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0. Introduction. Let Mn and Mn+P be connected complete Rieman-
nian manifolds of dimension n and n + p respectively. An isometric
immersion of Mn into Mn+P is called a planar geodesic immersion if
every geodesic in Mn is mapped locally into a 2-dimensional totally
geodesic submanifold of Mn+P. We can see that such an immersion is
an isotropic immersion in the sense of B. O'Neill [10] with parallel
second fundamental tensor and vice versa. Planar geodesic immersions
into Euclidean space has studied by S. L. Hong [7] who stated that if
/: Mn —* En+P is a planar geodesic immersion, then the sectional curva-
ture of Mn is 1/4-pinched except for the totally geodesic case and more-
over if Mn has constant positive sectional curvature, then f(Mn) is an
-^-dimensional sphere or 42-sphere which is usually called a Veronese
manifold. On the other hand, T. Itoh and K. Ogiue [9] has showed
that if / : Mn(c) —• Mn+P(c) (p = n(n + l)/2 — 1) is an isotropic immersion
with parallel second fundamental tensor and c > c, then c = nc/2(n + 1)
and the immersion is rigid, where Mn(c) (resp. Mn+P(c)) denotes a
Riemannian manifold of constant curvature c (resp. c). These results
lead the conjecture that if / : Mn —• Mn+p(c) is a planar geodesic immer-
sion, then Mn is isometric to a symmetric space of rank one or Eucli-
dean space and the immersion is rigid. In the present paper, we shall
give the affirmative answer.

In § 1, basic equations of immersions that we need are given. In
§ 2, the accurate definition of a planar geodesic immersion and its models
for compact symmetric spaces of rank one will be given. As will be
shown in the later section, we must construct algebraically minimal im-
mersions of compact symmetric spaces of rank one into spheres which
are usually constructed by using eigenfunctions of the Laplacian with
respect to the invariant metric (cf. [4] and [15]). However, our const-
ruction is due to S. S. Tai [12] who gave examples of tight imbeddings
for compact symmetric spaces of rank one (in [12], minimum imbeddings
mean tight imbeddings and for the definition, see [12] and [14]). S.
Kobayashi and M. Takeuchi [14] obtained tight imbeddings for a certain
class of compact symmetric spaces containing spaces of rank one and
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proved that the height functions are eigenfunctions of the Laplacian by
showing that the mean curvature normal vanishes. In § 2, we show
more directly that the height functions of the imbeddings constructed
by S. S. Tai are eigenfunctions. We also consider how geodesies are
mapped into spheres. In § 3, we obtain various properties of the second
fundamental form of a planar geodesic immersion especially in the case
where the ambient manifold is a space form. In § 4, we reduce our
problem to the minimal, full and planar geodesic immersions of compact
symmetric spaces of rank one into spheres. In § 5, we state our main
theorems and corollaries.

The author wishes to express his hearty thanks to Professor S.
Ishihara for his constant encouragement and valuable suggestions.

1. Preliminaries. Let / : Mn —> Mn+P be an isometric immersion of
an ^-dimensional Riemannian manifold Mn into an (n + ̂ -dimensional
Riemannian manifold Mn+P. For all local formulas and computations we
may assume / as an imbedding and thus, in this section, we identify
xeMn with f(x) e Mn+P. The tangent space TxM

n is identified with a
subspace of TxM

n+p. Letters V, W, X, Y and Z (resp. £, η and ζ) will
be vectors at x or vector fields on a neighborhood of x tangent (resp.
normal) to Mn. If we denote the covariant differentiation of the
Riemannian manifold Mn+P by F, then we may write

(i.i) rxγ=Fxγ+mx, Y)

where VXY and H(X, Y) denote the components of VXY tangent and
normal to Mn respectively. Then V becomes the covariant differentia-
tion of the Riemannian manifold Mn. The symmetric bilinear form H
valued in the normal space is called the second fundamental form of the
immersion /. If £ is a normal vector field on a neighborhood of x,
then we can also write

(1.2) Fxξ= -AξX+Vxξ

where F1 is the covariant differentiation with respect to the induced
connection in the normal bundle NM which will be called the normal
connection. The tangential component AξX is related to the second
fundamental form H as follows:

(1.8) <AX, Y) = (H(X, Y), ξ)

for any Ye TxM
n, where < , > denotes the inner product of vectors

with respect to the Riemannian metric of Mn+P. Thus Aξ is a symmetric
linear transformation of TxM

n. Given an orthonormal normal frame
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{£•+» , L+p}> we write Aa = Aία(α == w + 1, , n + p). In the sequel,
indices a, β and 7 run over the range {n + 1, , w + p}.

Let ProjTM and ProjNM be the projections of 2yif%+3) to the tangent
space TxM

n and the normal space NXM* respectively. Let V be the
covariant differentiation with respect to the induced connection in the
direct sum TM + NM. We denote curvature tensors for the connec-
tions F, V and VL by R, R and R1 respectively. If we take an ortho-
normal normal frame {ξn+ίf , ξn+P}, then we have the following structure
equations of Gauss, Codazzi and Ricci:

(1.4) ProjTMR(X9 Y)Z = R(X, Y)Z - Σ « A α F , Z)AaX- (AaX, Z}AaY} ,

(1.5) ProjNMR(X, Y)Z = (F'XH)(Y, Z) - (F'YH)(X, Z) ,

(1.6) ProjNXR(X, Y)ξ = R^X, Y)ξ - Σ <[At, Aa]X,

In later sections, we mainly deal with cases where the ambient
manifold is a space form Mn+P(c), i.e., a simply connected complete
Riemannian manifold with constant sectional curvature c. Thus we
must give basic formulas in those cases. Structure equations (1.4), (1.5)
and (1.6) can be written as

(1.7) R(X, Y)Z = c{(Y, Z)X - <X, Z) Y} + Σ {<AaY, Z)AaX

- (AaX, Z)AaY) ,

(1.8) (r'xH){Y, Z) = (F'YH)(X, Z) ,

(1.9) R"{X, Y)ξ = Σ <[Aξ, Aa]X, Y)L .
a

Equation (1.7) gives a formula for the Ricci curvature tensor S:

(1.10) S = c(n- 1)1 + Σ (trace Aa)Aa - Σ A%
a a

where I is the identity transformation on the tangent space of Mn.
Let η be the mean curvature normal defined by

(1.11) V = — Σ (trace Aa)ξa .
n

Then the scalar curvature p satisfies

(1.12) ^ ^ f f Λ ί n - l J + Λ IIVir-IIHII1

where \\η\\2 = Σ ( t r a c e Aa)
2/n2 and \\H\\2 = Σ t r a c e A \ .

We are now listing up complete totally geodesic submanifolds and
totally umbilical submanifolds in space forms. For each real number c
and each integer n>l there is (up to isometry) exactly one w-dimen-
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sional (real) space form of constant curvature c. Thus we may assume
that (n + p)-dimensional space forms are

(E) Euclidean space En+P: Rn+P with usual inner product,
c = 0;

( S ) E u c l i d e a n s p h e r e S n + P ( c ) : { ( x u ••, x n + p + 1 ) e R n + P + 1 :

{Xiγ+ ... + (Xn+P+Iy = 1/c}

with the metric induced from En+P+1, c> 0;

(H) Hyperbolic space Hn+P(c): {(x19 ••, xn+p+1) e Rn+P+1:

{Xiγ + ... + (Xn+pγ _ (χn+p+iy = l/c}

with the metric induced from the metric ds2 = (dxtf + + (dxn+p)
2 —

(dxn+p+1f in Rn+P+1, c < 0. The following is a list of ^-dimensional com-
plete totally geodesic submanifolds and totally umbilical submanifolds
up to congruence in (n + p)-dimensional space forms. For the space
form (E), we have

( i ) P l a n e s En: {(xu , x n + p ) e En+P: x n + 1 = .-* = x n + p = 0} ,
H •= 0 ;

( i i ) S p h e r e s S n ( c ) : {(xlf , x n + p ) e E n + P : (x,)2 + •••
+ (zΛ+1)

2 = l/c, xn+2 = = xn+p = 0}.

For the space form (S), we have

( i ) Great spheres Sn(c): {(xlt , xn+p+1) e Sn+P(c):

xn+2 = = xn+p+i = 0}, H= 0;
( i i) Small spheres Sn(c): {(xlf , xn+p+1) e Sn+P(c):

xn+2 = l/l/c ~ l/c, α;Λ+3 = = xn+p+ι = 0},

where 0 < c < c. For the space form (H), we have also

( i ) Great spheres Hn(c): {(xlf , xn+p+1) e Hn+P(c):

Xn+i = • = %n+p = 0}, H = 0;

(ii) Small spheres:
(e) En = {(xlf , xn+p+1) e Hn+P(c): xn+p+1 = xn+ι + t,

Xn+2 = = » +p = 0, t > 0};
(s) S (β) = {(x19 , α:Λ+p+1) e JΓ + '(5): (α;,)2 + •

+ (α;Λ+1)
2 = l/c, ^Λ + 2 = = xn+p = 0, c > 0};

(h) Hn(c) = {(x19 , α;w+p+1) 6 H»+P(c): xn+1 = τ/1/c - l/c,
s«+2 = = xn+P = 0, c < c < 0}.

