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0. Introduction. Let M™ and M"** be connected complete Rieman-
nian manifolds of dimension n and = + p respectively. An isometric
immersion of M" into M"*? is called a planar geodesic immersion if
every geodesic in M" is mapped locally into a 2-dimensional totally
geodesic submanifold of M**?. We can see that such an immersion is
an isotropic immersion in the sense of B. O’Neill [10] with parallel
second fundamental tensor and vice versa. Planar geodesic immersions
into Euclidean space has studied by S. L. Hong [7] who stated that if
f:M*— E"* is a planar geodesic immersion, then the sectional curva-
ture of M" is 1/4-pinched except for the totally geodesic case and more-
over if M* has constant positive sectional curvature, then f(M") is an
n-dimensional sphere or 2-sphere which is usually called a Veronese
manifold. On the other hand, T. Itoh and K. Ogiue [9] has showed
that if f: M"(c) — M"**@) (p = n(n + 1)/2 — 1) is an isotropic immersion
with parallel second fundamental tensor and ¢ > ¢, then ¢ = n¢/2(n + 1)
and the immersion is rigid, where M*(c) (resp. M"+?(¢)) denotes a
Riemannian manifold of constant curvature ¢ (resp. ¢). These results
lead the conjecture that if f: M"— M"**(¢) is a planar geodesic immer-
sion, then M" is isometric to a symmetric space of rank one or Eucli-
dean space and the immersion is rigid. In the present paper, we shall
give the affirmative answer. ‘

In §1, basic equations of immersions that we need are given. In
§ 2, the accurate definition of a planar geodesic immersion and its models
for compact symmetric spaces of rank one will be given. As will be
shown in the later section, we must construct algebraically minimal im-
mersions of compact symmetric spaces of rank one into spheres which
are usually constructed by using eigenfunctions of the Laplacian with
respect to the invariant metric (cf. [4] and [15]). However, our const-
ruction is due to S. S. Tai [12] who gave examples of tight imbeddings
for compact symmetric spaces of rank one (in [12], minimum imbeddings
mean tight imbeddings and for the definition, see [12] and [14]). S.
Kobayashi and M. Takeuchi [14] obtained tight imbeddings for a certain
class of compact symmetric spaces containing spaces of rank one and
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proved that the height functions are eigenfunctions of the Laplacian by
showing that the mean curvature normal vanishes. In §2, we show
more directly that the height functions of the imbeddings constructed
by S. S. Tai are eigenfunctions. We also consider how geodesics are
mapped into spheres. In §3, we obtain various properties of the second
fundamental form of a planar geodesic immersion especially in the case
where the ambient manifold is a space form. In §4, we reduce our
problem to the minimal, full and planar geodesic immersions of compact
symmetric spaces of rank one into spheres. In §5, we state our main
theorems and corollaries.

The author wishes to express his hearty thanks to Professor S.
Ishihara for his constant encouragement and valuable suggestions.

1. Preliminaries. Let f:M"— M"*? be an isometric immersion of
an n-dimensional Riemannian manifold M" into an (n + p)-dimensional
Riemannian manifold M**?. For all local formulas and computations we
may assume f as an imbedding and thus, in this section, we identify
x€M" with f(x)e M***. The tangent space T,M" is identified with a
subspace of T,M"+?. Letters V, W, X, Y and Z (resp. & 7 and ) will
be vectors at x or vector fields on a neighborhood of x tangent (resp.
normal) to M". If we denote the covariant differentiation of the

Riemannian manifold M"** by 7, then we may write
(1.1) P:Y=r,Y + HX, Y)

where V;Y and H(X, Y) denote the components of /.Y tangent and
normal to M"* respectively. Then / becomes the covariant differentia-
tion of the Riemannian manifold M". The symmetric bilinear form H
valued in the normal space is called the second fundamental form of the
immersion f. If & is a normal vector field on a neighborhood of «z,
then we can also write

1.2) Vie= —AX + 74t

where /' is the covariant differentiation with respect to the induced
connection in the normal bundle NM which will be called the normal
connection. The tangential component A.X is related to the second
fundamental form H as follows:

(1.3) (A:X, Y) =<CH(X, Y), &

for any Ye T ,M", where {(, ) denotes the inner product of vectors
with respect to the Riemannian metric of M"*?. Thus A, is a symmetric
linear transformation of 7T,M". Given an orthonormal normal frame
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{Gnsss =7, Ensp)y We write A, = A, (@=n+1, -, 7+ p). In the sequel,
indices @, 8 and 7 run over the range {n + 1, ---, n + p}.

Let Proj;, and Projy, be the projections of T,M**? to the tangent
space T,M" and the normal space N,M" respectively. Let /'’ be the
covariant differentiation with respect to the induced connection in the
direct sum TM + NM. We denote curvature tensors for the connec-

tions 7, 7 and F* by R, R and R* respectively. If we take an ortho-

normal normal frame {¢,,,, -, &,,,}, then we have the following structure
equations of Gauss, Codazzi and Ricei:

(1'4) ProjTMR(X9 Y)Z = R(X’ Y)Z - Z{<AaYy Z>AaX— <AaX9 Z>AaY} ’
(1.5) Projy.R(X, Y)Z = V:H)\Y, Z) — "yH)X, Z),
(1.6) Projy,R(X, Y)¢ = RY(X, Y)§ — Za. [4:, AJX, Y&, .

In later sections, we mainly deal with cases where the ambient
manifold is a space form M**?(¢), i.e., a simply connected complete
Riemannian manifold with constant sectional curvature ¢é. Thus we

must give basic formulas in those cases. Structure equations (1.4), (1.5)
and (1.6) can be written as

1.7 R(X, Y)7Z =¢KY, Z>X — (X, Z)Y} + >\ {(A.Y, Z>A.X
—(AX, ZYAYY, ’

(L8) LHYY, Z) = (L HYX, Z)

(1.9) RH(X, V)% = 3[4y AX, V5.

Equation (1.7) gives a formula for the Ricci curvature tensor S:
(1.10) S =¢(n — 1)I + 3 (trace A)A, — >, A?

where I is the identity transformation on the tangent space of M".
Let 7 be the mean curvature normal defined by

(1.11) 9= % S (trace ), .

Then the scalar curvature o satisfies
(1.12) p=¢en(n — 1) + n*[[7] — [[H|}

where |[7]|? = 3. (trace 4,)/n* and || H|* = 3 trace A..

We are now listing up complete totally geodesic submanifolds and
totally umbilical submanifolds in space forms. For each real number ¢
and each integer n>1 there is (up to isometry) exactly one n-dimen-
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sional (real) space form of constant curvature ¢. Thus we may assume
that (n + p)-dimensional space forms are

(E) Euclidean space E**?; R"*? with usual inner product,
¢ =0;
(S) Euclidean sphere S**?(¢): {(#y, *+*, Zu4p41) € R*TPH:
(xl)z + e+ (x»+1o+1)2 = 1/6}
with the metric induced from E****' ¢> 0;
(H) Hyperbolic space H"**(¢): {(x, -+, ZTpyps1) € R*7TH
(@) 4«0+ (@a15) — (Fnyprn)’ = 1/8}
with the metric induced from the metric ds* = (dz)* + -+ + (d2,,,) —
(d%pypyr)’ in R @ < 0. The following is a list of n-dimensional com-
plete totally geodesic submanifolds and totally umbilical submanifolds
up to congruence in (n + p)-dimensional space forms. For the space
form (E), we have
(i ) Planes E™: {(xn Tt xn+P) e B Tppr = *0° = Lpyp = 0}’
H = 0;
(ii) Spheres S™(c): {(®y, *++, Tpip) € E™P: () + -
+ (@pr))’ = e, Tpio = <2+ = 2,4, = O}
For the space form (S), we have
(i) Great spheres S"(¢): {(z,, **+, ®pips) €S™2(C):
Bppe = *** = Bpypy, = 0}, H=0;
(ii) Small spheres S™(c): {(%, ***, %pips) € S™(C):
Lpye = V1E —1/¢, Tpys = +++ = By = O},

where 0 < ¢ < c¢. For the space form (H), we have also

(i) Great spheres H™*(C): {(xi, *+*, Znips) € H*?(€):
Lpy1 = *** = Tpyp = 0}9 H = 0;
(ii) Small spheres:
(€) E"={(xy ***) Buips)) EH"?(C): Tpipys = Tpiy + ¢,
Tptsg = **° = Vpyp = 07 t>0};
() S™e) ={(@y -+, Tuipr) eH"?@): (@) + -+
+ (@)’ = e, Lppe = 00 = Loy =0, ¢> 0};
(h) H”(C) = {(xlv ) xn+?+l) € Hn+p(5): Tppr = 1/1/5 — 1/e,
Lppe = ¢ = x'n+p:0! 6<C<0}.

