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0. Introduction. Let G be a Chevalley-Demazure group scheme asso-
ciated with a connected complex semi-simple Lie group G, (as for the
definition, see E. Abe [1], 1) and let R be a commutative ring with a
unit, a an ideal of R. Then the natural ring homomorphism f: R — R/a
induces the group homomorphism G(f): G(R) — G(R/a). The kernel (resp.
the inverse image of the center of G(R/a)) of G(f) will be denoted by
G(R, a) (resp. G*(R, a)) and called the special (resp. general) congruence
subgroup modulo a of G(R). Any subgroup N of G(R) such that

G*(R,a) D ND G(R, a)

for an ideal a of R is a normal subgroup of G(R). Such a normal
subgroup of G(R) will be called a congruence subgroup of G(R).

Now let R be a local ring, m be the maximal ideal of R and
k = R/m and let G be simple. One of the authors (cf. E. Abe [1]) has
proved that the determination of the normal subgroups of G(R) is reduced
to the determination of certain submodules of R except some few cases
and that in particular, if G is simply connected, the only normal sub-
groups of G(R) are the congruence subgroups provided that the charac-
teristic of k is # 2 (resp. #3) if G is of type B,, C, or F, (resp. of
type G,), and that ch.k %2 and k== F, if G is of rank 1. This is a
generalization of a result given by W. Klingenberg (cf. [5], [6]) for the
groups SL,.,(R) and Sp,,(R).

In this note, we shall formulate the problem by some weaker con-
dition than that of the above result and solve the problem for certain
class of commutative rings which contains not only local or semi-local
rings but also noetherian rings. The main theorem is stated in §1 with
some remarks. In §2, we shall deal with some important subgroups of
G(R) for later use. To prove the theorem, in §3, we shall first reduce
the problem to rings without radicals. Then, in §4, reduce to m-complete
rings (as for the definition cf. §1). These two reduction theorems lead
easily to our main theorem in §5.
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The authors wish to express their thanks to the referee for his
careful reading of the original manuscript. By his comment, we can
generalize our original result to the present form.

1. Statement of the main theorem. We shall freely use the defi-
nitions and notations given in [1], §1. Throughout the paper, G is a
simple Chevalley-Demazure group scheme of rank > 1 and R is a com-
mutative ring with 1. We denote by E(R) (resp. G,(R)) the subgroup
of G(R) generated by x.(t) for all ¢ € R and all root a € 4 (resp. by E(R)
and by h(x) for all x e Hom (Z[T], R)) (cf. [1], 1.5). As for the definition
of the subgroups E(R, a, a;) and E*(R, a, a;), see [1], 1.8. For a given
pair (G, R) of simple Chevalley-Demazure group scheme G and a com-
mutative ring R, we are going to find the condition for (G, R) to satisfy
the following property:

(N) For any subgroup N of G,(R) normalized by E(R), there exists a
uniquely determined ideal a of B and a special submodule a; associated
with (G, R) such that

(i) E*(R,a,a,)D NDE(R,a, a,)
(ii) G*(R,a)D ND E(R, a, a,)
(iii) E*¥(R,a)D> ND E(R, a)

or
(iv) G*(R,a)DNDE(R,a).

We don’t know whether G(R) = G,(R) for any commutative ring.
However, if R is semi-local, then it is true (cf. 2.4). In this case, a
subgroup of G(R) normalized by FE(R) is a normal subgroup of G(R)
and E(R) contains the commutator subgroup of G(R). If G is simply
connected and R is local, then for any ideal a of R, G(R, a) = E(R, a)
(cf. 2.3). Therefore, the conditions (N-iii) and (N-iv) are equivalent in
this case. It is an interesting problem to find the condition for R to
satisfy G(R, a) = E(R, a) for any ideal a of B. Condition (N-ii) is weaker
than (N-i). Therefore, it is desirable to characterize the subgroups N
by (N-i) rather than by (N-ii).

Now, we shall first state some necessary conditions for (G, R) to
verify the condition (N). Let R be a commutative ring and Spm R =
{m,; e M} be the set of all maximal ideals of R, where M is the set of
indices corresponds bijectively to Spm R. For any p <M, we denote by
k. the residue class field R/m,.

(a) If G is of type B, or @G,, then k, =+ F, for any ¢t € M, where F,
is a finite field with two elements.
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(b) The characteristic of %, is different from the length A of long
roots of 4 for any pe M.