Above all, a totally geodesic (resp. umbilical) submanifold in Sn+P(c) is
the intersection of an (n + l)-dimensional plane passing through the
origin (resp. not passing through the origin) in En+P+1 with Sn+P(c) and
similarly for Hn+P(c).
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2. Planar geodesic immersions and their models. Let / : Mn —>
Mn+P be an isometric immersion and σ: (tlf t2) —> Mn be arbitrary geodesic
in Mn. If there exist an open interval It and 2-dimensional totally
geodesic -submanif old Pt for each t e (tlf t2) such that teltc (tί9t2) and
f(σ(It)) c Ptf then / is called a planar geodesic immersion. In the
sequel, we assume that n ^ 2, because this definition is worthless when
Λ = l .

Well, we shall construct models of planar geodesic immersions. Let
F be the field R of real numbers, the field C of complex numbers or
the field Q of quaternions. In a natural way, RaCaQ. The conjugate
of each element x e Q is defined as follows:

x = x0 — xγeγ — x2e2 — x3e3 for # = x0 + a ^ + x2e2 + #3e3 6 Q

where {1, elf e2, e3} is usual basis for Q. Define a number d by

(1 if F=R,

d = • 2 if F = C ,

4 if F = Q .

Let x be a column vector (xt) e F m + 1 and 3K(m + 1, F) be the vector
space of all (m + 1) x (m + 1) matrices over F. In this section, we
shall make use of the following convention on the range of indices:
l ^ i ^ m + 1, O^a^d-1. Let

#(m + 1, F) = {Ae3ft(m + 1, F): A* = A} ,

I7(m + 1, F) = {J7eSW(m + l, F): U*U=I}

where A* = *A and I is the identity matrix. The usual inner product
on F m + 1 = JB«~+"d is given by

<ΛΓ, ^> = Re (ΛΓ*#) for JC, y e Fm+ί

where Re(jc*^) denotes the real part of x*y. The inner product on
m{m + 1, F) = R<m+v2d is also defined as

<A, £> = — Re trace (A£*) for A , ΰ e 2K(m + 1, F ) .

If A, B e φ(m + 1, F), then trace (A2?*) = trace (AB) is real and hence

(A, B} = — trace (AS) for A, Be φ(m + 1, F).
2

Let F P m denote the protective space over F. FPm is considered
as the quotient space of the unit ((m + ϊ)d — l)-dimensional sphere
g(m+Dd-î j = {x e F m + 1 : JC*ΛΓ = 1} obtained by identifying JC with xλ where
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λ e F such that |λ | = 1. The canonical metric g0 in FPm is the invari-
ant metric such that the fibering π: S ( m + 1 ) d~1(l)->FPm is a Riemannian
submersion. Thus the sectional curvature of RPm is 1, the holomorphic
sectional curvature of CPm is 4 and the Q-sectional curvature of QPm

is 4 with respect to the metric g0 (cf. [8]). Define a map ψ: S{m+1)d~ι(iy+
φ(m + 1, F) as follows:

(2.1) f (x) = xx* =

for JC = (a;i)6iS{m+1)<z~1(l). Then it is easily verified that ψ gives a map
ψ:FPm—»!Q{m + l,F) such that ψ = ψoπ. Define a hyperplane
F) and a vector subspace φo(m + 1, F) in φ(m + 1, F) by

&(m + 1, F) = {A e £(m + 1, F): trace A = 1} ,

£0(m + l , F ) = {Ae $(m + 1, F): trace A = 0} .

Then we have

dim &(m + 1, F) - dim £0(m + 1, F) - m ( m + 1 } d + m .

Since trace f(jc) = l for any xeS ( m + 1 ) < |-1(l), ^ maps F P m into
i7(m + 1, F) can be orthogonally represented on φ(m + 1, F) by

?7(A) = UA C7* for ί7 G U(m + 1, F), A e φ(m + 1, F) .

The 1-dimensional subspace spanned by / is orthogonal to φ^m + 1, F)
and QQ(m + 1, F) and pointwise fixed by the action of U(m + 1, F).
Thus the representation of U(m + 1, F) on φ(m + 1, F) induces ortho-
gonal representations on Q^m + 1, F) and £0(w + 1, F) respectively.
The following two lemmas are well-known.

LEMMA 2.1. For each AeQ(m + 1, F), ίfeere e#ίs£s αw Ue Z7(m+1,
F) swcΛ, ίfeαί U*AU is a diagonal matrix whose elements are real
numbers.

LEMMA 2.2. ψ(FPm) = { ie&(m + 1, F): A2 = A}.

For later use, we shall prove the following lemma due to S.S. Tai
[12].

LEMMA 2.3. The map ψ is an isometric, full and equivariant im-
bedding of FPm into $i(m + 1, F) where the Riemannian metric of
FPm is g0.



PLANAR GEODESIC IMMERSIONS 31

PROOF. The map ψ is equivariant, since

ψ(U π(x)) = φ(Ux) = (Ux)(Ux)* = Uψ(x)U*

for any j c e S ^ ^ l ) .

Take an element Λ: of S^+^-^l) and let y be an element of S< +1*-1(1)
which is orthogonal to {xX:XeF, \X\ = 1}. This condition is equivalent
to y*x = 0. If we identify y with an unit tangent vector at x, then
y is orthogonal to the fiber passing through x. The curve JC cos t + y
sinί is an unit speed geodesic in S(TO+1)d"1(l). Then the curve π(xcost +
ysint) is an unit speed geodesic tangent to π*(y) at π(x) in FPm. We
have now

(2.2) ψ(π(x cos t + y sin t)) — xx* COS2 t + yy* sin21

+ (xy* + yx*) cos t sin t .

Thus we obtain

(ΛΓX* COS2 ί + ##* sin2 ί

= xy* + #**

which is an element of £(m + 1, F). The square of length of this
vector is equal to

\\ψ*(π*(v)W = 4 t r a c e &x»* + ^*)(W* + »**» = 1

Therefore we see that ψ is an isometric immersion. If ψ(x) = ψ(y),
then xx* = yy* which implies that y = xX for some λ e F such that
|λ| = 1 and hence ψ is an imbedding. To prove that ψ is full, we
assume that there be a hyperplane P in ^(m + 1, F) such that
f(FPm) c P. Let iV be an unit vector in §(m + 1, F) which is normal
to the hyperplane containing P and passing through the origin 0 of
£(m + 1, F). Then Lemma 2.1 implies that there is an Ue U(m + 1, F)
such that U*NU is a diagonal matrix whose i-th diagonal element is
Xi e R. From Lemma 2.2, we have

f(FPm) = {ί/*Atf: A e &(m + 1, F), A2 = A}

and since

trace (U*A U U*NU) = trace (AN) = 0 for A e f (FP W ),

we see that U*NU is orthogonal to the vector space spanned by the
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set ψ(FPm). Noting that ψ(FPm) contains the matrix Et whose ΐ-th
diagonal element is 1 and the others are 0, we have N = 0 which is a
contradiction. Therefore ψ must be full. g.e.d.

LEMMA 2.4. Let ld = m(m + ί)d/2 + m - 1. Then

ψ(FPm) c S<<*+1(2) n &(m + 1, F) = Sι*(2(m + l)/m) .

PROOF. For each A e ψ(FPm), we obtain {A, A) = 1/2 and hence

ψ(FPm) c S<<*+1(2) n &(m + 1, F) .

The matrix I/(m + 1) is contained in ^ ( m + 1, F). Hence we see that
the above intersection is a sphere centered at I/(m + 1) with radius
Vmβ(m + 1). q.e.d.

Define φ: FPm -»£0(m + 1, F) by

φ(x) = ψ(a ) - — ί — for x 6 F P m .
m + 1

Then Lemmas 2.3 and 2.4 imply that φ is an isometric, full and equi-
variant imbedding into the sphere Sld(2(m + 1)1 m) with center 0. Let
A 6 $0(m + 1, F) and hA be the height function defined over FPm in the
direction A. Then

(2.3) hA(x) = <A, φ ) > = i - trace (^(α;))

at xeFPm. Since ^ is equivariant, we have

(2.4) hmA) = hΛoU-1

for every UeU(m + l,F) and ieiρ o (m + l, F). In the following
lemma, it can be shown that hA is an eigenfunction of the Laplacian Δ
with respect to g0 for all A e ̂ Q(m + 1, F).

LEMMA 2.5. For each A e !gQ(m + 1, F), we have

ΔhA = 2d(m + l)hA .

PROOF. By virture of Lemmas 2.1 and (2.4), we may assume that
A is a diagonal matrix whose i-th diagonal element is λiβ Since π is a
Riemannian submersion, it suffices to compute the Laplacian of hA°π
on S{m+l)d~ι(X). Extend hA°π to a homogeneous polynomial hA on Fm+ί.
From (2.1) and (2.3), we have

WΦ)) = \ trace (A (ψ(x) -
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where jeeS ( m + 1 ) d ~ 1 ( l ) and *x = (xlf •••, xm+1). Thus we obtain

hA(x) = - | - Σ λ€| z, |2 for any JC e F m + 1 .