Above all, a totally geodesic (resp. umbilical). submanifold in S**?(¢) is
the intersection of an (n + 1)-dimensional plane passing through the
origin (resp. not passing through the origin) in E****' with S**?(¢) and
similarly for H"*?(¢).
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2. Planar geodesic immersions and their models. Let f:M"—
M be an isometric immersion and o: (t,, t,) — M™" be arbitrary geodesic
in M® If there exist an open interval I, and 2-dimensional totally
geodesic ‘submanifold P, for each te(t,t,) such that tel,c (¢, t,) and
flo(I)) c P,, then f is called a planar geodesic immersion. In the
sequel, we assume that n = 2, because this definition is worthless when
n = 1.

Well, we shall construct models of planar geodesic immersions. Let
F be the field R of real numbers, the field C of complex numbers or
the field Q of quaternions. In a natural way, RC CcC Q. The conjugate
of each element x €@ is defined as follows:

T =Ly — X8, — X8, — %8s fOr = =12, + 8, + T8, + 246, €Q
where {1, e, ¢, ¢;} is usual basis for Q. Define a number d by

1 if F=R,
d=42 if F=0C,
4 if F=Q.

Let x be a column vector (x)e F™' and M(m + 1, F) be the vector
space of all (m + 1) X (m + 1) matrices over F. In this section, we
shall make use of the following convention on the range of indices:
1=1=m+1,0=2a=d—1. Let

Y(m + 1L, F) ={AecD(m + 1, F): A* = A},
Um+ 1, F)={UeM(m + 1, F). U*U = I}

where A* = *4 and I is the identity matrix. The usual inner product
on Fm+ = R™*t1d ig given by

{x,y> = Re(x*y) for x,ycF™"

where Re(x*y) denotes the real part of x*y. The inner product on
M(m + 1, F) = R™+* ig also defined as

{4, B) = % Retrace (4B*) for A4,BeM(m + 1, F).
If A, Be9(m + 1, F), then trace (AB*) = trace (AB) is real and hence
(4, B) = % trace (AB) for A,BeH(m + 1, F).

Let FP™ denote the projective space over F. FP™ is considered
as the quotient space of the unit ((m + 1)d — 1)-dimensional sphere
Sm+ud=y1) = {x ¢ F™*': x*x = 1} obtained by identifying x with x\ where
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M€ F such that |n| = 1. The canonical metric g, in FP™ is the invari-
ant metric such that the fibering z: S™*2¢-%(1)— FP™ is a Riemannian
submersion. Thus the sectional curvature of RP™ is 1, the holomorphic
sectional curvature of CP™ is 4 and the Q-sectional curvature of QP™
is 4 with respect to the metric g, (cf. [8]). Define a map : S™+4}(1)—
9(m + 1, F) as follows:

le |2 2%, 'x@m-u
(2.1) "’l;(x) = xx* = ( ........... )

Ty Ty To® * * | Cpyy [°

for x = (x,) € S™*4¢Y(1). Then it is easily verified that ¢ gives a map
y: FP™ — $(m + 1, F) such that « =+omw. Define a hyperplane §,(m +1,
F) and a vector subspace $y(m + 1, F) in §(m + 1, F) by

S(m+ 1L, F)={AecHP(m + 1, F): trace A = 1},
Dim + 1, F) = {AecH(m + 1, F): trace A = 0} .

Then we have
dim $,(m + 1, F) = dim $,(m + 1, F) = ﬁ(’_”éLl_)d +m.

Since trace J(x)=1 for any x e S™*4 (1), + maps FP™ into $,(m+1,F).
U(m + 1, F) can be orthogonally represented on $(m + 1, F) by

U(A) = UAU* for UeU(m+ 1, F), Ac9(m + 1, F).

The 1-dimensional subspace spanned by I is orthogonal to 9,(m + 1, F)
and 9(m + 1, F) and pointwise fixed by the action of U(m + 1, F).
Thus the representation of U(m + 1, F) on §(m + 1, F) induces ortho-
gonal representations on 9,(m + 1, F) and $(m + 1, F) respectively.
The following two lemmas are well-known.

LEMMA 2.1. For each Ac9(m + 1, F), there exists an Uec U(m+1,
F) such that U*AU is a diagonal matriz whose elements are real
numbers.

LEMMA 2.2. +(FP™) = {Ac®(m + 1, F): A* = A}.

For later use, we shall prove the following lemma due to S.S. Tai
[12].

LEMMA 2.8. The map + 18 an isometric, full and equivariant im-
bedding of FP™ into $(m + 1, F) where the Riemannian metric of
FP™ is g,. :
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Proor. The map 4 is equivariant, since

W(U-n(x)) = ¥(Ux) = (Ux)(Ux)* = Uy(x)U*
for any x e Smthi—i(1),
Take an element x of S™*"47Y(1) and let y be an element of S™*Vé"i(1)
which is orthogonal to {x\:Ne F, |\| = 1}. This condition is equivalent
to y*x = 0. If we identify y with an unit tangent vector at x, then
y is orthogonal to the fiber passing through x. The curve xcost + y
sint is an unit speed geodesic in S™+"¢"(1). Then the curve w(xcost +

ysint) is an unit speed geodesic tangent to 7,(y) at n(x) in FP™. We
have now

(2.2) J(m(x cost + ysint)) = xx* cos* ¢t + yy* sin*¢
+ (xy* + yx*)cost sint.

Thus we obtain
(T (y)) = Edt—(xx* cos’t + yy* sin*t + (xy*

+ yx*)cos t sin t) |,
p— xy* + yx*

which is an element of $(m + 1, F). The square of length of this
vector is equal to

[T (@D I* = %trace ((xy* + yx*)(xy* + yx*)) = 1.

Therefore we see that 4 is an isometric immersion. If J(x) = ¥(»),
then xx* = yy* which implies that y = x\ for some )M e F such that
IN| =1 and hence + is an imbedding. To prove that 4 is full, we
assume that there be a hyperplane P in 9,(m + 1, F) such that
J(FP™)cC P. Let N be an unit vector in $(m + 1, F) which is normal
to the hyperplane containing P and passing through the origin 0 of
9(m + 1, F). Then Lemma 2.1 implies that there is an Ue U(m + 1, F)
such that U*NU is a diagonal matrix whose i-th diagonal element is
M E€R. From Lemma 2.2, we have

v(FP™) = {U*AU: A€ $(m + 1, F), A* = A}
and since
trace (U*AUU*NU) = trace (AN) =0 for Aec~(FP™),
we see that U*NU is orthogonal to the vector space spanned by the
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set v(FP™). Noting that +(FP™) contains the matrix E; whose i-th
diagonal element is 1 and the others are 0, we have N = 0 which is a
contradiction. Therefore 4 must be full. g.e.d.

LEMMA 2.4. Let l; = m(m + 1)d/2 + m — 1. Then
Y(FP™) c Sta*(2) N §(m + 1, F) = S"(2(m + 1)/m) .
PROOF. For each A€ (FP™), we obtain (A, A) = 1/2 and hence
V(FP™) C S¥%™(2) N O(m + 1, F) .

The matrix I/(m + 1) is contained in $,(m + 1, F). Hence we see that
the above intersection is a sphere centered at I/(m + 1) with radius

V'm/2(m + 1). q.e.d.
Define ¢: FP™ — $,(m + 1, F) by

— _ I -
#(x) = () pr for xe FP™.

Then Lemmas 2.3 and 2.4 imply that ¢ is an isometric, full and equi-
variant imbedding into the sphere S'4(2(m + 1)/m) with center 0. Let
AecH(m + 1, F) and h, be the height function defined over FP™ in the
direction A. Then

2.3) ha(@) = (A, §(z)) = % trace (A¢(z))

at xe FP™, Since ¢ is equivariant, we have
(2.4) h’U(A) = hAO U‘l

for every UeU(m + 1, F) and AcPy(m + 1, F). In the following
lemma, it can be shown that %, is an eigenfunction of the Laplacian 4
with respect to g, for all Ae$(m + 1, F).

LEMMA 2.5. For each A€ D(m + 1, F), we have
4k, = 2d(m + 1)k, .

PrOOF. By virture of Lemmas 2.1 and (2.4), we may assume that
A is a diagonal matrix whose ¢-th diagonal element is ;. Since 7 is a
Riemannian submersion, it suffices to compute the Laplacian of h,oxm
on S™+vé-y1), Extend k,omr to a homogeneous polynomial %, on F™*,
From (2.1) and (2.3), we have

h(a(x)) = % trace (A («;(x) -— fr - I)) - %z N |2
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where x € S™*4Y(1) and ‘x = (x,, **, Tms,). Thus we obtain
IL(x) = %5_‘, N2 for any xeF™t,

Let 45 and 47 denote the Laplacians on S™*94-%(1) and F™*' respectively.
Then we know

-~ 2 o ~
£5(hgom) = 47K, + 2B+ (d(m + 1) — 1)-2F,
or or
on S™+4-y(1) where r = ||x||. Since S,n, =0, we see that h, is a
harmonic homogeneous polynomial of degree 2 and hence 47h, = 0. We
have also

05 _ o ¢
—h,=2(hsom), ——h,=2h,on)
or ore

on S™*t14-1), Thus we obtain
A(hyom) = 2d(m + 1)(h o7T)
which shows our assertion. g.e.d.

In the following theorem and corollary, models for planar geodesic
immersions will be given.