From [1], 2.3, we see the following :

1.1. PROPOSITION. Assume (G, R) satisfies (a). If (G, R) werifies
(N-i) or (N-it) and further satisfies (b), then (G, R) verifies (N-iit) or
(N-iv) respectively.

Note that if (G, R). does not satisfy (b), Proposition 1.1 is not true
in general (cf. Example 5.3). Therefore, we restrict our attention to
the condition (N-i) or (N-ii).

We shall prove the following fundamental reduction theorem in §3,
whose proof is analogous to that of the groups over local rings.

1.2. PROPOSITION. Let J be the Jacobson radical of R. If (G, R/J)
verifies the condition (a) and (N-i), then (G, R) verifies also (N-7).

Now, we shall introduce further conditions of R. Let . be the
family of ideals of R which are the intersection of finite numbers of
powers of maximal ideals. Namely, .“ is the set of the ideals

Gw=Ami, pmeMA=<i<mn)

for any finite set of maximal ideals m,, ---, m, and of natural numbers
a=1{e, ---,¢,). We denote by A the set of all indices a which corre-
sponds bijectively to the ideals of .#. We set up the following condition
for-R.

(c¢) For any ideal a of R, a = N, (@ + a,).

We denote by B = LiLnR/aa the completion of KB with respect to the

family of the ideals of _# a We shall call an ideal in .# an m-ideal and
B the m-completion of R. R is a topological ring by natural way and
the condition (c) means that any ideal of R is relatively closed in R.
We shall say that a ring R which satisfies the condition (¢) is m-complete
if R=R. Note that any noetherian ring and the direct product of
arbitrary numbers of fields satisfy condition (¢). Then, we shall prove
the following second reduction theorem in §4.

1.3. PROPOSITION. Assume R satisfies (c¢) and let R be the m-com-
pletion of R. If G is simply connected and (G, R) verifies (N-i1), then
(G, R) also wvertifies (N-i1).

From these reduction theorems, we shall prove the following in the
last section.



188 E. ABE AND K. SUZUKI

1.4. THEOREM. Let G be simple of rank > 1. Assume that R/J is
m-complete and (G, R|J) satisfies (a). Then (G, R) verifies (N-i). In
particular, if R is a local or semi-local ring and (G, R) satisfies (a), then

(G, R) verifies (N-1).

1.5. THEOREM. Let G be simple, simply connected of rank > 1.
Assume (G, R/J) satisfies (a) and (c). Then (G, R) verifies (N-i1). In
particular, if R/J is a noetherian ring and (G, R/J) satisfies (@), then
(G, R) verifies (N-it).

From 1.5 and 1.1, we have the following.

1.6. COROLLARY. Let G be simple, stmply connected of rank > 1.
Assume (G, R|J) satisfies (a), (b) and (¢). Then (G, R) verifies condition
(N-1v).

Recently, J. Wilson [9] has shown that for the general linear group
GL,(R) (n = 4) over a commutative ring R with a unit, the following
holds: For a normal subgroup N of GL,(R), there exists a uniquely
determined ideal a of R such that

GL}(R,a) D ND E(R, a) .

It is a problem whether our result can be generalized for any commuta-
tive ring not necessarily noetherian and any normal subgroups of G(R).

Finally, in the case of Dedekind domain of arithmetic type, using
the Matsumoto’s result [7] on a problem of congruence subgroups, we
can refine our theorem as follows.

1.7. COROLLARY. Let G be a simply connected, simple Chevalley-
Demazure group scheme of rank > 1, R a Dedekind domain of arithmetic
type and k the quotient field of R. Assume (G, R) satisfies (a) and (b)
and k s mot totally tmaginary, then for any subgroup N of G(R)
normalized by E(R), there exists a wuniquely determined ideal a of R
such that

G*(R,a) D NDG(R, a) .

2. Certain subgroups of G(R). Let R be a commutative ring with
a unit and with the Jacobson radical J. We shall deal with the structure
of certain sub-groups of G(R) with respect to J which are analogous to
those of the group over a local ring with respect to its maximal ideal
given in [1], 2. We shall use the same definitions and notations as in
[1], 2.

2.1. PROPOSITION. Let a, be an ideal of R contained in J and q,
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be a special submodule of R associated with (G, a,). Then
E(R7 a17 al) = U(R’ a, aZ)T’(Ry a, ak) V(R’ aly al) .

