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1. Introduction. Let D be the unitdisc D={z=12 + iy; 2* + y* < 1}
and m, be the positive measure of total mass one on D defined by

dm,(z) = C—“-;r—l (1 — o* — y°)"dady ,
where « is a positive real number. Let M(D) be the space of all bounded
regular complex valued Borel measures on D. M(D) is a Banach space
with the total variation norm || ¢|| =\ d|z¢|(2) for pe M(D). Denote
D

L, = LD, m,). Then L. is identified with a subspace of M(D) by the
map f+— fdm, of L, to M(D). The mapping is isometrie, since || f || =
[, 17@) dm(@) = || idm, | .

For each point z in D, the operator T,, called generalized translation,
is defined by

(1) LSO =2 f(E + VI=TRFVI=TCRe) 1%’(?'2 ,

for f in the space of all continuous functions C(D). By a change of
variable, if z and £ are in the interior of D, we obtain

T.rQ = | FOF ¢ 9am®),

where
a (L— |z —[CF —[£]° + 2Re(ZLE)!
E(z 8 =qa+1 @ —]2P)A—[EMHQA—[&P)
0.
The first value is assigned only if £ is in the dise of the center Z{ and
of radius V1 — |z[*V1 — |{|®. By the definition,

(2) E(2,( &) =0, z Ceinterior of D, (€D,

?

(3) [, Beler € YAm(&) = 1.
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If ¢ and v are in M(D), p»v is defined implicitly by the relation
[, 70d@e)® = | | T:r0dn@an0 (o).

In the following, we will leave off the index a when there occurs
no confusion.

sup{| T5f Q) ;2e D, e D)< || fllocy by the definition (1) of T..
Therefore, if g, ve M(D), then pxyve M(D) and ||p+v| < | ¢l -llv]l by
the Riesz representation theorem. The convolution x is commutative and
associative. Let 6, be the measure with the unit mass at the point 1,
then it is the unit with respect to the convolution x.

M(D) with the convolution * will be denoted by MJ(D). M. (D) is a
commutative Banach algebra with a unit. If feL! and ge L, f *g will
be defined by (fdm,)*(g9dm,). Then, we obtain

£200 = || TS @o@im. ()

- SDSD F(O9R)Ez, L, §dm (§)dm,(2) .
By (2) and (3), fxg is in L. In fact, L. is a closed ideal in M, (D).

If a is a positive integer, this convolution » corresponds to the
convolution of the zonal measure algebra on the unitary group U(a + 2).

The object of this paper is to determine the maximal ideal space of
the Banach algebra M, (D) and using it, to give a characterization of
idempotent measures and to show a theorem of F. and M. Riesz type.
To prove the last one, we will define a Poisson kernel and give an
integral representation of it.

2. Idempotent measures and maximal ideal space of M, (D). Let
P»®(x) be the Jacobi polynomial of degree w, order (a, 8), @, 8 > —1
defined by

(L — o) + 2 Pied(e) = S @ (g gyereq 4 gy
2"n! da*
or

« I'(n + a+1)
P;,ﬁ) — L\ T ) —n, , , _ ’
@ =@t lmrtatfthatlid-o)p]
where
Fla, b ¢; 2] = 3 {020 o0
=0 nl(e)n

@s=a@+1)a+2)---(a+n—-1), (a)=1.
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The following will be used later (see G. Szego [10]),

(4) P = (" F ¥, Per(-1) = (-1 Peeq)

(5) [ (P @y — 2y + ayda
200 (i + ¢ + 1)'(n + B + 1)
(2n—[—a+,6’+1)F(n+1)F(n+a+,6’+1)

Define R{™?(x) = P{*P(x)/Pi»?(1). Let RY’, be the polynomial of degree
m + n in x and y defined by

R;'c:,)n(,r.ew) — TIm—-n!ei(m—n)&R;:/,\l:n—nl)(z,rz _ 1) ,

where re¢? = x + 7y and m A n = min {m, n}. From the orthogonality of
Jacobi polynomials, it follows that the system {R{,}% .-, constitutes an
orthogonal system in L* D, m,). Since polynomials of R{’, are dense in
C(D), the system is complete. From the product formula for Jacobi
polynomials (see T. Koornwinder [6]), it follows that

(@) __« @ (3 — K — 3 dm(£)
(6)  TRO =55 | Ran(e + VI=TervT=Tere ) e,

= RI.(R)RIN(E) -
For pe M D), let fi(m, n) be the coefficient defined by
pm,m) = | Ro@ap) .