THEOREM 1. Let ¢ be the isometric imbedding explained above.
Change the metric g, for g = (2(m + 1)/mé) g, in FP™, so that the sec-
tional curvature of RP™ is m¢/2(m + 1) and the holomorphic sectional
curvature (resp. Q-sectional curvature) of CP™ (resp. QP™) is 2mé/(m+1).
Making use of ¢, we obtain an isometric imbedding f: FP™— S'(¢)
which s minimal, full and equivariant. This imbedding f is also
planar geodesic. Moreover we obtain an isometric immersion fom:
S™(¢) — S'(&) with the same property, where ¢ = mc/2(m + 1).

ProoF. By using T. Takahashi’s result [13] and Lemma 2.5, we
can prove the minimality of f. Thus, for the rest we have only to
prove that f is planar geodesic. To prove that, it suffices to show that
o is planar geodesic. Let o be arbitrary geodesic in FP™. Then o is

o(t) = m(x cos t + ysin t) for some x, y € S™*47Y(1)

where ¢ is the arc-length parameter. By +, ¢ is mapped to the curve
(2.2) in the proof of Lemma 2.3, which can be rewritten as

¥(o(t)) = —%—(xx* + yy*)+ %(xx* — yy*) cos 2t

+ —é—(xy* + yx*)sin 2t .
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Therefore oo is a circle with center (1/2)(xx* + yy*) and radius 1/2.
g.e.d.

COROLLARY. Let ¢ be a totally geodesic or umbilical immersion of
S'(&) into a space form M™**(¢) where p = (m — 1)(md + 2)/2 and
€ =¢. Then the composite tof (resp. tofom) of FP™ (resp. S™(c)) into
M™i*2(E) is a planar geodesic immersion.

REMARK 2.1. Let ¢ be a geodesic in FP™ with respect to the metric
g. Then foo is a circle with radius ((m + 1)/2m€)'2.

Next, we shall construct a model for planar geodesic imbeddings
of Cayley projective plane CayP? into a sphere. Let Cay denote the
Cayley algebra over R. For m and d used in the preceding considera-
tion we promise here to be m = 2 and d = 8. Thus indices ¢ runs over
the range {1, 2, 8} and a over the range {0, 1, ---, 7). Notice that 1,=25.
The conjugate of ¢ Cay is defined as follows:

T==x,— 0,6 — -+ — X8, for o=, 2.6,€Cay
where {¢,=1,e, -+, ¢;} is the usual base for Cay. The usual inner
product Cay = R® is
(w,y) =Re(xy) = %y, for =3 2.6., Y =2 Y.0.€Cay

and the norm of z is defined as |z| = (x, )'/%. Let $(3, Cay) be the
vector space consisting of 3 x 3 Hermitian matrices, i.e.,

9(3, Cay) = {A e M3, Cay): A* = A}.
Then (8, Cay) is a Jordan algebra under the multiplication

AoB = %(AB + BA) for A, Be$(3,Cay).

Define an inner product in 9(3, Cay) = R¥ by
(A, B) = -;—trace (A°B) for A, Be$(3, Cay).

Each element 4 € $(3, Cay) can be written as
Ny Ug Uy
A=1% N w,|;N;eR, w;eCay (1=1,2,3),
Uy Uy Ny

which will be denoted by {A, u}. If A = {\ u} and B = {g, v}, then the
inner product of A and B becomes

(2.5) 4, By =3 (5

—2"7\11#1 + <ui7 'vz>) .
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Let 9,38, Cay) = {Ac9(3, Cay): trace A =1} and 943, Cay) = {A ¢
9(3, Cay): trace A = 0}. Then the Cayley projective plane CayP? is defined
as the subset of 9,3, Cay):

CayP? = {A € 9.3, Cay): A* = A}.

The exceptional Lie group F', can be defined as the group of automor-
phisms of the Jordan algebra $(3, Cay). Let E, be the diagonal matrix
whose ¢-th diagonal element is 1 and the others are 0 for each 4. The
following lemmas are well-known (cf. [6]).

LEMMA 2.6. The exceptional Lie group F, preserves the imnmer pro-
duct of (3, Cay).

LeMMA 2.7. For each A€ (3, Cay), there exists 0€ F, such that
0(A) is a diagonal matriz, i.e., 6(A) = > NE,, N €R.

LEMMA 2.8. Spin (9) ~ {0 F,: 0(E,) = E,}.
LEmMMA 2.9. CayP® = {6(E,). 6 € F}.

Lemma 2.9 means that F, leaves CayP? invariant and acts on it
transitively. Thus we see from Lemma 2.8 that CayP* = F,/Spin (9).
Moreover, since F, leaves the 1-dimensional subspace spanned by I
pointwise fixed which is orthogonal to .3, Cay), F, has an orthogonal
representation on 9,(3, Cay).

Let 4 be the inclusion of CayP* into 9,3, Cay) and let ¢: CayP* —
9«3, Cay) be the imbedding such that ¢(A) = A — I/3 for any A € CayP-.
Using the similar method to Lemmas 2.8 and 2.4, we have

LEMMA 2.10. The imbedding ¢: CayP? — 943, Cay) is full and equi-
variant, where ¢(CayP?) C S*(3) holds.

Let T'z(CayP?) denote the tangent space of CayP* at E,. Tg(CayP?)
is the set {X € 9(3, Cay): X-E, + E,o X = X}. If X ={\, u} is a tangent
vector of CayP? at E, then the straightforward computation shows
that A = 0 and %, = 0, from which we find
(2.6) Ty (CayP?) = {X €93, Cay): X = {0, (u,, 0, us)}, uy, us€Cay}.

Identifying {0, (u,, 0, u5)} € Tx(CayP?) with (u,, us) € Cay X Cay = R*, the
induced metric g, on CayP?® by the inclusion + coincides with the usual
metric in R*® at E,. In fact we have from (2.5)

9(X, Y) = <X, Y) = (uy, ) + {Us, v3)

for X = (u,, u;) and Y = (v, v;). Thus, in the sequel, we continue the
above identification. Here we note that the induced metric g, is an
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invariant metric on CayP? because of the fact that 4 is equivariant.
Let Ng(CayP?) be the normal space in 9,3, Cay) with respect to 4.
Then it is easily verified that N, (CayP?) is given by
(2.7) N (CayP?) = {£ € (8, Cay): & = {\, (0, u, 0)},
AeER?, u,cCay}.
Well, we shall find two geodesics in CayP? with respect to the

metric g, which intersect orthogonally at E,. Let J,, J, and J; be defined
respectively as

0 0 0 0 01 0-10
.L=(0 0—1), J2=(0 00), J3=(1 00).
010 -10 0 0 00

Let El,u = {Or (ea’ 0, 0)}’ Ez,u = {Or (Or €ay 0)} and Ea,a = {09 (07 01 ea)}' Then
E(1=1,273) @\nd E . (1=1238;, a=0,1,---,7) form a basis for $(3,
Cay). Define J;, by

J(A) = [J, Al = JJA — AJ, for any Aec(3, Cay),

which is a linear transformation of (3, Cay). By straightforward com-
putation, we have
ft(Ei) =0, ji(EiH) = Ez‘,o: ji(Ei+2) = - Ei,o ’
J(Eio) = 2Bis — Eiv))y J(Ei.)=0 for a#0,
Ji(Ei+1,o) = - Ei+2,07 jt(Ei+1,a) = Ei+2,a for a+#0,
fi(Ei+z,o) = Ei+1,0, jz'(EHz,a) = — -Ei+1,a for a#0,

(mod 3).
The Lie algebra of F, denoted by f, consists of derivations of the
Jordan algebra $(3, Cay) and the Lie algebra b, of Spi?i (9) is the
subset {0 ef,: 0(F,) = 0}). Using (2.8), it can be shown that /(2 = ]:, 2, 3)
i§ contained in f,, but the author can not examine directly for J/, and
J; to be orthogonal to b, with respect to the Killing form of f,.

However we can verify that o,(¢t) = (exp tfl)(Ez) and oy(t) = (exp tfa)(Ez)
are geodesics in CayP?.

(2.8)

LEMMA 2.11. The above curves o, and o, in CayP® are unit speed
geodesics with respect to the metric g, and can be written as

a(t) = —;-(Ez + By + %(sin 20)E,, + —;—(cos 24)(E, — E,)
(2.9)
ot) = _;_(Ez + B + -;—(sin 20) By, + —;—(cos 24)(E, — E,) .
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These geodesics intersect orthogonally at E,. We have also

(2.10) 6,00) = (1,0), 640) =(0,1), H(({,O0), (1,0)) = {0, -2, 2), 0},
H((0, 1), (0, 1)) = {(2, —2, 0), 0}

where H 1is the second fundamental form of the imbedding ¢.

ProOF. We shall prove (2.9) for only o,, since a similar computa-
tion shows (2.9) for o¢;. Thus we must calculate (tfl)"(Ez)/j ! for any
ij=0,1,2 ..., If =0, then this is equal to E,. By the induction,
we can easily prove from (2.8) that if j = 2k — 1, then

(ZALAN ( 1)+ (20 =) g, for k=12, .-,

il T
and if 7 = 2k, then
WP E) - Ly B (5 B) for k=12, .--.

j! (2Kk)!