PrOOF. For convenience, denote by UT'V the set in the right side
of the above equation. First, we claim that UT'V is normalized by
E(R). By the same way as [1], 2.13, 2.14, 2.15, we can prove that UT'V
is normalized by x.,(t) for any root a, € Il and any te R. Therefore, it
is normalized by w,, = %.,(1)r_,,(—1)2,(1), and then also by E(R). Next,
we claim that z,(¢)UT' Ve UT'V for all z,(t)e E(R, a, a;)). If >0, it
is obvious and if @ = —a,, a,€ll, then it is proved by the same way
as [1], 2.13. Now, let —a be any negative root. Since there is an
element w of E(R) such that wx_(t)w™ = w_, (') for some a,cll, we
have

2_ () UT'V = w'a_, (W wUT' Vw " Yw = w(z_,,t" ) UT" V)w
=w(UT"VYw=UT'V.

Thus UT'V is a normal sub-group of E(R). It is the minimal normal
subgroup of E(R) containing x,(t) for all root « €4 and all t€a,, and
therefore we have UT'V = E(R, a,, a,).* g.e.d.

2.2, COROLLARY. P(R) = U(R, J)T(R)V(R) is a subgroup of G(R).

PrOOF. E(R,J) = U(R, J)T'(R, J)V(R, J) is normalized by E(R) and
by T(R). If we set B(R) = T(R)V(R), then we have

P(R) = E(R, J)B(R) = B(R)E(R, J) .
Therefore, P(R) is a subgroup of G(R).

2.3. PROPOSITION. Let a be an ideal of R contained in J. Then we

have
G(R, a) = U(R, A)T(R, a) V(R, a) C G|(R) .
In particular, if G is simply connected, then G(R, a) = E(R, a).

ProoF. In the same way as [1], 3.2, if acJ, then we have that
G(R, a) c G(R), and any element g of G(R, a) is uniquely expressed by
g = utv for some w e U(R, a), te T(R, a) and ve V(RB, a). If G is simply
connected, then T(R, a) = T'(R, a) C E(R, a). Thus G(R, a) = E(R, a).

2.4. COROLLARY. Let R be semi-local. Then G(R) = G(R) and in
particular, if G is simply connected, then G(R) = E(R).

#* In Lemma 2.14 of [1], the condition with respect to ¥ fails, and the proof of 2.18
must be corrected as this proof.
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Proor. Since R is semi-local, G(R/J) = [lucx G(k.) where M is a
finite set. We have G(R/J) = G(R/J) for G(k.) = G(k.). On the other
hand, from Proposition 2.3, G(R, J) C G(R). Therefore, we have G(R) =
G(R). If G is simply connected, then T(R) = T'(R)cC E(R), and so
G(R) = E(R). g.e.d.

3. Reduction to rings without radicals. To prove the theorem, we
shall reformulate the condition (N-i) (resp. (N-ii)) as follows:

3.1. PROPOSITION. (N-7) (resp. (N-i1)) is equivalent to the following
(N') Let N be a subgroup of G(R) normalized by E(R) such that

(i) E*(R,a,0,) D NDE(R, a, a,)
resp.
(ii) G*(R, a,) 2 ND E(R, a, a,) .
Then N contains a unipotent element x,(t) such that x,(t)¢ E(R, a, a;).

This can be proved in the same way as [1], 3.20. Thus, in §3 and
§4, we shall prove (N'’-i) or (N'-ii) instead of (N-i) or (N-ii) in each
cases.

In the present section, we shall prove 1.2. Let J be the Jacobson
radical of R. Assume R/J satisfies (a) and (G, R/J) verifies (N-i). We
shall prove that (G, R) also satisfies (N-i). Let N be a sub-group of
G,(R) normalized by E(R) with the condition (N’-i). For convenience,
we denote by Ef = E*(R, a, a,;), B, = E(R, a, a;) and N' = N — Ef. Then
1.2 follows immediately from the following two Propositions 3.2 and 3.3.