Let J 5 and ΔF denote the Laplacians on /S
( m + 1 ) d~1(l) and Fm+ί respectively.

Then we know

Δs(hAoπ) = ΔFhA + -?-KΛ + {dim + 1) -

on S{m+l)d-\l) where r = | l * l l Since Σλ« = Of we see that fe4 is a
harmonic homogeneous polynomial of degree 2 and hence ΔFhA = 0. We
have also

-j-hA = J L ^

on S^^-'il). Thus we obtain

Js(hAoπ) = 2d(m

which shows our assertion. q.e.d.

In the following theorem and corollary, models for planar geodesic
immersions will be given.

THEOREM 1. Let φ be the isometric imbedding explained above.
Change the metric g0 for g = (2(m + l)/mc) g0 in FPm, so that the sec-
tional curvature of RPm is mcj2{m + 1) and the holomorphic sectional
curvature (resp. Q-sectional curvature) of CPm (resp. QPm) is 2mc/(m+l).
Making use of φ, we obtain an isometric imbedding f: FPm —• Sld(c)
which is minimal, full and equivarίant. This imbedding f is also
planar geodesic. Moreover we obtain an isometric immersion foπ:
Sm(c) —• Sh(c) with the same property, where c = mc/2(m + 1).

PROOF. By using T. Takahashi's result [13] and Lemma 2.5, we
can prove the minimality of /. Thus, for the rest we have only to
prove that / is planar geodesic. To prove that, it suffices to show that
ψ is planar geodesic. Let σ be arbitrary geodesic in FPm. Then σ is

σ(t) = π(x cost + y sin t) for some x,ye S<Λ+1)*-1(1)

where t is the arc-length parameter. By ψ, σ is mapped to the curve
(2.2) in the proof of Lemma 2.3, which can be rewritten as

ψ(σ(t)) = -kjc** + yy*)+ -J-(JCJC* - yy*) cos 2ί

^ * + yx*) sin 2 ί .
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Therefore ψog is a circle with center (l/2)(xx* + yy*) and radius 1/2.
q.e.d.

COROLLARY. Let t be a totally geodesic or umbilical immersion of
Sld(c) into a space form Mmd+P(c) where p^ (m — l)(md + 2)/2 and
c^c. Then the composite cof (resp. t°f°π) of FPm (resp. Sm(c)) into
Mmd+P(c) is a planar geodesic immersion.

REMARK 2.1. Let σ be a geodesic in FPm with respect to the metric
g. Then f<>σ is a circle with radius ((m + l)/2mc)ί/2.

Next, we shall construct a model for planar geodesic imbeddings
of Gayley protective plane CayP2 into a sphere. Let Cay denote the
Cayley algebra over R. For m and d used in the preceding considera-
tion we promise here to be m = 2 and d = 8. Thus indices i runs over
the range {1, 2, 3} and a over the range {0,1, , 7}. Notice that ld=25.
The conjugate of xeCay is defined as follows:

x = x0 — X& — . . . — χ7e7 for x = Σ χa^a € Cay

where {e0 = 1, elf , e7} is the usual base for Cay. The usual inner
product Cay = JR8 is

<&, τ/> = Re (αjf) = Σ #α2/α for α; = Σ x*ea > V = Σ 2/A e Cα?/

and the norm of a? is defined as \χ\ = (χf x)1/2. Let φ(3, Cαi/) be the
vector space consisting of 3 x 3 Hermitian matrices, i.e.,

£(3, Cay) = {Ae SK(3, Cαy): A* = A} .

Then £(3, Cay) is a Jordan algebra under the multiplication

AoB = {AB + BA) for Λ £ 6 $(3, Cαy) .

Define an inner product in φ(3, Cay) = R27 by

(A, B) = — trace(A<>£) for 4,
Δ

Each element A e φ(3, Cα̂ /) can be written as

( uz uλ

ΰ3 λ2 Uj I; λt eR Uίβ Cay (i = 1, 2, 3) ,

which will be denoted by {λ, u). If A = {λ, ύ) and 5 = {μ, v}, then the
inner product of A and 5 becomes

(2.5) (A, B) = Σ ( γ λ i Λ + (ui9 v,)) .
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Let ^(3, Cay) = {A e £(3, Ca#): trace A = 1} and φo(3, C%) = {A e
, Cα /̂): trace A = 0}. Then the Cay ley projective plane CayP2 is defined

as the subset of φi(3, Cay):

CayP2 = { 4 G &(3, Cay): A2 = A} .

The exceptional Lie group F4 can be defined as the group of automor-
phisms of the Jordan algebra £(3, Cay). Let Et be the diagonal matrix
whose ί-th diagonal element is 1 and the others are 0 for each i. The
following lemmas are well-known (cf. [6]).

LEMMA 2.6. The exceptional Lie group F4 preserves the inner pro-
duct of £(3, Cay).

LEMMA 2.7. For each A e φ(3, Cay), there exists θ e F4 such that
Θ(A) is a diagonal matrix, i.e., Θ{A) = Σ ^ Ά XteR.

LEMMA 2.8. Spin (9) ^ {θ e F4: Θ(E2) = E2}.

LEMMA 2.9. CayP2 = {0tEa): (9 e JFJ.

Lemma 2.9 means that FA leaves CayP2 invariant and acts on it
transitively. Thus we see from Lemma 2.8 that CayP2 = FJSpin (9).
Moreover, since F4 leaves the 1-dimensional subspace spanned by I
pointwise fixed which is orthogonal to φo(3> Cay), F4 has an orthogonal
representation on φo(3, Cay).

Let ψ be the inclusion of CayP2 into ^(3, Cay) and let φ: CayP2 —>
£o(3, Cα?/) be the imbedding such that φ(A) = A — 7/3 for any A e CayP2.
Using the similar method to Lemmas 2.3 and 2.4, we have

LEMMA 2.10. The imbedding φ: CayP2 —> φo(3, CαT/) is /wϊ£ α^ώ eguΐ-
variant, where φ(CayP2) c S2δ(3) holds.

Let TE2(CayP2) denote the tangent space of Cα^/P2 at £?a. TEz(CayP2)
is the set {X 6 φ(3, Cα?/): X°j^a + E2oX = X}. If X = {λ, u} is a tangent
vector of CayP2 at 2£2, then the straightforward computation shows
that λ = 0 and u2 = 0, from which we find

(2.6) TE2(CayP2) - {Xe φo(3, Cα»): X = {0, (wlf 0, w,)}, ^ , u3 e Cα }̂ .

Identifying {0, (uί9 0, u3)}e TE2(CayP2) with (^, u3)eCay x Cα?/ = R\ the
induced metric gQ on CayP2 by the inclusion ψ» coincides with the usual
metric in Rlβ at E2. In fact we have from (2.5)

go(X, Y) = (X, Y) = (ulf v,) + (uz, vz)

for X = (ulf u3) and IT = (vlt vd). Thus, in the sequel, we continue the
above identification. Here we note that the induced metric gQ is an
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invariant metric on CayP2 because of the fact that ψ is equivariant.
Let NE2(CayP2) be the normal space in φo(3, Cay) with respect to φ.
Then it is easily verified that NE2(CayP2) is given by

(2.7) NE2(CayP2) = {ξe £0(3, Cay): ζ = {λ, (0, u2, 0)} ,

λ e iί3, u2 6 Cay} .

Well, we shall find two geodesies in CayP2 with respect to the
metric g0 which intersect orthogonally at E2. Let J19 J2 and J 3 be defined
respectively as

(
0 0 0 \ / 0 0 1

0 0 - I I , J2 = ί 0 0 0

0 1 0 / \-l 00
Let Elta = {0, (βα, 0, 0)}, E2,a = {0, (0, β., 0)} and Ez,a = {0, (0, 0, β.)}. Then
J0,(ΐ = 1, 2, 3) and Eita(i = 1, 2, 3; α = 0,1, . , 7) form a basis for ίρ(3,
Cα^/). Define J^ by

JXA) == [e/i, A] = JtA - AJt for any A e φ(3, Cα /̂) ,
which is a linear transformation of £(3, Cay). By straightforward com-
putation, we have

= 0, Ji(Ei+1) — Eiί0, Ji(Ei+2) = — Eit0 ,

) = 2 ( E i + t - E i + 1 ) 9 / « ( # , , . ) = 0 f o r α ^ 0 ,

Ji(Ei+lt0) = - Ei+2}0, ft{Ew,Λ) = Ei+2,a for α ^ 0 ,

Ji(Eί+2,o) = ^<+1,o, Ji(Eί+2,a) = - ^ < + l f β for α ^ 0 ,
(mod 3).

The Lie algebra of i^4 denoted by f4 consists of derivations of the
Jordan algebra φ(3, Cay) and the Lie algebra b4 of Spin (9) is the
subset {δ e f4: δ ^ ) = 0}. Using (2.8), it can be shown that J^i = 1, 2, 3)
is contained in f4, but the author can not examine directly for Jλ and
J3 to be orthogonal to ί>4 with respect to the Killing form of f4.
However we can verify that σt{t) = (exp tJ^)(E2) and σ3(t) = (expief3)(£/2)
are geodesies in CayP2.