Therefore we obtain

(exp tJ)(B,) = g) (ti;j'(Ez)

_ L3 _qy-r_(20)% -1 (2t)*
=B+ 5D @k~ D1 E,, + 2,‘21( 1) )] (B, — E)

- % (E, + E,) + % (sin 20)E,, + %(cos 2B, — E,) -

The velocity vectors ¢, and &, are given by

6(t) = (cos 2t)E, , — (sin 2t)(E, — E) ,

dy(t) = (cos 2t)E;, — (sin 2t)(E, — E))
because of (2.9). Since E,,, E,, and E, — E, (or E, — E,) are orthonor-
mal vectors in §(3, Cay), it follows that ||d,|| = ||J5]| = 1 and these two
curves intersect orthogonally at FE,.

Next, we shall prove that ¢, and o, are geodesics in CayP?. Let

D Dbe the covariant differentiation in $,3, Cay) with respect to (, )
and / Dbe the covariant differentiation in CayP?® with respect to the
induced metric g,. Then we have from (1.1) and the equations above

D;, 0, = Viw0, + H(3,(0), 6,0)) = 2(E, — E)) .
Similarly we have
763(0)0'3 + H(6'3(0)’ 5'3(0)) = 2(E1 - Ez) .
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On the other hand, (2.7) implies that E, — E, and E, — E, are normal
vectors at E,. Thus we have /; 0, = V;,»0; = 0. We have also

H((}l(O), 0"1(0)) = 2(E3 - Ez)’ -H(O.-s(o)r 6'3(0)) = 2(E1 - Ez) .
Since curves o, and o, are orbits of l-parameter groups of isometry
passing through FE,, o, and o, are geodesics in CayP? with respect to
Jo- q.e.d
In the following lemma, the maximal sectional curvature of CayP?

(with respect to g,) is given, which will be called C-sectional curvature
in this paper.

LEMMA 2.12. The C-sectional curvature of CayP?® with respect to
the metric g, 18 equal to 4.

ProOF. Using the equation (1.7), we have
s((1, 0), (0, 1)) = {H((1, 0), (1, 0)), H((0, 1), (0, 1))y — [[H((L, 0), (0, 1))’

where s((1, 0), (0, 1)) denotes the sectional curvature corresponding to
the plane section spanned by tangent vectors (1, 0) and (0,1). On the
other hand, since ¢ is equivariant and the linear isotropy group acts
transitively on a hypersphere of T (CayP?), we see that ¢ is isotropic.
By B. O’Neill [10] Lemma 2 (cf. § 3) and (2.10), we have

CH((@, 0), (1, 0)), H((0,1), (0,1)> + 2| H((, 0), (0, L))[I
= ”{(09 _21 2)’ 0}”2 =4.

Thus we obtain
s((1, 0), (0,1)) = —§-<{(o, —2,2), 0}, {(2, —2,0), 0)p—2=1.

However this is the minimal sectional curvature. In fact, R.B. Brown
and A. Gray [2] showed that the sectional curvature corresponding to
the plane section spanned by orthonormal vectors (1,0) and (u, u;) is
equal to c¢(|u,|* + |u;|*/4) for some c€ R. Thus we have ¢ = 4. q.e.d.

Let &, be the height function defined over CayP?® in the direction
Aec 93, Cay). Since ¢ is equivariant, we have

(2.11) howw = hyob

for any 6e F, and Ae 9,3, Cay). Let F, act on the space C*(CayP?) of
all C* functions over CayP? via 0-f = fo6™'. Equation (2.11) means
that the subspace {h,: A€ (3, Cay)} of C=(CayP?) is invariant by this
action of F,. Define ¢: H4(8, Cay) — C*(CayP?) by ¢(A) = h,. Then ¢ is
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injective because ¢ is full. Since the representation of F, on 9y(3, Cay)
is irreducible, using [15] Corollary 7.2, we see that {h,: A e 98, Cay)}
is contained in the eigenspace V, corresponding to some eigenvalue X\
of the Laplacian with respect to g,. On the other hand, [1] Proposition
C. I. 8 states that the representation of F, on V; is irreducible and
hence ¢ is a linear isomorphism to V,. From T. Takahashi’s result [13],
we obtain \ = 48.

We are now giving models for planar geodesic immersions of CayP?
into spheres in the following theorem and corollary.

THEOREM 2. Let ¢ be the isometric imbedding explained above.
Change the metric g, for g = (8/¢)g, in CayP?, so that the C-sectional
curvature is 4¢/3. Making use of ¢, we obtain an isometric imbedding
f: CayP?*— S*(¢) which is minimal, full and equivariant. This imbed-
ding 1s also planar geodesic.

ProoF. It suffices to show that the inclusion 4 is planar geodesic.
This will be easily verified from (2.9) and the fact that + is equivariant.
Indeed, o, is a circle with center (E, + E;)/2 and with radius 1/2. q.e.d.

COROLLARY. Let ¢ be a totally geodesic or wumbilical immersion of
S®(¢) into a space form M™'?(C) where p =9 and ¢ =¢. Then the
composite tof: CayP? — M%) is a planar geodesic immersion.

REMARK 2.2. Let o be a geodesic in CayP® with respect to the
metric g. Then foo is a circle with radius (3/4¢)2%

REMARK 2.3. Let M be FP™ or CayP? and let V, be the eigenspace
with eigenvalue )\ of the Laplacian with respect to g, where A = 2d x
(m + 1) or A = 48 according as M = FP™ or M = CayP’. We regard
V, (with the global inner product) as an Euclidean space. Let dim
V=12, + 1 and {f, ---,f,,lﬂ} be an orthonormal basis for V,. Define
ffiM—V, via f'(x) = (fu=), ---,f,,lﬂ(x)). Then the image is contained
in a sphere S*i. The map f' is an immersion and, suitably changing
the metric g, on M, we have an isometric minimal immersion of M into
a sphere S?1 (in detail, see [4], [15]). This construction of minimal
immersions into spheres coincides with our construction. In fact, the
map ¢: 9(m + 1, F) = Viymen (resp. $3, Cay) — V,5) defined by §(4)=h,
is a homothety because of the irreducibility of the representation of
U(m + 1, F)(resp. F,) on §(m + 1, F)(resp. Hy(8, Cay)).

3. Properties of the second fundamental form. Let M" and M**? be
connected complete Riemannian manifolds of dimension # and # + p respec-
tively. Let f: M™— M"*? be a planar geodesic immersion. Then we have
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LEmMMA 3.1. (S. L. Hong). If X and Y are orthonormal vectors
tangent to M™*, then
(3.1) (H(X, X), HX, Y))=0.

ProOF. We may assume H(X, X) # 0. Let o:(—t,t)— M" be an
unit speed geodesic such that 6(0) = X and f(o(—t, t,))C P where P is
a 2-dimensional totally geodesic submanifold in M"*?. Then, from (1.1),
we have
3.2) Vsifo = H@G, ) .

On the other hand, regarding foo as a curve in P, we have V,;fé ¢ T,P,
because P is a totally geodesic submanifold in M"**?. If we take ¢, small
enough, then H(G, d) #0 on (—t, t,). Thus fé and H(d, 6) span T,P on
(—t, t). Since V,,(H(d, 6)) e TP, we can write
(3.3) 7 si(H(G, 6)) = uf() + vH(J, d)
for smooth functions w = u(t) and v =v(t) defined on (—%,, ¢t,). Extending
Y to a vector field Z along ¢ tangent to M", we thus have
(H(X, X), HX, Y)) = {H(J, 6), H(6, Z)) |;=o = {H(, ), 7 1;fZ) .=

= —V;(H(0,0)), [Z) iz = 0. q.e.d.

The equation (8.1) is equivalent to the condition that f is isotropic,

i.e.,

(3.4) I|H(X, X)|]* =\

for all unit vector X tangent to M" where \ is a function on M".
LEMMA 3.2. Let X,Y be orthonormal wectors tangent to M™ and

5(X, Y) (resp. s(X, Y)) denote the sectional curvature of M*** (resp. M")
corresponding to the plane section spanned by X and Y. Then

(8.5) (H(X, X), HY,Y)) + 2||HX, Y)|]? =\,
(3.6) BI|HX, V)|P+ s(X,Y) —5(X,Y) =\,
3.7 w9+ 2| H|]* = n(n + 2)A\*.

Proor. Equations (3.5) and (3.6) are due to B. O’Neill [10]. Choosing
an orthonormal basis {X,, ---, X,} on the tangent space T,M", we have
from (3.6)

n(n — I = 3( 35 | HX, X)) — 33| HX, X))
+ 3 (6(X, X)) — 5(X,, X))
= 8| H|F = w\) + o — S 5(X, X)).
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On the other hand, (1.4) implies
2, 3(Xy X5) = o — w*|I7]F + || HF .
Thus we obtain (3.7). q.e.d.

There is a situation under which the equation (1.8) holds although
M™*? is not a space form, for example, complex submanifold in a complex
space form. Under such situation we have

LEMMA 3.3. If the equation (1.8) holds, then )\ is comstant.