3.2. PROPOSITION. We set P(R) = U(R, J)T(R)V(R). Then
N NPR)= D .

Proor. Let 7: R— R/J be the natural homomorphism and derlote
by R,a, and G, the images of R, a, and a, respectively. If N =
NG(R, J)/G(R, J) is a central subgroup of G(R), then

Nc NG(R, J)c G*(R, J)c P(R) .
Therefore, we may assume that N is not a central subgroup of G(R).
First, assume
E*(R,a,q,)?» NDER,a,qd),
then by the condition (N’-i) for (G, R), we can conclude that there exists

a unipotent element x,(t) of N-:-G(R,J) such that z.(t)¢ E¥- - ER, J).
Without loss of generality, we may assume « is negative. If we write
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x,(t) = g-h for some g N and h e G(R, J), then g = z,(t)- h~' € N' N P(R).

Next, assume E,(R,d,d)>N. Then (E,-E(R, J))* ©N and there
are geG(R) and heN such that (9, 2) = ¢9,9.¢ E, where g, € E, and
9:€ E(R, J). Since Gy(R) = E(R)T(R), we can choose such an element g
from E(R) or T(R). If ge T(R), then h¢ T(R). Therefore, g,¢ T(R) and
so g,¢ E¥. Now, assume g€ E(R) and claim ¢,¢ E*. Then, we have
97t (g,h)eN'NER, J)c N' N P(R). This shall complete the proof of
Proposition in this case. We shall first give a lemma.

LEMMA. Let A be a group such that A = (A, A) and B be a normal
subgroup of A. If (4, B) is a central subgroup of A, then (A, B) = {1}.

PrROOF. Let z, ¥ be any elements of A, z be any element of B and
denote *r = zxz™'. Then

(z, (y, ("%, (z, )y, (2, ®)) = 1.

Thus (%2, (z, ¥)) =1 for any z,ye A and zeB. Since (4, A) = A, we
have (4, B) = 1. Lemma q.e.d.

We set A = E(R)/E, and B = N/E, then (4, A) = A. Applying the
above lemma, we have (4, B) = {1}, namely (E(R), N)cC E,. This is a
contradiction and it must be g, ¢ E¥*. q.e.d.

We shall use here the notations and definitions of [1], 3 and prove
the following.

3.3. PROPOSITION. Assume that (G, R) satisfies (¢). Let N be o
subgroup of G(R) normalized by E(R).

(i) If N'NP(R)+ @, then N' N xy(R)x;(R) = @ where £, B are
dominant roots of A.

(ii) If N' Na(R)xs(R) = @ where B, B are dominant roots of 4,
then N' N2 (R)+= @ for some root & of 4. (Definition of dominant
roots is given in [1] 3.5.)

As for the proof of (ii), see [1] 3.18. To prove (i), we follow the
same way as [1] 3.13 and it is sufficient to prove the following.

(P,) Assume that the rank of G is > 1. If there exists an element
2z =xhy of N'N P(R) such that xe U4)N U(R, J), he T(R), ye V(4)
and that xz¢ E(R, a, a;) or y ¢ E(R, a,, a;) where 4’ is a subsystem of 4
of rank n. Then starting from z, by a finite process of taking its reduced
form, taking a conjugate in G(4') or taking a commutator with an
element of G(4'), we obtain an element of the form x,(s)x,(s’) in N' where
v, 7' are dominant roots of 4'.

We proceed by induction on n. As for the proof of (P,) see [1],
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3.14, 3.15 and 3.17. We shall give here a proof of (P,_,)=(P,) (n = 3)
for the proof given in [1] 3.16 has some gaps.

Without loss of generality, we may assume n =1. Denote 2z = x,2,AYY,
where x, € U(4), z, € U(4,), h = h(x) € T(R), ¥, € V(4,) and y, € V(4).

(i) First, we shall show to be able to assume without loss of
generality that z = z,y,.