In particular, if fe L),

Fon,m) = | F@OR2.@dm.() .
By (6), if e M (D) and v e M,(D), it follows that

(apt + b)Y (m, n) = afi(m, n) + bO(m, n) (a,beC),
(e *v) (m, n) = f(m, n)d(m, n) .

Therefore the map g+ f(m,n) gives a nonzero multiplicative linear
functional on M, (D).

Define A, — U | R\(2) lzdma(z):] * Then, by (5),
1
@+ Dl + 1F

F(mAn+a+1)F(mAn+a+lm—n|+1)
IrtmAn+1)I'mAn+|m—n|+1)

XxX@CmAn+a+|m-—-n|+1),

(7) hogin =
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and every (e M/(D) is expanded in the formal series
# ~ Z h”’nﬂﬁ(m’ n)R'x‘,)n(z) *
H. Annabi and K. Triméche proved the following.

THEOREM 1 ([1]). For every couple (m, n) of monnegative integers,
the map [ — f(m, n) 8 a monzero multiplicative linear functional on
the Banach algebra L.. Conversely, if ¥ is & mnonzero multiplicative
linear functional, then there exists a couple (m, n) of nonnegative integers
such that y(f) = f(m, n) (f € LL).

Now we can describe the maximal ideal space of the Banach algebra
MJ(D). Let

M(D") = {¢te M (D); ¢ is concentrated on D% ,
M 0D) = {¢ e M, (D); t¢ is concentrated on 9D},

where D° is the interior of D and oD is the boundary of D. Then we
obtain a decomposition of M,(D) into M(D) = M (D°) P M (6D). By the
definition of the convolution, it follows that M. (D°) is a closed ideal in
M/D) and M,(0D) is a subalgebra of M,(D). Therefore if we denote by
A(MD)) the maximal ideal space of M (D), it is the disjoint union

A(MLD)) = 4MD")) U A(M3D)) .

Let M(T) be the space of all bounded regular Borel measures on the
circle group T = R/2xZ. Then M, (0D) = M(T) as a set. Since for pe
M, 0D) and ve M, (D),

[, Fapeve) = | renameie (fFecmy,

the convolution * coincides with the convolution on the circle group T
for all &« > 0. So that M, (0D) is identified with the convolution measure
algebra M(T) as a Banach algebra. Moreover, for ¢ e M, (0D), f(m, n) =
J(m — n) where the righthand side is the Fourier-Stieltjes transform of
¢ which is regarded as an element in M(T).

The maximal ideal spaces of measure algebras on locally compact
abelian groups are studied in detail by Yu. A. Sreider [9], J. L. Taylor
[11] and ete.

Nothing remains but to determine the maximal ideal space 4(M, (D))
of the Banach algebra M, (D°). Because of the special nature of the
convolution in M,(D), we can relate the maximal ideal space of M, (D)
to that of L. The following lemma is the key to this relation.

LEMMA 2. Let > 0. If ¢ and v are in M(D"), then pxye L.
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Proor. Let p, ve M (D). Then,
[, F0anze = | | T:r@apeano

= SDSDSD F(OEZ, C, &) dm, (5)du(z)dv(E) ,

for f € C(D). Let F be a Borel set such that m(F)=0. By the regulality
of measures, we can replace f with the characteristic function of F. For
any z and { in D", E(%, ¢, -) is absolutely continuous with respect to m,,

and so #*y(F) =0. Thus g2y is absolutely continuous with respect to
M e

THEOREM 3. Let a > 0. Then A(MD)) can be identified with the
disjoint union Z* x Z+ U A(M(T)), where Z* denotes the set of nonnegative
integers.

Proor. From the above arguments, it suffices to prove that
A4(M (D)) can be identified with Z* x Z*. Let y be a nonzero multipli-
cative linear functional on M, (D). Then there exists ¢ in M, (D) such
that X(z) = 0. y(exp) = x(#)?*+ 0. For any ve M/ (D"), vx(uxp)eL;
and pxpe Ll by Lemma 2. By Theorem 1, there exists a couple (m, n)
of nonnegative integers such that