PrROOF. Let z be arbitrary fixed point of M™ and X be any unit
vector at = tangent to M". Take the normal coordinate neighborhood
around = in M* and an unit vector Y at x tangent to M* which is
orthogonal to X. Let o be the unit speed geodesic in M* such that
0(0) =2 and 6(0) =Y. Assume H(Y,Y)+#0. Then we have the equation
(3.3) on a small open interval containing 0. If we parallel translate X
and Y along the unique geodesic from 2 to each point in the normal
coordinate neighborhood, then we obtain locally defined vector fields X
and Y extending X and Y respectively such that 7, X=r,Y=r,¥=r,X=0
at z. We find

XN =X-(H(Y,Y), HY, Y)) = 20/ »(H(Y, Y)), H(Y, Y))
= 2 H(Y, Y)), HY, Y)) = 2Z(:H)Y, Y), H(Y, Y)) .
Using the equations (1.8) and (3.3), we have
X\ =2((PyH)X,Y), H(Y, Y)) = 2/+(H(X, Y)), HY, Y))
= 2(7(H(X, Y)), H(Y, Y)) = —2(H(X, Y), 7,(H(Y, Y)))
= —2(H(X, Y), w(0)fY + v(0)H(Y, Y)) .
Thus (3.1) implies that X-A*=0. If H(Y,Y) =0, then Mz) = 0 and so
clearly X-22=0. q.e.d.

LEMMA 3.4. If the equation (1.8) holds, then the second fundamental
form 1s parallel, i.e., V'H=0. We have also

(3.8) CAX, YYA,Z=NX,Y)Z

where € denotes the cyclic sum with respect to X, Y and Z.

ProorF. If » =0, then H = 0. Thus we may assume A # 0. Let X
be any unit vector at a point x tangent to M" and ¢ be the unit speed
geodesic such that ¢(0) = z and 6(0) = X. Now we have equations (3.2)
and (3.3). Since (H(d, ¢), H(d, 6)) = \* is constant, we find
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N = (F5i(H(S, 6)), H(G, 6)) =0 .
We also have
w = (7 ;i(H (G, ), f6) = —(H(3, 6), 7 ;s f6) = —\*.
Therefore (3.3) reduces to
(3.9) V:(H(G, 6)) = —NfG .
On the other hand, by (1.2) we obtain
7 s(H(3, 6)) = —fAri,»0 + Vi(H(, d)) ,
from which
xH)X, X) = (7:H)G, 6)limo = V#(H(G, 6))leeo = 0
and
S (AX, XDA X = Aps0limo = NX .

a

Since the equation (1.8) holds, we see that /"H = 0. The second equation
above is equivalent to >, (4.X, X)>A.X = A X, X)X for any vector X
tangent to M*. Symmetrizing this equation, we obtain (3.8). q.e.d.

In the sequel, the ambient space M**? will be a space form M"**(¢)
with curvature ¢. The Laplacian of the second fundamental form is

given by
AH{ja = ’}k’ik i
in terms of local coordinates. In the following lemma, we make use of
the formula
(8.10) 44, = (P, A7)
% (trace A,) + ¢nA, — ¢(trace A,)]
+ ; (trace 45)A4;A, — ; (trace A,A4,)A;
+ 2 Zﬂ‘, AzA A — %, AzA, — Zﬂ‘, A A}

which was calculated in [3].

LEMMA 3.5. Let M**”? be a space form with curvature ¢. Then f
18 pseudo umbilical, i.e.,
(3.11) A, = |[n|I.

In particular, if —N*=¢ £ 0, then f is a totally geodesic immersion
into an Euclidean space (i.e., (E) (i) exhibited in §1) or a totally um-
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bilical immersion of an Euclidean space into a hyperbolic space (i.e.,
(H) (ii) (e)) according as ¢ =0 or ¢ < 0.
PrROOF. By means of Lemma 3.4, (3.10) can be written as
(3.12) 0 =¢nA, — ¢(trace A)I + }; (trace A,)A4:A,
~ Zﬂ‘, (trace 4,4;)A; + 2 %‘, AsA Ay — Z,, AA, — Ep‘,A,,Af; .

Let = be arbitrary fixed point and {X,, ---, X,} be an orthonormal basis
for T,M. From (3.8) we have

2. AKXy XDAZ + AKXy Z)AX ) = N XXy X0 Z + X,y Z)X)

which shows
(3.13) zp“ {(trace Ap)A; + 243% = N(n + 2)I.

Putting ¥ = 4,X,, X = X, in (3.8), we have
%‘,Z‘,{(A,,Xi, A XA Z + (A A X, Z)A X, + (AZ, X;)AA: X}
= \? 2‘{<X" A XDZ + (A X, Z)X, +{Z, X,)A X}
which implies
(3.14) Zﬁ] {(trace A, A;)A; + 24A,A;} = Z\{(trace A,)I + 24,} .
Since the mean curvature normal 7 is parallel with respect to the normal
connection I+, equation (1.9) implies [A4,, A,] = 0 for each @ which means

that > (trace 4;)4; and A, are commutative for each a. Thus from
(3.13)

(3.15) (3 ADA. = A3 4)) .

Making use of (3.13), (3.14) and (3.15), equation (3.12) can be rewritten
as

(3.16) € + \){nA, — (trace A,)[} =4 Eﬁ‘,(AﬁA,, — AAAy) .
It follows that
€ + ) Ea] {n (trace A,)A, — (trace A,)I}
=4 a% {A¥(trace A,)A, — Ay(trace A,)A, Az} =0

where we have used the fact that >, (trace 4,)A, and A, are commutative
for each 8. Thus we see that if \* = —¢, then A4, = ||9]|?L.
Now suppose that \*+ ¢ =0, then >, A}A, = >z A;A,4; for each «
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because of (3.16). The square of the length of the normal curvature
tensor denoted by ||R*‘||* is given as follows:

| B[ = 2'61'3062;, (4,424, — A A 4,4, ,
where we used (1.9). From (3.15), we thus have R* = 0, so that A, and
A, are commutative for every «, 8. By taking suitable orthonormal

basis {Y,, ---,Y,} of T,M, we can diagonalize 4, for all «, i.e., 4.Y; =
AY,;. Then

H(Y,Y;)=><{A. Y, Y;>6,=0 for any 1+7,

which implies that s(Y;, Y;) = 0 for every 7 = j owing to (3.6). Hence
the submanifold M" is locally flat. Since (8.5) yields
<H(Yu Yz)y H(er YJ)> =\ fOI' any ’l' * .7 ’

we conclude that f is an umbilical immersion. Let M* = E be the simply
connected Riemannian covering of M" and denote the covering map by
#. Then the immersion fo#t: M*— JM** ?(¢) is also an umbilical immersion
which is congruent to (E) (i) or (H) (ii) (¢). Therefore fo7 is one to one
and thus 7 is one to one. It follows that M" is an Euclidean space.
q.e.d.

REMARK 3.1. Combining (3.7) and (3.11) with (3.13), we have
(3.17) soar=1HE T
? n

Thus we see from (1.10) that M is an Einstein manifold.

The following equation is useful in the process of reducing planar
geodesic immersions to essential ones.

LeEmMA 3.6. Define T = (T.s) by T, = trace (4.4;) which is a sym-
metric linear transformation on the normal space. Then we have

(318) 3 Tod, = %(21177”2 +E— WA, — %(5 — N)(trace A,)T

for any c.

Proor. Substituting (3.17) into (3.16), we get
23 4,44, = _2_1;[{4 IH|* — 7@ + M)} Ae + n(E + M)(trace A)I] .

Combining this equation and (8.7) with (3.14), we obtain (8.18). q.e.d.
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4. Reduction of planar geodesic immersions to their essential ones.
In the preceding section, we have proved that the second fundamental
form is parallel if f: M*— M™**(¢) is a planar geodesic immersion. First,
using this fact, we reduce the codimension to the dimension of the first
normal space, where we recall that the first normal space N,(z) at x € M"
is the subspace spanned by the set {H(X, Y): X, Y e T,M*} in the normal
space N,M". It is easy to prove

LEMMA 4.1. The symmetric linear transformation T on N, M defined
in §3 s positive semidefinite. Let Pos(T) and Sym(T,M) denote the
maximal subspace on which T is positive definite and the vector space

consisting of symmetric linear transformations on T,M™ respectively.
Then we have

Ny(x) = {§: A; = 0} = Pos(T) ~ {A;: 6 N, M} C Sym(T.M) ,
{ }* being the orthogonal complement of { } in N,M.
The following lemma guarantees the reduction of the codimension.

LEMMA 4.2. The dimension of the first normal space is constant

and N, is invariant by the parallel displacement with respect to the
normal connection.

ProOF. Let = and y be arbitrary two points of M*. Let ¢ be a
curve from z to y in M". Take an orthonormal basis {X,, ---, X,} for
T.M" and parallel translate this frame to y along ¢ with respect to the
Riemannian connection ¥ of M™ Thus we have orthonormal frame field
parallel along ¢, which is denoted by {Y,, :---,Y,}. Then H(Y,Y;) is
parallel along o with respect to the normal connection /", because

Vy(H(Y,, Y;) = WHXY, Y,) + HV:Y,, Y;) + H(Y, V;Y;) = 0.