LEMMA 2.11. The above curves σ1 and σz in CayP2 are unit speed
geodesies with respect to the metric g0 and can be written as

(2.8)

Ez) + -J-(sin 2t)Elt0 + i-(cos 2t)(E2 -
2 2

(2.9)
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These geodesies intersect orthogonally at E2. We have also

(2.10) 0,(0) = (1, 0), <τ3(0) = (0,1), H((l, 0), (1, 0)) = {(0, - 2 , 2), 0},

H(φ, 1), (0,1)) = {(2, - 2 , 0), 0}

where H is the second fundamental form of the imbedding φ.

PROOF. We shall prove (2.9) for only σlt since a similar computa-
tion shows (2.9) for σ3. Thus we must calculate (tjy{E2)lJ\ for any
j = 0,1, 2, . If j = 0, then this is equal to E2. By the induction,
we can easily prove from (2.8) that if j = 2k — 1, then

and if j — 2k, then

MiψA = λ{-ir^ J^(E3 - E2) for k=l,2,

Therefore we obtain

= i - (^2 + Ez) + i - (sin 2t)Euo + i-(cos 2ί)(JSr

2 - E3) .

The velocity vectors σλ and (73 are given by

σx{t) = (cos 2t)S l f 0 - (sin 2t)(Br

a - ^3) ,

alt) = (cos 2ί)-B8f0 - (sin 2t)(E2 - J&O

because of (2.9). Since EltOf E3f0 and E2 — E3 (or E2 — EJ are orthonor-
mal vectors in φ(3, Cay), it follows that || OΊ || = ||<73|| = 1 and these two
curves intersect orthogonally at E2.

Next, we shall prove that σt and σz are geodesies in CayP2. Let
D be the covariant differentiation in φo(3, Cay) with respect to < , >
and V be the covariant differentiation in CayP1 with respect to the
induced metric gQ. Then we have from (1.1) and the equations above

Similarly we have

V, (0)<73 + H(σ,(0), (7,(0)) = 2(E, - E2) .
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On the other hand, (2.7) implies that E3 — E2 and Et — E2 are normal
vectors at E2. Thus we have V σι^)σ1 — V'a^σ3 — 0. We have also

# ( ^ ( 0 ) , ^(0)) = 2(#3 - E2\ H(σ3(0), σs(0)) = 2(E, - E2) .

Since curves σx and σ3 are orbits of 1-parameter groups of isometry

passing through E2, σγ and σ3 are geodesies in CayP2 with respect to

0o q.e.d

In the following lemma, the maximal sectional curvature of CayP2

(with respect to g0) is given, which will be called C-sectional curvature
in this paper.

LEMMA 2.12. The C-sectional curvature of CayP2 with respect to
the metric g0 is equal to 4.

PROOF. Using the equation (1.7), we have

*((1, 0), (0, 1)) = <2Γ((1, 0), (1, 0)), H((0, 1), (0, 1))> - | | # ( ( 1 , 0), (0, 1))| |2

where s((l, 0), (0,1)) denotes the sectional curvature corresponding to
the plane section spanned by tangent vectors (1, 0) and (0,1). On the
other hand, since φ is equivariant and the linear isotropy group acts
transitively on a hypersphere of TE2(CayP2), we see that φ is isotropic.
By B. O'Neill [10] Lemma 2 (cf. § 3) and (2.10), we have

<#((1, 0), (1, 0)), iϊ((0, 1), (0, l))> + 2 || fΓ((l, 0), (0,1))| | 2

- | | { ( 0 , - 2 , 2 ) , 0}||2 = 4 .

Thus we obtain

s((l, 0), (0, 1)) - A<{(0, - 2 , 2), 0}, {(2, - 2 , 0), 0}>-2 = 1 .

However this is the minimal sectional curvature. In fact, R.B. Brown
and A. Gray [2] showed that the sectional curvature corresponding to
the plane section spanned by orthonormal vectors (1, 0) and (uίf uz) is
equal to c{\uγ\

2 + \uz\
2/4) for some ceR. Thus we have c = 4. q.e.d.

Let hA be the height function defined over CayP2 in the direction

A e φo(3, Cay). Since φ is equivariant, we have

(2.11) hΘU) = hAoθ~'

for any θ e F4 and A e £0(3, Cay). Let F4 act on the space C°°(CayP2) of
all C°° functions over CayP2 via θ f = foθ~\ Equation (2.11) means
that the subspace {hA: A e £0(3, Cay)} of C°°(CayP2) is invariant by this
action of F4. Define φ: &(3, Cay) — C°°(CayP2) by φ(A) = hA. Then φ is
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injective because φ is full. Since the representation of F4 on £0(3, Cay)
is irreducible, using [15] Corollary 7.2, we see that {hA: A e £0(3, Cay)}
is contained in the eigenspace Vλ corresponding to some eigenvalue λ
of the Laplacian with respect to gQ. On the other hand, [1] Proposition
C. I. 8 states that the representation of F4 on Vλ is irreducible and
hence φ is a linear isomorphism to Vλ. From T. Takahashi's result [13],
we obtain λ = 48.

We are now giving models for planar geodesic immersions of CayP2

into spheres in the following theorem and corollary.

THEOREM 2. Let φ be the isometric imbedding explained above.
Change the metric g0 for g = (S/c)g0 in CayP2, so that the Csectional
curvature is 4<f/3. Making use of φ, we obtain an isometric imbedding
f:CayP2—>S2δ(c) which is minimal, full and equivariant. This imbed-
ding is also planar geodesic.

PROOF. It suffices to show that the inclusion ψ is planar geodesic.
This will be easily verified from (2.9) and the fact that f is equivariant.
Indeed, σ1 is a circle with center (E2 + E3)/2 and with radius 1/2. q.e.d.

COROLLARY. Let c be a totally geodesic or umbilical immersion of
S2δ(c) into a space form M1Q+P(c) where p ^ 9 and c ^ c. Then the
composite cof: CayP2 —> M1Q+P(c) is a planar geodesic immersion.

REMARK 2.2. Let σ be a geodesic in CayP2 with respect to the
metric g. Then foσ is a circle with radius (3/4c )1/2.

REMARK 2.3. Let M be FPm or CayP2 and let Vλ be the eigenspace
with eigenvalue λ of the Laplacian with respect to g0 where λ = 2d x
(m + 1) or λ = 48 according as 1 = FPm or M = CayP2. We regard
Vλ (with the global inner product) as an Euclidean space. Let dim
Vλ = pλ + 1 and {fu •• ,/Pi+i} be an orthonormal basis for Vλ. Define
f':M-+Vλ via /'(a?) = (fx{x), •• ffpλ+ι(x)) Then the image is contained
in a sphere Sp*. The map / ' is an immersion and, suitably changing
the metric gQ on M, we have an isometric minimal immersion of M into
a sphere Spχ (in detail, see [4], [15]). This construction of minimal
immersions into spheres coincides with our construction. In fact, the
map φ: $Q(m + 1, F) -+ V2d{m+ι) (resp. φo(3, Cay) -» Vi8) defined by φ(A) = hA

is a homothety because of the irreducibility of the representation of
U(m + 1, F)(resp. F4) on φo(m + 1, F)(resp. £0(3, Cay)).

3. Properties of the second fundamental form. Let Mn and Mn+P be
connected complete Riemannian manifolds of dimension n and n + p respec-
tively. Let / : Mn —> Mn+p be a planar geodesic immersion. Then we have
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LEMMA 3.1. (S. L. Hong). If X and Y are orthonormal vectors
tangent to Mn, then

(3.1) <H(X, X), H(X, Y)) = 0.

PROOF. We may assume H{X, X) Φ 0. Let σ: (-tlf t1)-+Mn be an
unit speed geodesic such that σ(0) = X and f(σ( — t17 Q)(zP where P is
a 2-dimensional totally geodesic submanifold in Mn+P. Then, from (1.1),
we have

(3.2) Ffifσ = H(σ, σ) .

On the other hand, regarding f<>σ as a curve in P, we have Vfjfσ e TσP,
because P is a totally geodesic submanifold in Mn+P. If we take t2 small
enough, then H(σ, σ) Φ 0 on ( —12, t2). Thus fσ and iϊ(σ, ά) span TσP on
( — ί2, t2). Since Pfσ(H(σ, σ)) e TσP, we can write

(3.3) Vfh{H{σ, σ)) - u/(ά) + vH{σ, σ)

for smooth functions u = ^(ί) and i; = v(ί) defined on ( —12, t2). Extending
7 to a vector field Z along σ tangent to M*9 we thus have

(H(X, X), H(X, Y)) = <H{σ, σ), H{σ, Z)) | ί = 0 = (H(σ, σ\ FfJZ) | ί = 0

- - (Ffi(H(σ, σ)\ fZ) U = 0 . q.e.d.

The equation (3.1) is equivalent to the condition that / is isotropic,

i.e.,

(3.4) \\H(X,XW = X*

for all unit vector X tangent to Mn where λ is a function on Mn.