X (e o)) = (V= (e 1))~ (m, m)
and

x(px ) = (pxpe)~(m, m) .
Thus

@) 1) (m, m) = x () (e * 1)
= W= (px )
= (U (g x 1)) (m, n)
=D(m, n) - (¢t* 1) "(m, ) .
Thus %(v) = ¥(m, n) which proves the theorem.
For pe M (D), if pxp = p, it is called an idempotent measure in
M(D).
H. Helson [5] has given a characterization of the idempotent measures
in M(T) and P. J. Cohen [3] has obtained a characterization of the
idempotent measures in the convolution measure algebra on a locally

compact abelian group. We will show that the idempotent measures in
M,D) are essentially those in M(T).
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THEOREM 4. If p is an idempotent measure in M,D), then ( has
the form

8=+ t,
where pt, 1s an idempotent measure in M(T) and p, is a finite sum
Zm,n hm,na'm,nRi:,)n(Z) With Ay = 0 or _‘tl.

PrRoOF. Let g be an idempotent measure in M, (D). Then p is
decomposed as zt = y, + p¢, where pt, € M (6D) and g, € M,(D°). The decom-
position is unique. By the convolution equation fxp = p,

Lo+ = fhox o + 2% 4+ e

Since M, (0D) is a subalgebra and M, (D°) is an ideal in M (D), tt, = tto* tto.
That is if g is idempotent in M, (D), so is Y, in M(dD), i.e., in M(T).
Since ¢t = p, + g, and g, is itself idempotent, 7Z,(m, n) takes values 0, 1,
or —1. It is clear that for felLl, f(m, n)—0 as m + n— . By
Lemma 2, g, xp, e L, and so (¢, =) (m, n)—0 as m + n— . That is
Zi(m, n)—0 as m + n— . From this it follows that all of f,(m, n)
vanish except a finite number of (m, n). Therefore ¢ must have the form
described in the theorem. The proof is complete.

Related results to Theorems 3 and 4 will be found in C. F. Dunkl [4],
D. L. Ragozin [7] and A. Schwartz [8]. They are concerned with the
special orthogonal group SO(n) and radial measures on R*, etec.

3. The Poisson kernel. In this section, a Poisson kernel on D X [0, 1)
is defined which possesses the same good properties as the usual Poisson
kernel on the unit dise.

DEFINITION. We call the series
Pio() = 387, REL(R)
Poisson kernel for polynomials R, of index a > 0, where 0 <s <1 and
zeD.

For 0 < s <1, the series in the right hand side converges uniformly
in D by (7) and the inequality | R¥.(2)| <1 (2 € D).

THEOREM 5. Let 0 < |z|<1, 0<s<1. Then the Poisson kernel
has integral representation

o 1— 2z —a—2
P(z) = 7t(1—+.ss)"_+2 So P (6 — r)(l —_ % cos z') dr ,

where z = re’’, k = (s"* + s7V%)/2 and P,(x) is the Poisson kernel for the
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trigonometric polynomials, t.e., P(x) =1/2 + >, r" cos nx. In particu-
lar, we have

P*(z) 20 (z2eD),
[, Pir@dms =1,
D
and
P2« P = P .

Most of this section is devoted to proving the first part of the
theorem.
Let z = re*®. Then

P’(a)(z) — Z Slm_nHMA”hmmR;ﬁ)n(Z)
m,n

— 2%e {_512_ Sk, S"RED2r% — 1)
n=0

+ i (i k'n+ﬁ,nsnR£na'ﬁ)(2'rz — 1))8'92:‘3} .
B=1 \n=0

From (4) and (7), for 3 =0,
hn+p_nR,(,f’ﬁ)(2’)"2 - 1)

__ 1 TIm+e+p+1) pranigg
Fa+2) TI'(n+pg+1) @n + a+ g+ HPP2r —1).

Thus it follows that

. N 2 l1&7I'n+a+1
(8) P(z) = msne {-2_(1“(11,—-{—1))
X2n + a + 1)P*"2r* — 1)s"
ca(w I'(n+a+8+1)
= I'(n+ B+ 1)

X (@1 + @ + B + 1)PeP(@2r — 1)s”>sﬂz"} .