Suppose that z, = xhy, ¢ E¥ and x,¢ E, or y,¢ E,. We note that
U(4,) and V(4)) are normalized by G,(4,). Therefore, by (P,_,), we obtain
an element z' = x{x,(s)x,(s')y; of N’ such that 2] e U(4)), y; e V(4,), = =
x,(s)x,(s") € U(4,) where 7, 7" are dominant roots of 4, and z,(s)¢ E, or
x(s')¢ E,. We set 4(x}) (resp. 4(y1)) the set of roots B in 4, (resp. —4,)
such that « (resp. ¥!) is a product of z(t)¢ E,. If 4(y)) = @, then z
has already required property. So that we may assume 4(¥)) = @. We
note that v —a, ¢4, v + a,€ 4,7 —a, ¢4 and 7' + a,€ 4, and we shall
treat two cases separately. Case 1. x; = x,(s) where Y is the highest
root of 4,. Suppose that there are roots ge 4(x)) and a, €l (i > 1) such
that 8 + @, €4, B — a, ¢ 4 or that there are roots —gQ e 4(y]) and a, €l
(¢>1) such that — 8+ a;, ¢4, —8 — a, € 4. Then, since ¥ + «a,; ¢ 4 for
any «; (i > 1), a conjugate of (¢, #,,(1)) has a form x,y,. Otherwise, if
Bed(x), then 8 —a, ¢4, B+ a,€4 and if —B e 4(y!), then —8 + «, ¢ 4,
—B — a,c4 and further ¥ — a,¢ 4. Thus (2, x_,(1)) has a form a]-yi.
Case 2. z{ = x/(s)x,(s'). In this case, 4, is of type B,_, or C,. If 4, is
of type B,_,, then "=a, + 2a, + -+ +2a,, V=, + @ + --- + «,.*
If 2s’eaq, then the assertion is obvious and otherwise a conjugate of
(%', ®ys..1a,(1)) is Teduced to the Case 1.

(ii) We may suppose that z = xs(t)xs(t))xs(t")y, where B, B’ are
dominant roots of 4 such that g8” e 4* and «, + 8" = B’ is the highest
root of 4.

This follows from (i) and Lemma 3.11, [1].

(iii) We shall show to be able to assume that 2z’ e UR) N N'.

Case 1. A(x}) = {B'}, {B"} or {B, B"'}. If there exist —<v € 4(y;) and
a;ell (¢ > 1) such that —7 + a;e4 and —7 — ;¢ 4, then (2, x,,(1)) €
VIR)NN', for 8 + a,¢ 4, 8" + ;¢ 4 for any ¢ > 1. Otherwise, we may
assume that if —7 e 4(y}), then — Y= —a, or —7v+a, €4 and —7 —«, ¢ 4.
Therefore,

® In this paper, we shall set the fundamental root system as follows:
(Ba) © °

Ot s 0o =0

ay g Ap—1  QAp
(Cn) O =0 O=—— e s s —0 o
a as An—1  Qp

(F4) o o o [}

ay ag ag ay
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(', 2_o(1)) = wp(£t) e UR)NN', if B edx)
and

(7,2 p(Q) =x_t)e VIR)NN", if ped).

Case 2. Be€d(x)). In this case, 4 is of type B,, C, or F,. Let 4
be of type B, or C,. Then we have
f=a+20,+ - +2a,, B=a +a,+ -+ + «,
or
B =a +20,+ - +2c,, f=a +2a+ -+ +2a,_, + «,

respectively. If 2teca,, then a conjugate of (2, Z4+...+q,(1)) o1 (2', 2,,(1))
is reduced to the Case 1. If 2tca,, then we may assume that «, is

orthogonal to B, 8, 8 and to 4(y;)). Thus, 2z’ is reduced to the case
(P,_.). Now, let 4 be of type F,. Then we have

B = «a, + 2a, + 3a, + 2, , B =2« + 3a, + 4a, + 2c,,
B’ = a, + 3a, + 4a; + 2a, .
These are orthogonal to a, and 2’ is reduced to the case (P,).

From (iii), again applying Lemma 3.11 [1], we have completed the
proof (P,_) = (P,).

4. Reduction to m-complete rings. In this section, we shall prove
1.3. Let R be a commutative ring with condition (¢) and R be its
m-completion of R, and G be simply connected. Assume (G, R) verifies
(N-ii) and we shall show that (G, R) also verifies (N-ii). From (c),
Necsa, = 0. Therefore R is imbedded in R as a dense subring.

4.1, LEMMA. Let R, be the m,adic completion of B. Then

ER=1]R,.
reMm
Proor. Let a =i, mi for ae 7, and we set B,, = R/m;. Then
Rfa, =TI Ry, , .

The natural homomorphism

fas: Rlag— Rla, for a;cCa,
gives a natural local homomorphism

fiiRuy— R,, for a,cCm,.