Noting that the set {H(Y (%), Y;(¥)):%,7 =1, ---, n) spans N,(y), we see
that the parallel displacement along any ¢ from x to y with respect to
V+ gives a linear isomorphism of N,(x) to N,(y). Therefore the dimension
of N, is constant and N, is invariant by the parallel displacement with
respect to /L. g.e.d.

If » =0, then f is a totally geodesic immersion which is exhibited
in §1. Thus, in the sequel, we assume X\ # 0. Let » = dim N,. Then
there exists a totally geodesic submanifold M**"(¢) of dimension n + r
in M) such that f(M™)c M*"(¢). This is immediate consequence
from Lemma 4.2 and a theorem of Erbacher [5]. Since dim Sym(TM) =
n(n +1)/2, we have an inequality » < n(n + 1)/2 by Lemma 4.1. Therefore
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it suffices to consider a planar geodesic immersion f: M"— M™*"(¢) under

the assumption that f is full, » < n(n + 1)/2 and the normal space coin-

cides with the first normal space. Moreover all equations obtained in

§3 are valid. Indices @, 8, ¥ run over the range {n +1, ---, n + 7}.
We shall now consider the symmetric linear transformation 7.

LEMMA 4.3. Let = be arbitrary fized point and U be the normal
coordinate mneighborhood around x in M*. Then, with respect to a
suitable orthomormal mormal frame field {£,.., -+, &r} on U, T can
be diagonalized as the following types:

2

03
(I) T = , a2=%(6—xz),traceAa=0 for any «;
. -
b2
. b =22|9|F+ ¢ — \), trace 4, = 0
a T=| " , 2
b fora=n+r A, = l(trace A, ).
ikilly ks

In the case (1), we have ¢ >N >0, r<(n—1)(n + 2)/2 and f is minimal.
In the case (II), we have 2||n|* >N —¢€ of r # 1 and we see that f is
totally umbilical +f r = 1.

Proor. Let {¢,., -+, ...} be an orthonormal basis for N,M such
that T¢, = p.f.. Parallel translate this normal frame to each point in
U along the unique geodesic in M" issuing from z with respect to the
normal connection. Since T is parallel with respect to /t, T can be
diagonalized by this orthonormal normal frame field locally defined over
U. Then (3.18) becomes

(4.1) tala = 22|17 + 7 = N)As — %(a — \)(trace A .
Taking trace, we have

Uo(trace A,) = n || n|[(trace 4.)

which implies that g, = n||7||* or trace 4, = 0. If trace 4, = 0 for some
B, then

s =%(2Hm|2+a—- %)

because A,# 0 for any «, that is caused by the circumstance the normal
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space is equal to the first normal space. Thus we conclude that T has
at most two eigenvalues.

Suppose now A\’ ¢. If the immersion f is minimal, then trace 4, =0
for any @ and so g, = (n/2)(¢ — \*) for any a. This case is of type (I).
If the immersion f is not minimal, i.e., ||7]|| # 0, then there exist at
most two eigenvalues b* and n||7]?. We may assume that g, = b* for
a=n+1---,n+7r and g, =n||p| fora=n+»r,+1,---,n + r and
moreover we may assume 1 =< 7, because if p¢, = n||7|* for any «, then
(4.1) shows that f is totally umbilical, i.e., »r =1. We see from (4.1)
that trace4,=0 for n +1 <a <n + r, and 4, = (1/n)(trace 4,)I for
n+r+1=a=n+r. Then we have

n+r n+7r ntr
2+ trace A% = 1 Z+ (trace 4.)* = 1 > (trace A,)
a=n+r;+1 n a=ntri+i n a=n+i
=n|7[*.

On the other hand,

S trace A% = (r — r)n 7|,

a=ntri+1

so that », = » — 1. This case is of type (II).

Next suppose \? = ¢é. Equation (4.1) implies that ¢, = n||7|* for all
. Since T is positive definite,||7|| # 0. Noting that 7 is parallel with
respect to /4, we can choose 7/||7|| as &,.,. This case is of type (II).

In the case of type (I), the minimality of f gives a restriction for
r (cf. Lemma 4.1), i.e., » < (n — 1)(n + 2)/2. This bound is equal to the
dimension of the vector space spanned by the elements of Sym(TM)
whose traces are 0. q.e.d.

Let us consider the case of type (II). Even if the ambient manifold
is a hyperbolic space, we have

LEMMA 4.4. In the case of tyve (II), ¢ + ||9]|* is positive if r #= 1.
ProOF. We note that 2||n|> > \* — ¢. The square of the length of
the second fundamental form is given as

IH|P = (r — 1)b* + n||7]* = nr{[7] + %(7‘ —1E - ).

Combining this equation with (3.7), it follows that

1
n + 2r

Thus we find 2{(n+r+ 1)\ —(r—1)¢}/(n+2r) >N —¢ which implies A\*+¢>0.

I7lf* = {n+r+ 1\ —(r—1)3}.




48 K. SAKAMOTO

It follows that ¢ + ||7]* > (\* + ¢)/2 > 0. g.e.d.

Note that ¢,,, = 7/||7|| and A,,, = (1/n)(trace A,,,)I in the case of
type (II). By a similar method to that used in [11], it can be shown
that if r» =1, M must be minimally immersed into a totally umbilical
hypersurface of M™*"(¢) with curvature ¢ + ||| > 0 which is orthogonal
to the mean curvature normal 7. This totally umbilical hypersurface
will be denoted by M"*(¢) where g =r — 1< (n — 1)(n + 2)/2 and ¢ =
¢ + ||7]>. We must note that J"+%(¢) is congruent to (E)(ii), (S) (i) or
(H) (ii) (s) exhibited in §1 and regarding the immersion f as that of M*
into #***(¢), the second fundamental tensors corresponding to the normal
vectors &,,,, *+*, &,y are also A,., -+, A,,, respectively. Moreover it
is easily verified that f: M*— J"*%(¢) is also isotropic, whose isotropy
constant g is equal to A\* — || 7]

If f is totally umbilical in the case of type (I), then f must be totally
geodesic which contradicts our assumption A %= 0. If » =1 in the case
of tpye (II), then f is totally umbilical. Conversely, if f is totally
umbilical in the case of type (II), then » = 1. Thus, in the sequel, we
exclude the totally umbilical case from our consideration. After all, in
order to solve our problem introduced in §0, we have only to consider
a full, isotropic and minimal immersion f: M* — I"+%(¢) whose isotropy
constant £ is equal to A? — ||7]|* where the case of tpye (I) may be
regarded as that »=0. Moreover we may assume that ¢ < (n —1)(n + 2)/2
and f is also planar geodesic; because the intersection of a 2-dimensional
great sphere with a small hypersphere in a sphere is empty, a point or
a circle.

We need the following lemma to determine the codimension gq.

LEMMA 4.5. We have equations

4.2 e _ 9C
(4.2) # n+q+2

(4.3) 0= nln —1)7 — n(n2+ 2)

ProOF. Since f: M*— M"*(¢) is planar geodesic, equation (3.7) is valid.
By virture of Lemma 4.3, we obtain ||H|® = 'nq(EN— 19)/2, H being the
second fundamental form of the immersion f: M* — M"*%(¢). Substituting
7 = 0 into (3.7), it follows that
ng(& — 1£) = nin + D

which implies (4.2). From (1.12), we have (4.3). g.e.d.
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Finally, we show that the universal covering manifold of M" is a
compact simply connected symmetric space of rank one and determine
its maximal sectional curvature.

Let f: M™— M**(¢) be the immersion as above. Let ¢ be the natural
imbedding of M"*(¢) = S***(¢) into E"***'. Then we have

LEMMA 4.6. If o:(—t,t)— M" is a unit speed geodesic such that
0(0) = z, and 6(0) = X, then
(4.4) ¢f(o(2)) = ¢f(x,) + —E—(sin V) (X) + %(1 — cos Vt)(tH(X, X) — ¢¢f(x,)) ,

where V! = € + & and ¢(f(X) means ¢, fX.

PrOOF. Since f is planar geodesic, there exists a 2-dimensional great
sphere P such that f(o(—t, t,))CP for sufficiently small ¢,. P is the
intersection of #**(¢) with 3-dimensional plane P spanned by ¢f(x,), ¢A(X)
and ¢H(X, X). Set

X, = VFiflw), X,=f(X)and X, = —i?cH(X, X).

Then {X,, X,, X,} is an orthonormal base for P. Using this base, we
can write

(4.5) tf(o(t)) = wi(H)X, + w,()X; + w(8)X,

where w,(t) (b =1, 2,3) are certain differentiable functions defined on
(—t, t,) and they satisfy >}, wi = 1/€. The straightforward computation
shows

P HG, ) = 3, (Wi + Fw)X,
¥ being the covariant differentiation in M"*%(¢). Taking account of (3.9),
we thus have differential equations
wy' = —(€+ pHw, for b=1,2,3
with initial conditions '
w,(0) = 1/V'E, wi(0)=0, w/(0) = —1V'T; wy(0) =0, wy(0)=1, wy(0)=0;
wy(0) = 0, wy(0) =0, wi(0) = p.
The solutions are given by

1
VEy
Substituting these equations into (4.5), we get (4.4). q.e.d.

wl(t) =

(Ccos vt + 1), wy(t) = %sin vt, wy(t) = 5(1 — cosvt) .
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REMARK 4.1. Equation (4.4) shows that any geodesic in M" is mapped
to a circle by f.