LEMMA 3.2. Let X, Y be orthonormal vectors tangent to Mn and
s(X, Y) (resp. s(X, Y)) denote the sectional curvature of Mn+P (resp. Mn)
corresponding to the plane section spanned by X and Y. Then

(3.5) (H(X, X), H{Y, Γ)> + 2 || J5Γ(X, F ) | | 2 - λ2 ,

(3.6) 3 \\H(X, YW + 8(X, Y) - s(X, Y) = λ2,

(3.7) n2\\η\\2 + 2 | | # | | 2 = n(n + 2)λ2 .

PROOF. Equations (3.5) and (3.6) are due to B. O'Neill [10]. Choosing
an orthonormal basis {Xlf —-,Xn} on the tangent space TxM

n, we have
from (3.6)

n(n - l)λ2 = β( Σ \\H(Xi9 X5)\\2 - Σ

= 3(11 J5Γ| |2 -
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On the other hand, (1.4) implies

Thus we obtain (3.7). q.e.d.

There is a situation under which the equation (1.8) holds although
Mn+P is not a space form, for example, complex submanifold in a complex
space form. Under such situation we have

LEMMA 3.3. // the equation (1.8) holds, then λ is constant.

PROOF. Let x be arbitrary fixed point of Mn and X be any unit
vector at x tangent to Mn. Take the normal coordinate neighborhood
around x in Mn and an unit vector Y at x tangent to Mn which is
orthogonal to X. Let σ be the unit speed geodesic in Mn such that
σ(0) = x and σ(0) = Y. Assume H(Y, Y) Φ 0. Then we have the equation
(3.3) on a small open interval containing 0. If we parallel translate X
and Y along the unique geodesic from x to each point in the normal
coordinate neighborhood, then we obtain locally defined vector fields X
and Ϋ extending X and Y respectively such that FXX=FYΫ=FXΫ=FYX=O
at x. We find

X λ2 - X-(H(Ϋ, Ϋ), H(Ϋ, ?)> = 2(FX(H(Ϋ, Ϋ)), H(Y, Y))

= 2(FX(H(Ϋ, Ϋ)), #(Γ, Γ)> = 2<(Pyϊχr, Γ), JT(Γ, Γ)> .

Using the equations (1.8) and (3.3), we have

X λ2 = 2((F'YH){X, Y), H(Y, Y)) = 2(FY(H(X, Ϋ)), ίί(F, Γ)>

f)), H(Γ, Γ)> = -2<H(X, F), ? f

, Γ), u(0)/Γ + v(0)H(Y,

Thus (3.1) implies that X λ2 = 0. If H(Y, Y) = 0, then λ(α) = 0 and so
clearly X λ2 = 0. q.e.d.

LEMMA 3.4. // the equation (1.8) holds, then the second fundamental
form is parallel, i.e., F'H = 0. We have also

(3.8) IE Σ <AaX, Y)AaZ =

where ® denotes the cyclic sum with respect to X, Y and Z.

PROOF. If λ = 0, then H = 0. Thus we may assume λ =£ 0. Let X
be any unit vector at a point x tangent to M* and σ be the unit speed
geodesic such that σ(0) = x and ά(0) = X Now we have equations (3.2)
and (3.3). Since (H(σ, σ), H{a, σ)) = λ2 is constant, we find
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X*v = {Vf,{H(σ, σ)\ H(σ, σ)) = 0 .

We also have

u = (Vf,(H{σ, σ)),fσ) = -<H(σ, σ), Ff6fσ) = -λ 2 .

Therefore (3.3) reduces to

(3.9) rf*H(σ, σ)) = -X2fσ .

On the other hand, by (1.2) we obtain

rfS(H(σf σ)) = -fAmMσ + Pt(H(σ, σ)),

from which

(FXH)(X, X) = (FσH)(σ, σ ) U - rt(H{σ, σ))\t=0 = 0

and

Since the equation (1.8) holds, we see that VΉ = 0. The second equation
above is equivalent to Σ α (AaX, X)AaX = λ2<X, X)X for any vector X
tangent to Mn. Symmetrizing this equation, we obtain (3.8). q.e.d.

In the sequel, the ambient space Mn+P will be a space form Mn+P(c)
with curvature c. The Laplacian of the second fundamental form is
given by

in terms of local coordinates. In the following lemma, we make use of
the formula

(3.10) ΔAa =

= ΓF(trace Aa) + cnAa — c(trace Aa)I

+ Σ (trace Aβ)AβAa - Σ (trace AaAβ)Aβ

+ 2 Σ AβAaAβ - Σ A\Aa - Σ AaAf
β β β

which was calculated in [3].

LEMMA 3.5. Let Mn+P be a space form with curvature c. Then f
is pseudo umbilical, i.e.,

(3.11) Λ-I^ll 2/.

In particular, if — λ2 = c ^ 0, then f is a totally geodesic immersion
into an Euclidean space (i.e., (E) (i) exhibited in §1) or a totally urn-
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bilical immersion of an Euclidean space into a hyperbolic space (i.e.,
(H) (ii) (e)) according as c = 0 or c < 0.

PROOF. By means of Lemma 3.4, (3.10) can be written as

(3.12) 0 = cnAa - c(trace Aa)I + Σ (trace Aβ)AβAa
β

- Σ (trace AaAβ)Aβ + 2 Σ AβAaAβ - Σ A\Aa - Σ*AaA
2

β .
β β β β

Let x be arbitrary fixed point and {Xlf , Xn} be an orthonormal basis
for TXM. From (3.8) we have

<, xi)z+2(xί,ΣΣ
a i

which shows
(3.13) Σ {(trace Aβ)Aβ + 2A2

β} = X\n + 2)7 .

Putting Y = A ^ , X = X* in (3.8), we have

Σ Σ P Λ A ^ A ^ + (A^X,, >̂AαX, + (AaZ, XJ
α i

= λ 2 Σί<X ί f AίX^Z + <AfXlf Z)Xt + (Z,
i

which implies

(3.14) Σ {(trace AaAβ)Aβ + 2AβAaAβ) = λ2{(trace Aa)I + 2Aa) .
β

Since the mean curvature normal η is parallel with respect to the normal
connection F 1, equation (1.9) implies [Aη, Aa] = 0 for each a which means
that Σ (trace Aβ)Aβ and Aa are commutative for each a. Thus from
(3.13)

(3.15) (Σ,A2

β)Aa = Aa(Σ,AI).
β β

Making use of (3.13), (3.14) and (3.15), equation (3.12) can be rewritten
as

(3.16) (c + X2){nAa - (trace Aa)I) = 4 Σ (A2

βAa - AβAaAβ) .
β

It follows that

(c + λ2) Σ {n (trace Aa)A« ~ (trace Aa)
2I}

a

= 4 Σ {-AJ(trace Aα)Aα - A^(trace A^A^^} = 0

where we have used the fact that Σ« (trace Aa)Aa and Aβ are commutative
for each β. Thus we see that if λ2 Φ - c , then Av = \\η\\2I.

Now suppose that λ2 + c = 0, then Σ/J A^Aα = Σ/3 Â AαÂ  for each a
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because of (3.16). The square of the length of the normal curvature
tensor denoted by Hi?1!!2 is given as follows:

Hi^ll2 = 2traceΣi(AβAlAβ - AβAαAβAα),
α,β

where we used (1.9). From (3.15), we thus have R1 — 0, so that Aα and
Aβ are commutative for every α, β. By taking suitable orthonormal
basis {Ylf "-,Yn} of TXM, we can diagonalize Aα for all α, i.e., AaYt =
λjY,. Then

H ( Y i 9 Y s ) = Σ < A α Y i f Yj)ξα = 0 f o r a n y i Φ j ,
α

which implies that s(Yif Yό) — 0 for every iΦ j owing to (3.6). Hence
the submanifold Λf is locally flat. Since (3.5) yields

(H(YU Y<\ H(Yj9 Γy)> - λ2 for any ί Φ j ,

we conclude that / is an umbilical immersion. Let Mn = En be the simply
connected Riemannian covering of Mn and denote the covering map by
π. Then the immersion f°π: Mn —> Mn+P(c) is also an umbilical immersion
which is congruent to (E) (i) or (H) (ii) (e). Therefore f°π is one to one
and thus π is one to one. It follows that Mn is an Euclidean space.

q.e.d.

REMARK 3.1. Combining (3.7) and (3.11) with (3.13), we have

(3.17) Σ A\ = MX/ .
β n

Thus we see from (1.10) that Mn is an Einstein manifold.

The following equation is useful in the process of reducing planar
geodesic immersions to essential ones.

LEMMA 3.6. Define T = (Tαβ) by Tαβ = trace (AαAβ) which is α sym-
metric linear transformation on the normal space. Then we have

(3.18) Σ TaβAβ = -£(21|η||2 + c - \2)Aa - he - λ2)(trace A*)I

β 2 2

for any a.

PROOF. Substituting (3.17) into (3.16), we get
2ΣAβAaAβ = -M{4 ||if||2 - n\c + X2)}Aa + n(c + λ2)(traceAa)I] .