We write f% = 0 if aycm, but a,Zm, We set
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I={p a)eM x 4;a,Ccm,}

and consider the product I ue; Ry.. Each R/a, is identified with the
subalgebra of that product consisting of the partial product of R, , for
all ¢ such that (¢, ®)el. If a <pB, then for any peM such that
(¢, B) €I the diagram

RJay 2%, Rla,

L

is commutative. Now, by the above identification, we have
B =z = @)e Il (Rl fusl2n) = 2 @ < )

= {2 = @ude I Rufusl@ns) = S @ = B} -

But for each pe M, the set I, = {ae € M, (¢, @) € I} is confinal to M and
we see R, = lg_na R,, Since we may write

H R#,a = H <H -Rﬂ‘a) ’
(#,)el reM \ael

R is identified with the product IT e, R.. q.e.d.

4.2. COROLLARY. The Jacobson radical J(R) of R is isomorphic to
e M. and RIJ(R) is m-complete.

PrROOF. We set a = [[ ey, then a is an ideal of R = [Jecy R
If m =(m,)eca, then 1 + m is invertible in R, for each ge M which
implies that 1 + m is invertible in £. Thus we have J(E) = a. Further,
RIJ(R) = T ueu k. shows that RB/J(R) is m-complete. q.e.d.

4.3. ProOF OF 1.3. Let N be a subgroup of G,(R) normalized by
E(R) such that
G*(Rr al) p ND E(R’ a, al) .
We must show that there exists a unipotent element x,(¢) € N such that
z(t) ¢ E(R, a, a;). By definition, G(R) = lim, G(R/a,). Since G is simply
connected and R/a, is semi-local for all « € 4, we have G(R/a,) = E(R/a,)

from 2.4. Therefore, the natural homomorphism G(R)— G(R/a,) is onto
for all @€ A and we see

G(R) = lim G(R)/G(R, a,) .
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Denote by d (resp. N) the closure of a in B (resp. of N in G(R)). Then
G(E, &) = lim G(B, a + a)/G(R, a,)

and we claim that
EXR,&,8)p NoER,d, q,) .
In fact, N> E(R, 4, d,) is obvious. Suppose E*(R, d, a,)> N. Then
(N, G(R)) c E(R, &, &)
which implies for any ideal a, of _Z,
(N, G(R)) c (E(R, &, ;) N G(R))- G(R, a,) .
Therefore, (N, G(R))CG(R, a, + a,) for any ideal a,e..#. Thus, we have
(N, G(R)) CaQu G(R, a, + a,) = G(R, a,) .

This contradicts to our assumption, namely, we have E*(R, d, d,) 2 N.
Now, from the condition (N’-i) for m-complete rings with 1.2 and 4.2,
we have R also verifies (N’-i), and since N is normalized by E(R), there
exists a unipotent element z.(t) € N such that x,(¢)¢ E(R, &, d;) for some
teR. We set NN=N— E(R,d,a,) and N'=N — E(R, a, a;). Since
v B)= oA R), we see w(B)N G(R)=zR). Therefore, z(B)NN' =z R)N N’
is a dense subset of 2 (R)N N’ = @ which is not empty as shown above.
Thus we have z(R) N N’ # @ which completes the proof. q.e.d.

5. Conclusion of the proof and an example.

5.1. Proor OF 1.4. Assume that R/J is m-complete and (G, R/J)
satisfies (a). We shall show that (G, R) verifies (N-i). From 1.2, we
may assume that J = 0. Since R is m-complete, B =R = T sea Koue
Therefore G(R) = [1ucx G(k.). Now, let N be a non-central subgroup of
G(R) normalized by E(R) such that

E*(R’ au al) ﬁ ND E(R’ aly al) .
For any pe M, we have the natural homomorphism
Vot G(R) — G(k,) .

Let Z(R) (resp. Z(k,.)) be the center of G(R) (resp. G(k.)). Then Z(R) =~
Iiew Z(k.). The images by +. of N, E*(R,a, a,) and E(R, a, a;) are
normal subgroups of G(k,.) and either contained in Z(k,) or contain E(k,),
in fact E(k,) is simple over its center. (cf. J. Tits [8])

Now, we set
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K = {rre M; v(E(R, a, a,)) D E(k,)}
L = {reM; y.N)D E(k,)} .
Then we have L22K #+ . In fact, K= @ follows from the fact that

N is not central and L22 K follows from E*(R, a, a;) ? N.
If we take an index e L — K, we have

N> (N, E(k) 2 (E(k,), E(k) = E(ky) -

Therefore, there exists an element z,(¢) € E(k,) in N which is not contained
in E*(R, a,, a,). q.e.d.