Let H be the second fundamental form of the immersion ¢of: M"*—
E*t*+', Then it is easy to show that H satisfies

HX,Y) = tH(X, Y) - &X, Y )tf(X)

for any X, Y tangent to M". The immersion ¢of is also planar geodesic,
whose isotropy constant is equal to v»*. In terms of H, (4.4) can be
written as

(4.6) ¢fla(t)) = ¢ef(x,) + % (sinvt)ef(X) + ;12—(1 — cosVt)H(X, X)

which is the same equation as S. L. Hong obtained in [7]. By virture
of (4.6), we can represent locally the immersion ¢of in terms of normal
coordinates centered at »,. Using this fact, Hong has proved

LEMMA 4.7. The sectional curvature of M" is 1/4-pinched, i.e.,

(4.7 %»2 < 8(X,Y) < v

for any orthonormal vectors X, Y tangent to M. In particular, if M"
18 of constant sectional curvature, then it is V/4.

PrROOF. In [7], the consideration for the case n = 2 is lacking Thus
we give a proof only when n = 2. Let X, Y be any orthonormal vectors
tangent to M". Since f is minimal we have H(X, X)= —H(Y,Y). It
follows from (3.5) that ||H(X,Y)|*= ¢’ Using (3.6), we obtain
s(X,Y)= ¢ — 2 On the other hand, it is easy to see that the case
g =1 does not occur and hence ¢ = 2. Therefore (4.2) implies s(X,Y) =
¢/8, from which we have s(X, Y) = v*/4. q.e.d.

Let M" be the simply connected Riemannian covering of M* and
denote the covering map by #. Then fo#i: M*— J[**%(¢) is an immersion
with the same property as f. Thus M is a compact symmetric space
of rank one, because Lemmas 3.4 and 4.7 hold for foZ. Let d =2 or 4
according as M" = CP™ or QP™ where n = md. We obtain

LEMMA 4.8. M" is a stmply conmected compact symmetric space of
rank one. Let ¢ denote the maximal sectional curvature, i.e., holomor-
phic, Q-or C-sectional curvature. If M* = S*(c), then ¢ = (n/2(n + 1))¢,
g = (n—1)(n+2)/2 and £ = (n—1)/(n +1))é&. If M* = CP™(c) or QP™(c),
then ¢ = (2m/(m + 1))¢, ¢ = (m — 1)(md + 2)/2 and 1 = ((m —1)/(m + 1))¢.
If M* = CayP¥c), then ¢ = (4/3)¢, ¢ = 9 and 2 = (1/3)c.
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Proor. Lemma 4.7 implies that if M = S*, then the sectional curva-
ture is »*/4 and if M = CP™, QP™ or CayP? then the maximal sectional
curvature is »*. Thus the scalar curvature p is given by

0= -1—11,(71 — 10, m(m + 1%, 4dm(m + 2)* or 16 x *

according as M* = S*, CP", QP™ or CayP* (cf. [2], [8]). Combining them
with (4.3), we obtain our assertion for f*. We also obtain our assertion
for ¢ from (4.2). q.e.d.

REMARK 4.2. Since CP'(c) and QP'(c) are of constant sectional curva-
ture, they should be regarded as S*c) and S*(c) respectively.

5. Main theorems and corollaries. In the preceding section, we
have reduced planar geodesic immersions into space forms to the full,
minimal and planar geodesic immersions of compact rank one symmetrie
spaces into spheres. We consider their rigidity. Note that the values
¢ and ¢ obtained in Lemma 4.8 are equal to those of the immersions
explained in §2. Let f: M*— S"*'(¢) be a planar geodesic immersion
which is full and minimal. Then the simply connected Riemannian
covering manifold M"* of M* is S*(¢), CP™c), QP™(c) or CayPc) by
virture of Lemma 4.8. On the other hand, in Theorems 1 and 2 we
constructed the immersion f: M*— S**9(&) with same properties as f.
Let fioff, «++, faresoft e the coordinate functions of fo7t: M* — S*+(&)C
E**t*t where 7 is the covering map M"— M*. Then they are linearly
iPdepenQent because f is full. On the other hand, the coordinate functions
Fi o++y Furass of f are orthogonal (cf. Remark 2.3). It follows that
there exists a non-singular linear transformation U on E""*' such that
fo = Uof. Since f is analytic and of degree 2 in the sense of [15], we
can apply [15] Proposition 11.1 to fo7, so that U is an orthogonal linear
transformation. Noting that f is an imbedding for CP™, QP™ and CayP?
(resp. two fold immersion for S*), 7 is one to one (resp. two fold). Thus
M"™ must be S*(c), RP*(c), CP™(c), QP™(c) or CayP*c).

Let’s go back to the original situation. Let f: M™— M**?(¢) be a
planar geodesic immersion. Then f is a minimal immersion into S**?(¢)
or lies minimally in a totally umbilical submanifold M"*%(&) of M™*?(c)
with curvature ¢ =¢ + ||9]|[* > 0 except for totally geodesic and umbilical
case, 7 being the mean curvature normal of f. Any two (n + q)-
dimensional totally umbilical submanifolds in M**?(¢) with same curvature
are congruent each other and any rotation of a totally umbilical sub-
manifold can be extended to an isometry of the ambient manifold
M~+*(¢). Therefore we have
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THEOREM 3. Let f: M*— M"*(€) be a planar geodesic immersion.
Then f is congruent to a totally geodesic, umbilical immersion exhibited
wn §1 or one of the model immersions stated in Theorems 1, 2 and their
Corollaries.

COROLLARY. If f: M"— M™*(¢) is an immersion which maps every
geodesic in M™ to circles in M™*?(¢), then we have the same conclusion
as Theorem 3.

COROLLARY. If f: M*— M"*?(€) is an 1isotropic immersion with
parallel second fundamental tensor, them we have the same conclusion
as Theorem 3.

ProOF. In order to prove that f is planar geodesic, we may assume
that f is a minimal and isotropic immersion of M" into S"'%(&) with
parallel second fundamental tensor. Let o be any geodesic in M*. Then
we have a differential equation

Vyifé = H@G,6), Vu(H(©,d) = —fs,
7 being the covariant differentiation of S**¢(¢), where we have used the
fact that equation (3.8) is equivalent to the isotropic condition (3.4) and
the second fundamental form H is parallel. The initial conditions are
0(0) = x,, ¢(0) = X and V,;f6|,-, = H(X, X). Then the solution is given
as (4.4) which shows that f is planar geodesic. q.e.d.

Finally, we give an interesting property of planar geodesic immersions
into spheres which are full and minimal. We also give a different proof
for their rigidity when the manifold M" is a sphere, complex or quaternion
projective space. First, let f,: S*(1) — S***»(k,) be a planar geodesic
immersion which is full and minimal, where

(5.1) po= 2+l o, (v =D+ 2)
n n n 2

(cf. Lemma 4.8). The isotropy constant z, of f, is given by

(5.2) ==,

"
Fix a point 2z in S*(1) and consider the unit hypersphere S*7(1) in the
tangent space T,S"(1) at . Then the second fundamental form H, gives
a map ¢, S"(1)— S™7'(1/) C N.S*(1) by ¢.(X) = H (X, X) for any
Xe S ().

PrOPOSITION 5.1. The map ¢./2 coincides with a full and minimal
planar geodesic immersion f,_;: S*'(1) — S* **?»-1(k,_,) whose isotropy
constant is f,_,.
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Proor. First we note that p, — 1~ (n —1)=p,_, and 4/¢2 = k,_,.
Let X, YeS"'(1) be any orthogonal vectors. The great circle o(t) =
(cost) X + (sint)Y in S*(1) is mapped by ¢,./2 as

(5.3) -;—qs,.(o(t» - —}{H(X, X) + H(Y, Y) + (cos 2)(H(X, X) — H(Y, V)

+ 2(sin2t)H(X, Y)} .

Thus we have ||(¢,/2)«(Y)|]* = ||H(X, Y)|*. On the other hand, applying
(3.6) to f,, we obtain ||H(X, Y)|®=1. Therefore ¢,/2 is an isometric
immersion. This is also planar geodesic. In fact (5.3) is a circle with
center (H(X, X) + H(Y, Y))/4 and with radius 1/2.

Let £€ N,S*(1). The height function defined over S**(1) in the di-
rection £ is given by

(5.4) h(X) = %<Aex, X)

where we have used (1.3). Since f, is minimal and hence trace 4, = 0
for any &, the height function k. is a spherical harmonic of degree 2
corresponding to the eigenvalue 2n. Thus ¢,/2 is minimal.