β 2n

Combining this equation and (3.7) with (3.14), we obtain (3.18). q.e.d.
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4. Reduction of planar geodesic immersions to their essential ones.
In the preceding section, we have proved that the second fundamental
form is parallel if /: Mn —> Mn+P(c) is a planar geodesic immersion. First,
using this fact, we reduce the codimension to the dimension of the first
normal space, where we recall that the first normal space N^x) at x e Mn

is the subspace spanned by the set {H(X, Y): X,Ye TxM
n} in the normal

space NxM
n. It is easy to prove

LEMMA 4.1. The symmetric linear transformation T on NXM defined
in §3 is positive semidefinite. Let Pos(T) and Sym(TxM) denote the
maximal subspace on which T is positive definite and the vector space
consisting of symmetric linear transformations on TxM

n respectively.
Then we have

N&) = {ζ: Aξ = 0}1 = Pos(T) ~ {Aξ: ζ e NXM) c Sym(TxM) ,

{ }L being the orthogonal complement of { } in NXM.

The following lemma guarantees the reduction of the codimension.

LEMMA 4.2. The dimension of the first normal space is constant
and Ni is invariant by the parallel displacement with respect to the
normal connection.

PROOF. Let x and y be arbitrary two points of Mn. Let σ be a
curve from x to y in Mn. Take an orthonormal basis {X19 •••, Xn} for
TxM

n and parallel translate this frame to y along a with respect to the
Riemannian connection V of Mnm Thus we have orthonormal frame field
parallel along σ, which is denoted by {Ylf •••, Yn}. Then H(Yί9 Yά) is
parallel along σ with respect to the normal connection F 1, because

Fi(H(Yi9 Yj)) = (nH)(Yi9 Γ,) + H(FiYi9 Y,) + H(Yi9 F&) = 0 .

Noting that the set {H(Yi(y), Yj(y)): i, j = 1, , n) spans N^y), we see
that the parallel displacement along any σ from x to y with respect to
VL gives a linear isomorphism of Nγ(x) to N^y). Therefore the dimension
of .Ni is constant and Nt is invariant by the parallel displacement with
respect to VL. q.e.d.

If λ = 0, then / is a totally geodesic immersion which is exhibited
in §1. Thus, in the sequel, we assume λ Φ 0. Let r^dimiVΊ. Then
there exists a totally geodesic submanifold Mn+r(c) of dimension n + r
in Mn+P(c) such that f(Mn) c Mn+r(c). This is immediate consequence
from Lemma 4.2 and a theorem of Erbacher [5]. Since dim Sym(TM) =
n(n + l)/2, we have an inequality r ^ n(n + l)/2 by Lemma 4.1. Therefore
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it suffices to consider a planar geodesic immersion / : M* —» Mn+r(c) under
the assumption that / is full, r ^ n(n + l)/2 and the normal space coin-
cides with the first normal space. Moreover all equations obtained in
§3 are valid. Indices a, β9 7 run over the range {n + 1, , n + r}.

We shall now consider the symmetric linear transformation T.

LEMMA 4.3. Let x be arbitrary fixed point and U be the normal
coordinate neighborhood around x in Mn. Then, with respect to a
suitable orthonormal normal frame field {ξn+1, •••,£«+,.} on U, T can
be diagonalized as the following types:

\

( I ) T =

(Π)

n /-a2 = —(c - λ2), trace Aa = 0 for any a
Δ

b2

n\\v\\*j

V =i t(2 | |5? | | 2 + c - λ2), trace A, = 0

for a Φ n + r, An+r = —(trace An+r)I.
n

In the case (I), we have c > λ2 > 0, r ^ (n — l)(n + 2)/2 and f is minimal.
In the case (II), we have 2 | |^ | | 2 > λ2 — c if r Φ 1 and we see that f is
totally umbilical if r — 1.

PROOF. Let {ξn+19 •••,£*+»•} be an orthonormal basis for NXM such
that Tξa = μaζa Parallel translate this normal frame to each point in
U along the unique geodesic in Mn issuing from x with respect to the
normal connection. Since T is parallel with respect to F1, T can be
diagonalized by this orthonormal normal frame field locally defined over
U. Then (3.18) becomes

(4.1) μΛa - £(211 η \ |2 + c - X2)Aa - \{c - λ2)(trace Aa)I.

Δ Δ

Taking trace, we have

^α(trace Aa) = n \ \ η \ |2( trace Aa)

which implies that μa = n \\η\\2 or trace Aa = 0. If trace A^ = 0 for some
β, then

because Aa Φ 0 for any a, that is caused by the circumstance the normal
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space is equal to the first normal space. Thus we conclude that T has
at most two eigenvalues.

Suppose now λ2 Φ c. If the immersion/ is minimal, then t raceA a = 0
for any a and so μa = (n/2)(c — λ2) for any a. This case is of type (I).
If the immersion / is not minimal, i.e., | | ^ | | Φ 0, then there exist at
most two eigenvalues b2 and w||)7||2. We may assume that μa — b2 for
a = n + 1, , n + rλ and μa = n \\η\\2 for a = n + rx + 1, , n + r and
moreover we may assume 1 ^ rίf because if μa = n\\η\\2 for any a, then
(4.1) shows that / is totally umbilical, i.e., r — 1. We see from (4.1)
that t r a c e A a = 0 for n + l^o^^n + rι and Aα = (l/n)(traceAa)I for
n + ri + l ^ α ^ T i + r. Then we have

£ r trace A2 = — £ " (trace Aα)
2 = — *Σ (trace Aα)

2

a=n+r1+l ft α=w+r1+l 7^ α=Λ+l

= n

On the other hand,

n+r

Σ
+

n+r

Σ trace A2 = (r — rx)

so that rx = r — 1. This case is of type (II).
Next suppose λ2 = c. Equation (4.1) implies that μa = n \\τ]\\2 for all

a. Since T is positive definite, | | ^ | | =£ 0. Noting that Ύ] is parallel with
respect to F 1 , we can choose Ύ]J\\Ύ]\\ as ξn+r. This case is of type (II).

In the case of type (I), the minimality of / gives a restriction for
r (cf. Lemma 4.1), i.e., r ^ (n — l)(w + 2)/2. This bound is equal to the
dimension of the vector space spanned by the elements of Sym(TM)
whose traces are 0. q.e.d.

Let us consider the case of type (II). Even if the ambient manifold
is a hyperbolic space, we have

LEMMA 4.4. In the case of type (II), c + \\7]\\2 is positive if r Φ 1.

PROOF. We note that 2\\η\\2>X2 -c. The square of the length of
the second fundamental form is given as

\\H\\2 = (r - 1)62 + n\\η\\2 = nr\\η\\2 + - | { r - l ) (c - λ 2 ) .

Combining this equation with (3.7), it follows that

^ { n + r + l)λ2 - (r -
n + Δr

Thus we find 2{(n+r + l)X2-(r-ϊ)c}/(n+2r)>X2-c which implies λ 2 +c>0.
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It follows that c + \\τj\\2 > (λ2 + c)/2 > 0. q.e.d.

Note that ξn+r = 7j/\\η\\ and An+r = (l/w)(traceAn+r)I in the case of
type (II). By a similar method to that used in [11], it can be shown
that if r Φ 1, Mn must be minimally immersed into a totally umbilical
hypersurface of Mn+r(c) with curvature c + | |^| | 2 > 0 which is orthogonal
to the mean curvature normal η. This totally umbilical hypersurface
will be denoted by Mn+g(c) where q = r-l<>(n- l)(n + 2)/2 and c =
c + ||571|2. We must note that Mn+g(c) is congruent to (E)(ii), (S)(ii) or
(H)(ii)(s) exhibited in §1 and regarding the immersion / as that of M*
into Mn+g(c), the second fundamental tensors corresponding to the normal
vectors ξn+lf , ξn+q are also An+1, , An+q respectively. Moreover it
is easily verified that /: M* —• Mn+g(c) is also isotropic, whose isotropy
constant μ2 is equal to λ2 — | |^| |2.

If / is totally umbilical in the case of type (I), then / must be totally
geodesic which contradicts our assumption λ Φ 0. If r = 1 in the case
of tpye (II), then / is totally umbilical. Conversely, if / is totally
umbilical in the case of type (II), then r = 1. Thus, in the sequel, we
exclude the totally umbilical case from our consideration. After all, in
order to solve our problem introduced in §0, we have only to consider
a full, isotropic and minimal immersion /: Mn —• Mn+q(c) whose isotropy
constant μ2 is equal to λ2 — | |^ | | 2 where the case of tpye (I) may be
regarded as that η = 0. Moreover we may assume that q ̂  (n — l)(n + 2)/2
and / is also planar geodesic; because the intersection of a 2-dimensional
great sphere with a small hypersphere in a sphere is empty, a point or
a circle.

We need the following lemma to determine the codimension q.

LEMMA 4.5. We have equations

(4.2) μ2 = qc
n + q + 2

(4.3) p = n(n- l)c - n { n + 2)μ2 .
Δ

PROOF. Since /: Mn—>Mn+q(c) is planar geodesic, equation (3.7) is valid.
By virture of Lemma 4.3, we obtain | | i ϊ | | 2 = nq(c — μ2)/2, H being the
second fundamental form of the immersion /: Mn~>Mn+g(c). Substituting
7̂ = 0 into (3.7), it follows that

nq(c - μ2) = n(n + 2)μ2

which implies (4.2). From (1.12), we have (4.3). q.e.d.
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Finally, we show that the universal covering manifold of Mn is a
compact simply connected symmetric space of rank one and determine
its maximal sectional curvature.

