) raφ(t) e BV(0, π) ,

then the series

Σ naμ(n)An(t)

is summable \N, pn\, at t = x.

Theorem C is an extension of the theorem due to S. M. Mazhar [7]
for the case β = 0. Putting λ(ί) = ta, the condition (2.1) is deduced
from the condition (2.7) under the hypothesis of μ(n) in Theorem C.

Now, S. Izumi [2] proved the following theorem.

THEOREM D. TWO conditions

(2.9) (log 2τr/ί)/(t) 6 B F(0, π)

and

(2.10) \\log2π/t)\df(t)\<^
Jo

are mutually exclusive.

Also, Y. Okuyama [11] proved the following theorem.

THEOREM E. Let X(t) be a non-decreasing function. If the condi-
tion

[gV(C/t)ly(t)|dt

holds, then the condition (2.2) is equivalent to the condition (2.3).

Thus, by these Theorems D and E, we see that Theorem A does
not necessarily contain Theorems B and C.

In this paper, we shall generalize these Theorems B and C in the
following form.

THEOREM. Let {pn} be non-negative and non-increasing. Suppose
that λ(t), £>0, is a positive non-decreasing function such that tXf(t)/\\t)
is non-increasing, t2X'(t)/X\t) is non-decreasing and {X(n)μ(n)ln} is non-
increasing, where μ(t), t > 0, is a positive bounded function.

If the conditions
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/o 11^ X"1 \"v/\ / ^
\Δ.LL) / j \ °° ,

n =• 1 2

and

(2.3) X(C/t)φ(t)eBV(O,π) for a constant C(>π)

hold, then the series

Σ Hn)μ(n)An+1(t)
»=1

is summable \Nfpn\, at t = x.

If we put in our theorem λ(t) = (log t)a and /*(&) = l/(log k)a (a ^ 0),
then tX\t)/X\t) = α/(log £)α+1 is non-increasing and t2X\t)/X\t) = αi/(log £)α+1

is non-decreasing. Further, we can easily see that

^ X'(k)μ(k) _ ψ a

and

*=• fcP, *=• fcPfc V Pn J \ Pn J '

Thus our theorem contains Theorem B.
Similarly, if we put X(t) = £* and pΛ = Γ(w + a)/Γ(a)Γ(n + 1) (0 ̂  a ^ 1)

then Theorem C is deduced from our theorem.

3. We need some lemmas for the proof of our theorem.

LEMMA 1 (H. P. Dikshit [1]). Let {pn} be a given sequence, then for
any x, we have

(l - x) Σ vkχ
k -= P^m - pnχ

n+1 - Σ Apkχ
k+1

k=m k = m

where n ^ m ^ 0.

LEMMA 2 (L. McFadden [8]). If {pn} is non-negative and non-increas-
ing, then for 0 ^ α ^ δ < c o > 0 ^ έ ^ τ r , and for any n, we have

b

2-Λ Pk c A P v v\rt/ n/)°)
k = a

where A is a positive constant, not necessarily the same at each oc-
cur ences.

LEMMA 3. Let X(t), t > 0, be a positive non-decreasing function. If
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tX\t)/X\t) is non-increasing and t2X'(t)/X%t) is non-decreasing, then we
have

[π cos kt

Jo X(C/t)
dt

X\k)
for a constant C(>π).

PROOF. By an integration by parts, we have

sinktΓ si
LkX(X(C/t) L kX(C/t) Jo k Jo dtiχ(C/t)

= £-[* X'(CJ? sin ktdt.
k)o fX\C/t)

Since X\C/t)/tX2(C/t) is non-decreasing and X'(C/i)/t2X2(C/t) is non-increasing,
we obtain

k v(cyt) β !τ

C V"k X'(C/t) sin kt
A; Jo tX\C/t) t

sinktdt

< , λ'(A )

Hence we complete the proof of Lemma 3.