Let {&,41 ***) &usp,} be an orthonormal base for N,S*(1). If the
image (¢4,/2)(S"!(1)) is contained in a hyperplane of N,S"(1), say >\, a*h,=0
where h, = h;, then we have from (5.4) > a*(4.X, X) =0 for any
X e S* (1) which implies >, a*4, = 0. However, from Lemma 4.1, A,’s
are linearly independent. Thus we have a contradiction. We have

proved that ¢,/2 is full. q.e.d.

ProposITION 5.2. f,:S"(1)—S""?(k,)is rigid. In particular, f,: S*(1)—
S*3) is a Veronese surface (¢f. [3]): The map f, is congruent to the
Hopf map: S'(1)— S'(4).

Proor. Let f,:S"(1)— S**?=(k,) be another planar geodesic immersion
which is full and minimal. Similarly we have ¢, and hence a planar
geodesic immersion f',,_1 which is full and minimal. Since S"*«(k,) is
frame homogeneous, we may assume that f,(x) = f.(z) and f,. = f,. at
2. Thus the normal spaces at x with respect to f, and f. coincide.
Suppose that there exists an orthogonal linear transformation U, of
N,S*(1) such that Uof,., = f,—.. U, can be extended to an orthogonal
linear transformation U of S***+(k,)C E***»* by means of U(f,.(z)) = f.(x),
Uly,.r,sm = Identity and Uly,s» = U. Then the second fundamental
form of the composite U-f, is given by UeoH, at z. Our assumption
shows U,oH, = H,, H, being the second fundamental form of f,. Since
U-f, is also planar geodesic, Uof, is locally determined by U,oH, (cf.
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Lemma 4.6). Similarly, f,,, is locally determined by H,. Noting that f,
and f, are analytic, it follows that Uof, = f,.

By the consideration above, we have only to prove the rigidity of
fo: S*(1) — S*8). The coordinate functions of f,: SY(1) — S'(4) are given
as follows:

hy(t) = —;—(al cos2t + b, sin 26) , hyt) = %(az cos 2t + b, sin 2f) ,

h+ hi=1/4,
because h, and h, are spherical harmonics of degree 2 on S'(1). Clearly,

the matrix gl 2‘) is orthogonal which shows that f, is unique up to
2 2
rotation and reflection of S'(4). q.e.d.

Next, let f,: FP™(4) — S™**n(k,) be a planar geodesic immersion
which is full and minimal where F = C or @ and

(5.5) g, = 2m+1) o _ (m—1)dm +2)
m 2

(cf. Lemma 4.8). The isotropy constant g, of f, is given by

(5.6) g = 2m =1

m
Fix a point z in FP™(4) and let S*'(1) be the unit hypersphere in the
tangent space T,FP™. Then the second fundamental form H, gives a
map ¢,: S (1) — S*»~'(1/¢2) c N,FP™(4) by ¢.(X) = H,(X, X) for any
X e Sem(1).

PROPOSITION 5.3. The map ¢,/2 induces a full and minimal planar
geodesic immersion f,_,: FP™'(4) — S¥™V*Pu—y(f, ) such that ¢,/2 =
Sm-1°Tm_, Where 7, _, denotes the Hopf fibering: S '(1)— FP™'(4). The
1sotropy constant of fn_. 18 fm_,.

Proor. Note that p, — 1 —d(m — 1) = p,_, and 4/¢2 =k, ,. Let
J, denote the complex structure on CP™(4) and {J,, J,, J;} be the quaternion
structure on QP™(4). J, is a globally defined (1, 1)-tensor field such that
(JX,J)Y)=(X,Y) and J?! = —1, but J, J,, J; are locally defined (1, 1)-
tensor fields such that (J X, J.Y)=(X,Y), J:=—-1 (t=1,2,3) and
satisfy JJ, = —JJ, = J, JoJ; = —JJ, = J,, JiJ, = —JJ; = J,. The curva-
ture tensor of FP™(4) is given by (cf. [8])

(1) (RX, Y)Z, W) = (Y, ZXX, W) — (X, XY, W)
+ SIWLY, ZYTX, W) — (X, 2T, W)
+UX, LY )E, W)
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Taking account of (1.7), from (5.7), we have
(.8)  (H(Y, Z), HX, W)) — (H(X, Z), H(Y, W))
= SLY, ZXTX, Wy — (LX, )Y, W)
:2<X, JYYTZ, WY}

_ m; 2Y, ZXX, W) — (X, ZXY, W)} .

Let X be any unit vector tangent to FP™(4). Putting ¥ = Z = J;X and
W = X in (5.8), we obtain

¢ = (H(X, X), H(J;X, J;X)) — || H(X, J;X)|[*

foreach j 127 =d—-1).

On the other hand, using (3.5), we obtain

tn = (H(X, X), H(J,X, J,;X)) + 2[|H(X, J;X)|[* for each j.
Thus we have for any j
(5.9) H(J,X, J;X)= HX, X), HX,J;X)=0.

Now, let’s consider the map ¢,/2: S '(1)— S¥™v*+ru—i(f, ). The equa-
tion (5.9) means that ¢,/2 induces a map f,_,: FP™'(4) — S¥m™btPn—y(f, _ )
such that ¢,/2 = fu_,oTn_,. Let Xe S '(1) and let Y e S '(1) satisfy
X1Y,J,.X1Y for any ¢. Then every geodesic in FP™'(4) can be written

as T,_,(cost X + sintY), which is mapped by f,._, as (5.3). It follows
that || fn-(Y)|? = || H(X, V)| Putting Z =Y and W = X in (5.8),

_m; 2 — (H(X, X), H(Y, Y)) — | H(X, Y)| .

Combining this equation with (3.5), we obtain ||H(X, Y)|| =1 which
shows that f,_, is an isometric immersion. Clearly, f,_, also planar

geodesic.
A similar method to that taken in the proof of Lemma 5.1 shows
the minimality and fullness of f,._,. g.e.d.

PROPOSITION 5.4. f,: FP™(4)— S™**a(k,) is rigid. In particular, f,
18 an isometry of SU4) and satisfies ¢,/2 = fiomw, where w: S* (1) — S%4)
18 the Hopf map.

PROOF. A similar argument to Proposition 5.2 implies that the rigidity
of f, can be reduced to that of f,: FP*(4)— S**(3). The map ¢,/2 induces
an isometric immersion f;: FP'(4) — S%(4) such that ¢,/2 = f,or,, However
FP'(4) and S%4) are of the same dimension. Thus f, is a Riemannian
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covering and so isometry, because S%4) is simply connected. q.e.d.
Taking (1.3) and (5.9) into account, we have

THEOREM 4. Let f: M"— S**(€) be a planar geodesic immersion
whaich s full, minimal and non-totally geodesic where M™ = S*, CP™ or
QP™. Then the vector space {A.:&e N,M"} can be identified with the
vector space spanned by Hermitian matrices of trace 0 over each field
F=R,C or Q, i.e., $(m, F).

BIBLIOGRAPHY

[1] M. S. BERGER, P. GAUDUCHON AND E. MAZET, Le spectre diine variété Riemannienne,
Lecture Notes in Math., Springer, 1971.

[2] R. B. BRowN AND A. GRAY, Riemannian manifolds with holonomy group Spin(9), Dif-
ferential Geometry, in honor of K. Yano, Kinokuniya, Tokyo, 1972, 41-59.

[38] S. S. CHErRN, M. DOCARMO AND S. KoBAYASHI, Minimal submanifolds of a sphere with
second fundamental form of constant length, Functional Analysis and Related Fields,
Springer, Berlin, 1970, 59-75.

[4] M. P. poCARMO AND N. R. WALLACH, Minimal immersions of spheres into spheres, Ann.
of Math. 95 (1971), 43-62.

[5] J. ERBACHER, Reduction of the codimension of an isometric immersion, J. Diff. Geometry
5 (1971), 333-340.

[6] H. FREUDENTHAL, Oktaven, Ausnahmengruppen, und Oktavengeometrie, Utrecht, 1951.

[7]1 S. L. HonG, Isometric immersions of manifolds with plane geodesics into Euclidean
space, J. Diff. Geometry 8 (1973), 259-278.

[8] S. ISHIHARA, Quaternion Kihlerian manifolds, J. Diff. Geometry 9 (1974), 483-500.

[9] T. ITtom AND K. OGIUE, Isotropic immersions, J. Diff. Geometry 8 (1973), 305-316.

[10] B. O’NEILL, Isotropic and Kihler immersions, Canad. J. Math. 17 (1965), 907-915.

[11] B. SMYTH, Submanifolds of constant mean curvature, Math. Ann. 205 (1973), 265-280.

[12] S. S. Tal, Minimum imbeddings of compact symmetric spaces of rank one, J. Diff.
Geometry 2 (1968), 55-66.

[18] T. TAkAHASHI, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18
(1966), 380-385.

[14] M. TAkEuUcHI AND S. K0oBAYASHI, Minimal imbeddings of R-spaces, J. Diff. Geometry 2
(1968), 203-215.

[15] N. R. WALLACH, Symmetric spaces edited by W. M. Boothby and G. L. Weiss, Marcel
Dekker New York, 1972.

TokYO INSTITUTE OF TECHNOLOGY