Let /: Mn —> Mn+g(c) be the immersion as above. Let c be the natural
imbedding of Mn+g(c) = Sn+q(c) into En+q+1. Then we have

LEMMA 4.6. If σ:(—tlf tι)-^Mn is a unit speed geodesic such that
σ(0) = x0 and σ(0) = X, then

(4.4) cf(σ(t)) = cf(x0) + -i(sin vt)cf(X) + ^ ( 1 - cos vt)(cH(X, X) - ccf(x0)) ,

where vz = c •+ μ2 and cf{X) means c*f*X.

PROOF. Since / is planar geodesic, there exists a 2-dimensional great
sphere P such that f(σ(—tί9 t^aP for sufficiently small tx. P is the
intersection of Mn+q(c) with 3-dimensional plane P spanned by cf(x0), cf{X)
and cH(X, X). Set

Xι = VΎcf(x0) , X2 = cf(X) and X3 = —eH(X, X) .

Then {Xί9 X2f X3} is an orthonormal base for P. Using this base, we
can write

(4.5) cf(σ(t)) = wSfiXi + w2{t)X2 + w3(t)X3

where wb(t) (b = 1, 2, 3) are certain differentiate functions defined on
(—ti» *i) a n d theY satisfy Σ?=i wϊ = 1/c. The straightforward computation
shows

*)) - Σ « ' + ĉ ;)X6 ,
6 = 1

F being the covariant differentiation in Mn+g(c). Taking account of (3.9),
we thus have differential equations

w'b" = - (c + μ2)w'b for b = 1, 2, 3

with initial conditions

^(0) = 1/τ/y, wί(0) = 0, <(0) = -VΎ; w2(0) = 0, w'2(0) = 1, <(0) = 0

w3(0) = 0, wl(0) - 0, <(0) = μ .

The solutions are given by

W{t) z (ccosι# + ^2) ^(έ) =z. 2(ccosι# + ^ ) , ^2(έ) sinitf, ^3(ί) = -̂ -(1 — cositf) .

Substituting these equations into (4.5), we get (4.4). q.e.d.
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REMARK 4.1. Equation (4.4) shows that any geodesic in M* is mapped
to a circle by /.

Let H be the second fundamental form of the immersion ίof:Mn—>
En+q+1. Then it is easy to show that H satisfies

H(X, Y) = eH(X, Y) - c(X, Y)cf{X)

for any X, Y tangent to Mn. The immersion cof is also planar geodesic,
whose isotropy constant is equal to v2. In terms of H, (4.4) can be
written as

(4.6) cf(σ(t)) = cf(x0) + λ (sin vt)cf(X) + A(i _ cos vt)H{X, X)

which is the same equation as S. L. Hong obtained in [7]. By virture
of (4.6), we can represent locally the immersion cof in terms of normal
coordinates centered at x0. Using this fact, Hong has proved

LEMMA 4.7. The sectional curvature of Mn is l/i-pinched, i.e.,

(4.7) —v2 ^ 8(X, Y) ^ v2

4
for any orthonormal vectors X, Y tangent to Mn. In particular, if Mn

is of constant sectional curvature, then it is v2\k.

PROOF. In [7], the consideration for the case n = 2 is lacking Thus
we give a proof only when n = 2. Let X, Y be any orthonormal vectors
tangent to Mn. Since / is minimal we have H(X, X) = —H(Y, Y). It
follows from (3.5) that \\H{X, Y)\\2 = μ2. Using (3.6), we obtain
s(X, Y) = c — 2μ2. On the other hand, it is easy to see that the case
q = 1 does not occur and hence q = 2. Therefore (4.2) implies s(X, Y) =
c/3, from which we have s(X, Y) = v2/4=. q.e.d.

Let Mn be the simply connected Riemannian covering of Mn and
denote the covering map by π. Then foπ:Mn—>Mn+9(c) is an immersion
with the same property as /. Thus Mn is a compact symmetric space
of rank one, because Lemmas 3.4 and 4.7 hold for foft. Let d = 2 or 4
according as Mn = CPm or QPm where n = md. We obtain

LEMMA 4.8. Mn is a simply connected compact symmetric space of
rank one. Let c denote the maximal sectional curvature, i.e., holomor-
phic, Q-or C-sectional curvature. If Mn = Sn(c), then c = (n/2(n + l))c,
q = (n - l)(n + 2)/2 and μ2 = {{n - l)/(n + l))c. // Mn - CPm(c) or QPm(c),
then c = (2m/(m + l))c, q = (m - l)(md + 2)/2 and μ2 = ((m - l)/(m + l))c.
If Mn = CayP\c), then c = (4/3)8; q = 9 and μ2 =
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PROOF. Lemma 4.7 implies that if Mn = Sn, then the sectional curva-
ture is v2/A and if Mn = CPm, QPm or CayP2, then the maximal sectional
curvature is JΛ Thus the scalar curvature p is given by

p = λ.n(n - l)v\ m(m + l)v\ 4m{m + 2)v2 or 16 x 9v2

4

according as Mn = Sn, CPm, QPm or Cα?/P2 (cf. [2], [8]). Combining them
with (4.3), we obtain our assertion for μ2. We also obtain our assertion
for q from (4.2). q.e.d.

REMARK 4.2. Since CPι(c) and QP\c) are of constant sectional curva-
ture, they should be regarded as S2(c) and S\c) respectively.

5. Main theorems and corollaries. In the preceding section, we
have reduced planar geodesic immersions into space forms to the full,
minimal and planar geodesic immersions of compact rank one symmetric
spaces into spheres. We consider their rigidity. Note that the values
c and q obtained in Lemma 4.8 are equal to those of the immersions
explained in §2. Let /: Mn —> Sn+9(c) be a planar geodesic immersion
which is full and minimal. Then the simply connected Riemannian
covering manifold Mn of Mn is Sn(c), CPm(c), QPm(c) or CayP\c) by
virture of Lemma 4.8. On the other hand, in Theorems 1 and 2 we
constructed the immersion /: Mn —» Sn+q(c) with same properties as /.
Let fan, •• ,fn+q+1°π be the coordinate functions of /oί: Mn ~> Sn+q(c)a
En+q+\ where π is the covering map Mn —+ Mn. Then they are linearly
independent because / is full. On the other hand, the coordinate functions
fit m tfn+q+ι oί f are orthogonal (cf. Remark 2.3). It follows that
there exists a non-singular linear transformation U on En+g+1 such that
foπ = JJof. Since / is analytic and of degree 2 in the sense of [15], we
can apply [15] Proposition 11.1 to foπ, so that U is an orthogonal linear
transformation. Noting that / is an imbedding for CPm, QPm and CayP2

(resp. two fold immersion for Sn), ft is one to one (resp. two fold). Thus
M* must be S*(c), RPn(c), CPm(c), QPm(c) or CayP\c).

Let's go back to the original situation. Let /: Mn —> Mn+P(c) be a
planar geodesic immersion. Then / is a minimal immersion into Sn+P(c)
or lies minimally in a totally umbilical submanifold Mn+q(c) of Mn+P(c)
with curvature c —c + IMI 2 >0 except for totally geodesic and umbilical
case, r] being the mean curvature normal of /. Any two (n + q)-
dimensional totally umbilical submanifolds in Mn+P(c) with same curvature
are congruent each other and any rotation of a totally umbilical sub-
manifold can be extended to an isometry of the ambient manifold
Mn+P(c). Therefore we have
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THEOREM 3. Let f: Mn —» Mn+P(c) be a planar geodesic immersion.
Then f is congruent to a totally geodesic, umbilical immersion exhibited
in §1 or one of the model immersions stated in Theorems 1, 2 and their
Corollaries.

COROLLARY. // /: Mn —> Mn+P(c) is an immersion which maps every
geodesic in Mn to circles in Mn+P(c), then we have the same conclusion
as Theorem 3.

COROLLARY. If /: Mn —• Mn+P(c) is an isotropic immersion with
parallel second fundamental tensor, then we have the same conclusion
as Theorem 3.

PROOF. In order to prove that / is planar geodesic, we may assume
that / is a minimal and isotropic immersion of M* into Sn+9(c) with
parallel second fundamental tensor. Let σ be any geodesic in Mn. Then
we have a differential equation

rfifσ = H(σ9 σ) , Ff6(H(σf σ)) = -μ*fσ ,

V being the covariant differentiation of Sn+q(c), where we have used the
fact that equation (3.8) is equivalent to the isotropic condition (3.4) and
the second fundamental form H is parallel. The initial conditions are
σ(0) = x0, σ(0) = X and Ffόfσ\t=0 = H(X, X). Then the solution is given
as (4.4) which shows that / is planar geodesic. q.e.d.