5.2. PROOF OF 1.5. Assume G is simply connected and (G, R/J)
satisfies (a) and (c). We shall shoNW that (G, R) verifies (N-ii). From
1.2, we may assume J = 0. Let R be m-completion of R. Then from
1.4, (G, R) verifies (N-i) and in particular (N-ii). Since R satisfies (c),
from 1.3, (G, R) also verifies (N-ii). q.e.d.

5.3. EXAMPLE. A normal subgroup of symplectic modular groups.
We shall give an example of a normal subgroup of Sp,.(Z) for which

the condition (N-iv) does not hold when (G, R) does not satisfy (b).
Sp,.(Z) is by definition, the group of all 2n X 2n matrices « with entries

in Z such that ‘xzJx = .J, where J = <~(} (€>’ I being the unit matrix of
degree n. An element x = <Z’ 3) of GL,,(Z) is contained in Sp,,(Z) if
and only if ‘ad —c¢b=1I1"ac="a and 'db = b d, where a = (a;;), b =
(b;;), ¢ = (¢;;) and d = (d;;) are m X n matrices with entries in Z. For
an integer ¢ = 1, define S».,(Z, ¢Z) and Sp%(Z, qZ) as in introduction.

Now, let » = 2 and let N be the set of all elements of Sp,.(Z, 27)
such that
(%) bi=¢; =0 (mod4) A1t = n).
We shall show that N is a normal subgroup of Sp..(Z) and it contains
the subgroup S»..(Z, 4Z) but not contained in Spi(Z, 4Z). We denote
by z = <g’ 3) or x, = (g; 3:) (¢ =1, 2) elements of Sp,.(Z). We claim
that if ;€ Sp..(Z, 2Z) (+ = 1, 2) and = = x,x, then

b=b+b,, c=c +c¢ (mod4).
We set a;, = I + 2a!, d;, = I + 2d; (¢ = 1, 2), then
b=ab, +bd,=0b + b, + 2(ald, + b,d;).

Since b, = b, = 0 (mod 2), we see b = b, + b, (mod 4). Similarly, we have
¢=c¢ + ¢, (mod4). This shows that if x, x,€ N, then zx,€ N and if
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x €N, then z7'e N, i.e., N is a subgroup of Sp,.(Z). Next, we claim
that N is normal. We note that Sp,.(Z) is generated by the matrices

w 0 ) (1 v (1 0
Yy = ( y 2 = and Z’ =
0 0 1) v 1)

where u € GL,(Z) and v, v are symmetric n X m-matrices with entries
in Z (cf. for example, J. Mennicke: Zur Theorie der Siegelishen Module
Gruppe, Math. Ann. 159, 1965, p. 115-p. 129). Therefore, to prove that
N is normal, it is enough to show that yxy™!, zaz™! and 2z'zz’ ‘e N for
any xe€N. Let first x€ N and x, = yxy~'. Since b = b (mod 4), (3, 7)-
component of b, = ub'u is D, Uubiity; = 2 Dlpes Wby + Uirbppthy, = 0
(mod 4). Thus, b, and also ¢, have the property (x) and we have x,€ N.
Next, let xe N and 2, = zaz”'. Denote a = I+ 2a', d = I + 2d’. Then
' + d' =0 (mod 2), for ‘a-d=I1+420(d +d)=1+ ‘c-b=1 (mod4).
Now, we have
b= —av —wvev + b+ vd = —2(a’v — vd') — vev + b .

Here, a'v — vd’ = a’'v + v'a’ (mod 2) and a'v + v'a’ is symmetric. Further,
vev is symmetric mod 4 and its (¢, 1)-component is

Zkviicjkvki = z%viicjk'vki + Vi = 0 (mod 4) .
J» J

Thus, b, and also ¢, have the property (x) and x,€ N. Similary, we see
2’22’ 'e N for any x€ N. Thus we have proved that N is a normal
subgroup of Sp,.(Z).

It is easy to see that N contains Sp,,(Z, 4Z) but not contained in
Sp¥(Z, 4Z). Moreover, if ¢ is a multiple of 4, then Sp}(Z, ¢Z) 2 N and
if ¢ is not a multiple of 4, then N 2 Sp,.(Z, ¢Z). Therefore, there exists
no integer ¢ = 0 such that Sp}(Z, ¢Z) > N D Sp..(Z, qZ).
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