4. PROOF OF THEOREM. By (1.1), we have

(4.1) tn = 4 - Σ PH

where

(4.2) Afc+iCa?) = — \ φ(t)cos(k
π Jo

Hence we have by (4.1) and (4.2)

(4.3) tn - t^ = Σ (^ - ^=ήHk)μ{k)AUx)

= - Γ φ(t) \± (^ - Z^)x(k)μ(k)C0S(k + l)t\dt
TΓJO U = I V Pn Pn_λ I )

Now, we put
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g(t) = X(C/t)φ(t) for 0 < t ^ π .

Then, by (4.2) and an integration by parts, we have

π Jo
(4.4) Ak+ι(x) = ! « * ) [ }

π Jo X(C/t)

Putting τ = [C/2t], we have by (4.3) and (4.4)

=2r+2 U =

t
o X(C/U)

cos(fc -j

d u

U)

say. By Lemma 3, we obtain

because the sequence {Pn-k/Pn}(k ^ 1) is bounded, non-decreasing and the
hypothesis (2.11) holds.

Since

f'
Jo HC/u) λ(C/ί) '

we have

L< A Γ I dfl-(ί) I {—^r I f Σ (%=*
Jo I λ(G/ί) »=i *=i \ P Λ

I dg(t) I {
0 l

2r+i/p p

Σ (%=* - % t L

k\ P P

< o o
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by virtue of the hypothesis that X(k) is non-decreasing and μ(k) is
bounded.

By an integration by parts, we have

_ sin(fc + l)t C f' W(P/t)
+ (fc + 1 ) Jo fx

Thus we obtain

Σ
2+

Σ ±
= 2 r + 2 A =

T I J
-*31 ~Γ -*32 J

say. By the same method as that used by Y. Okuyama [10], we have

- O(λ(C/t))

Thus we proved the finiteness of 731. On the other hand, by the similar
estimation as \J\ in the proof of Lemma 3, we have

g A ^ W for 0 < ί < 7 r .

Thus we have

Σ

pn_, //

by virtue of the hypothesis (2.11). Thus, by J31 and J32, we see that I3

is finite.
Collecting the above estimations, we have

Therefore, we complete the proof of our theorem.
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5. In this section, we consider some applications of our theorem.

COROLLARY 1. If 1 > a ^ 0, β ^ 0, a + β < 1, and

(logC/tyφ(t)eBV(0,π),

then the series

is summable \N, l/(n + 2){\og(n + 2)}α

Σ
*=o {\og(n + 2)Y~β

at t = x.

For a = β = 0, this corollary is due to O.P. Varshney [14].

COROLLARY 2. // a > 0 αtiώ

(log C/t)?>(i)eB 7(0, TΓ) ,

ίfeβn the series

Σ -An(̂ ) i« summable \ N, {\og(n + 2)}7(w + 2)

at t = x.

Corollary 2 is due to M. Izumi and S. Izumi [4]. This corollary
does not hold for a = 0 by Pati's theorem [12], and the case a = 1 in
the corollary is due to O.P. Varshney [15].

COROLLARY 3. //

(log log C/t)βφ(t) 6 BV(0, π) for 0 ^ β < 1 ,

fce series

Σ ,—7 ,,/f, ^TΓT ί s summαδίe \N,
log(n + 2){log log(w + 2)}1"^

at t = a;.

COROLLARY 4. If a> 0 and

(loglog C/t)φ(t) e BV(0, π) ,

then the series

is summable | iV, {log log(w + 2)}a/(^ + 2)log(w + 2) |Σ
»=o log(n + 2)

at t = x.

COROLLARY 5. If a^O and

raφ(t)eBV(0,π),

then the series
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na

n=i {\og(n

at t = x, where ε > 0.

An(t) is summable \C, a\

For Corollary 5, the reader is also referred to K. Matsumoto [6] for
the case β = 0.

As these corollaries are similarly proved, we shall prove here only
Corollary 1.

PROOF OF COROLLARY 1. In our theorem, we put pk = l/(k + 2){log(k + 2)}a,
λ(t) = {log(ί + 2)}' and μ(lc) = l/log(fc + 2). Then we have

fc1! λ(fc)

and

\ = Q (X(n)\

Hence we see that all assumptions of our theorem hold. Therefore, the
proof is complete.
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