Finally, we give an interesting property of planar geodesic immersions
into spheres which are full and minimal. We also give a different proof
for their rigidity when the manifold Mn is a sphere, complex or quaternion
protective space. First, let fn: Sn(l) —• Sn+P*(kn) be a planar geodesic
immersion which is full and minimal, where

(5.1) κ = Oa+ll. „. = <» ~ tt» + 2>
n 2

(cf. Lemma 4.8). The isotropy constant μn of fn is given by

(5.2) μl = ίί llil .
n

Fix a point x in Sn(ί) and consider the unit hypersphere ^" ' ( l ) in the
tangent space TxS

n(l) at x. Then the second fundamental form Hn gives
a map φn: S

n-\1)'— S^-\llμl) c NxS
n(l) by φn(X) = Hn(X, X) for any

PROPOSITION 5.1. The map φJ2 coincides with a full and minimal
planar geodesic immersion / n - 1 : Sn~ι(l) —> Sn~1+Pn-l(kn_-) whose isotropy
constant is μn^.
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PROOF. First we note that pn — 1 — (n — 1) = pn_γ and A/μ2

n = kn^.
Let X, Y e S""1^) be any orthogonal vectors. The great circle σ{t) =

(sin£)F in Sn(l) is mapped by φn/2 as

(5.3) ±φn(σ(t)) - j{H(X f X) + H(Y, Y) + (cos 2t)(H(X, X) - JΓ(F, F))

+ 2(sin2£)iί(X, F ) } .

Thus we have \\(φJ2)*(Y)\\2 = ||iϊ(X, F) | | 2 . On the other hand, applying
(3.6) to fn, we obtain ||iϊ(X, Y)\\z = 1. Therefore φJ2 is an isometric
immersion. This is also planar geodesic. In fact (5.3) is a circle with
center (H(X, X) + H(Y, F))/4 and with radius 1/2.

Let ξ e NxS
n(l). The height function defined over Sn~\l) in the di-

rection ξ is given by

(5.4) hξ(X) = |<4 f X, X)
Li

where we have used (1.3). Since fn is minimal and hence t r a c e d = 0
for any ξ, the height function hς is a spherical harmonic of degree 2
corresponding to the eigenvalue 2n. Thus φJ2 is minimal.

Let {£Λ+1, , ζn+Pn} be an orthonormal base for NxS
n(ΐ). If the

image (φJ2)(Sn~ι{l)) is contained in a hyperplane of NxS
n(l), say Σαααfcα=0

where feα = hξ(x, then we have from (5.4) Σ αα<4αX, Z> = 0 for any
JSΓeS*"1^) which implies Σα α A α = 0. However, from Lemma 4.1, Aa's
are linearly independent. Thus we have a contradiction. We have
proved that φJ2 is full. q.e.d.

PROPOSITION 5.2. fn: Sn(l)—>Sn+Pn(kn) is rigid. In particular, /2:S
2(1)—•

S4(3) is a Veronese surface (cf. [3]). The map f1 is congruent to the
Hopf map: S\l)^ Sι(A).

PROOF. Let /»: S*(l)-+Sn+P»(kn) be another planar geodesic immersion
which is full and minimal. Similarly we have φ'n and hence a planar
geodesic immersion fn_, which is full and minimal. Since Sn+Pn(kn) is
frame homogeneous, we may assume that fn(x) = f'n(x) and fn* = f'n* at
x. Thus the normal spaces at x with respect to fn and f'% coincide.
Suppose that there exists an orthogonal linear transformation U1 of
NxS

n(l) such that Uιofn_ι = /n_1# Ẑ  can be extended to an orthogonal
linear transformation [7 of Sn+p*(kn)c:En+p"+1 by means of U(fn(x))=fn(x),
U\fnm{TχS*) = Identity and U\NχSn = Ux. Then the second fundamental
form of the composite Lfofn is given by U^H^ at x. Our assumption
shows U^Hn = Hή, H'n being the second fundamental form of f'n. Since
U°fn is also planar geodesic, U<>fn is locally determined by U^H% (cf.
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Lemma 4.6). Similarly, fn is locally determined by H'n. Noting that fn

and f'n are analytic, it follows that U°fn — f'n.
By the consideration above, we have only to prove the rigidity of

U S\l) -> S4(3). The coordinate functions of fr. S\l) -> SL(4) are given
as follows:

h,(t) = — (a, cos 2t + b1 sin 2t) , Jι2(t) = —(α2 cos 2ί + 62 sin 2£) ,

M + hi = 1/4 ,

because /^ and h2 are spherical harmonics of degree 2 on S^l). Clearly,

the matrix ί^1 T1) is orthogonal which shows that fι is unique up to
\α2 o2/

rotation and reflection of S\4). q.e.d.
Next, let fn: FPm(A) —> Smd+Pm(km) be a planar geodesic immersion

which is full and minimal where F = C or Q and

(5.5) fc = 2 ( m + !) , p = (m - l)(dm + 2)
m 2

(cf. Lemma 4.8). The isotropy constant μm of fm is given by

(5.6) μl = 2 ^ w ~ X> .
m

Fix a point x in FPm(4) and let S^'Xl) be the unit hypersphere in the
tangent space TxFPm. Then the second fundamental form Hm gives a
map ^ . :S ' - 1 ( l )^S '-- 1 ( l /A)c2^FP-(4) by *.(X) = ff.(X, X) for any

PROPOSITION 5.3. The map φm/2 induces a full and minimal planar
geodesic immersion fm-ι:FPm~1(4)-+Sd^m~1)+Ί>m-1(km_ι) such that ψJ2 =
fm-i°πm-i where πm_γ denotes the Hopf fiber ing: S^-^l) -> F P * " ^ ) . Γfee
isotropy constant of fm_t is μm_λ.

PROOF. Note that pm — 1 — d(m — 1) = pm^ and 4 / ^ = km_γ. Let
e/j denote the complex structure on CPm(4) and {Jlf J2, J3} be the quaternion
structure on QPm(4). J1 is a globally defined (1, l)-tensor field such that
(J,Xt J,Y) = <X, Y) and J ί = - 1 , but Ju J2, J 3 are locally defined (1, 1)-
tensor fields such that <J,X, J.Y) = (X, Γ>, Jf = - 1 (i = 1, 2, 3) and
satisfy JJ2 = — J 2Ji = J3, J 2Λ = — 3̂̂ 2 = Ji> J3J1 = —JJz = Λ The curva-
ture tensor of FPm(4) is given by (cf. [8])

(5.7) (R(X, Y)Z, W) = <Γ, Z><X, T7> - <X, Z><Γ, TΓ>

K, ZXJtX, W) - (JtX, ZXJiY, W)
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Taking account of (1.7), from (5.7), we have

(5.8) (H(Y, Z), H(X, W)) - <H(X, Z), H(Y, W))

= Σ K J J , zχjtx, w) - <jtx, zxJtYtW)

+ 2<x,jiγχjiz,wy}

B ± l , Z)(X, W) - <X, ZXY, W)} .
m

Let X be any unit vector tangent to FPTO(4). Putting Y = Z = J3X and
W = X in (5.8), we obtain

μl = (H(X, X), H(J3X, J3X)) - \\H(X, J3X)\\2

for each j (1 ̂  j ^ d — 1) .

On the other hand, using (3.5), we obtain

μl = {H{X, X), H(J3X, J3X)) + 2 \\H(X, J3X)\\2 for each j .

Thus we have for any j

(5.9) H(J3X, J3X) = iί(X, X) , ίf(X, J3X) = 0 .

Now, let's consider the map φJ2:Sdm-1(l)->Sd{m-1)+p™-ikm_1). The equa-
tion (5.9) means that φJ2 induces a map fn,^: FPm~1(4)—*Sd{m~1)+Pm-1(km_1)
such that φJ2 = fm.γ°πm_γ. Let XeSdm-\l) and let Γ e S ^ - ^ l ) satisfy
X ±Y, JiXl Y for any i. Then every geodesic in FPm"1(4) can be written
as ττm_1(cosίX+ sinίY), which is mapped by /„,_,. as (5.3). It follows
that \\fm-AY)\\2 = \\H{X, Y)\\2. Putting Z = Y and W = X in (5.8),

m + 2 , X), iϊ(Γ, F)> - \\H(X,
m

Combining this equation with (3.5), we obtain ||iϊ(X, F)| | = 1 which
shows that fm_λ is an isometric immersion. Clearly, /m_x also planar
geodesic.

A similar method to that taken in the proof of Lemma 5.1 shows
the minimality and fullness of fm-x. q.e.d.

PROPOSITION 5.4. fm: FPm(4) -+ Smd+P™(km) is rigid. In particular, f,
is an ίsometry of Sd(4) and satisfies φJ2 = f1°π1 where πγ\ S""1^)—>Sd(4)
is the Hopf map.

PROOF. A similar argument to Proposition 5.2 implies that the rigidity
of f can be reduced to that of /2: FP2(4)-+S3ί*+1(3). The map φJ2 induces
an isometric immersion f,: FPι(4) —> Sd(A) such that φ2/2 = f^π,. However
FPι(4) and Sd(4) are of the same dimension. Thus f, is a Riemannian
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covering and so isometry, because Sd(4) is simply connected. q.e.d.

Taking (1.3) and (5.9) into account, we have

THEOREM 4. Let f: Mn —> Sn+P(c) be a planar geodesic immersion
which is full, minimal and non-totally geodesic where Mn = Sn, CPm or
QPm. Then the vector space {Aζ: ξ e NxM

n} can be identified with the
vector space spanned by Hermitian matrices of trace 0 over each field
F = R, C or Q, i.e., φo(m, F).
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