+
B

=1

Put

_eIn+a+p+1) i — Dt .
A(B) Z(,) ACEYESY) @n +a+ B+ 1)PP2r )s

It is easy to see that

A= La+B+1) & niatptl),
r@e+1) =@+ .8+ 1.
X @0 + @ + B + DPE(LPSP(@rt — 1) .
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We have

_IMa+B+1D{(a+ B+ 1A —5s)
(9) 4@ = “ETES | TR

xF[L@+p+2, Larprmartgno L],

where k = (s"* 4+ s7?)/2 (see Bailey [2] p. 102). F, is Appell’s hyper-
geometric function of two variables defined by

Fla, 7,09l = 5 m('—oﬁ;”f (’%‘(f)(”v—f; "

By the definition of F,, we have

1) F[j@+E+ @+ p+atl a0

_ & (@+ B+ 22, + 8+ 3)/2), (7Y
2 n!(8 + 1), (k2>

and further

1) (@+ B +2)2)((x+B+8)2), - T'(B+1DI'2n+ a+ B+ 2) )
nl(B + 1), 2"\ N+ B +2)(n+B+1)
Combining (9), (10) and (11) we get
_ 1—-s alI'Cn+a+ B+2)(rY
A(B) - (1 + S)a+p+2 im0 2"l M(n + B + 1) <k2> .

Now we rewrite the series in the righthand side using the function
I(¢) introduced by Bessel which is defined by

C v oo (C/Z)Zn .
12 L =(= , at real number .
12 1O =(5) 5t ¢ negative rea
I(%) has the integral representation
(13) L© = L (" geeoss cog prdr — Mr g teoshu—vugy,
T Jo T 0

5Rev>—-%, Rel > 0.

From definition of I'-function and (12), it follows that

1y LSSy (Y (e

By (13),
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(15) I, (—Z—t

for t,r>0and $=0,1,2, ---. From (14) and (15), it follows that

T
) = lg ¢!kt cos BrdT

T Jo

(16) A(p) = 1-s { 2k I»pgjste“”"’”“t““e“‘ cos Brdrdt .

(1l + s)*** (1 + s)r 0
Combining (8) and (16) we get
l1-—s e~ 1
P‘(a) — 2§R [_
@ = et a1 S S i

it 2skz £ } t(r/k)costeatl, —t
+p§=:i{__—_(1+s)r} cos Bt le t* e 'drdt .

But,

1 o 2skz *

2% [_ __2skz__ ]

L2 +ﬂ§{(1 n s)r} cos Sz
=142 S s cos B0 cos BT
B=1

=1+ g, s#2(cos B(0 + 7) + cos B(6 — 7))
=P0+7)+ P00 —-7),

and so by a change of variable it is clear that P/¥(z) has the integral
representation described in the Theorem 5. The proof of the Theorem 5
is complete.

COROLLARY 6. If felL”(D,m,), p=1, then the Poisson integral
P x f converges to f in the norm.

In fact, if f is a polynomial of R{,, it is obvious. Since polynomials
of R, is dense in C(D), the Corollary holds for any f € L*(D, m,), » = 1.

4., A theorem of F. and M. Riesz type. In this section, we will give
a theorem of F. and M. Riesz type using Theorem 5.
Let pe M (D). Then

©~ ’g {ghn+ﬁmﬁ(n + :89 n)R;‘ﬁﬂ,n(z) + ';1 hn,n+ﬂﬁ(n’ n + B)Rfffiwﬂ(z)} .

From (4) and (7),
Boipn = O + n*B*+) as m— o0 or f— oo,

and
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|Rpa@)| = C— L0+ B+L)
I'm+a+ 1DIEBE+1)
where the constant C depends only on «. Therefore we have
Baipn| Bipa(2)| = O(B"+*"'1?) as B=—>oo .

Since huipn | Bipa2) | = Rauis| BiZuis(2) ], both series

ﬂz;o hn+ﬂmﬁ(ln’ + 18} %)R;ﬂp,n(Z) al’ld FZ: hn,n+ﬂﬁ(nr n + B)Rx;%—ﬁ(z)
converge uniformly in the wide sense on the interior of D for n =0, 1,
2, -

THEOREM 7. Let @« >0 and p be an element in MD). Suppose
‘there exists an integer N such that

a7 Hdm,n) =0 for all m An>N.
Then pt is absolutely comtinuous with respect to m,, that is, in L.
Proor. Suppose that ¢ is an element in M, (D) satisfying (17). Then

we have

N o oo
r~ > {;ohwmﬁ(n + B, n)Ri,q(2) + ﬂg;l Pnynsstt(n, n + B)Riﬁtiw(z)} .

n=0

Therefore there exists a continuous function f(z) such that
(18)  f(2)
N ki b A
= 3 {5 Bt + B, WRD00(2) + 3, huswssln, n + R AR)]

n=0 = B

on the interior of D. By Fatou’s lemma, we get
[,)7@ dm, = | tim inf | P2 p(a) | dm.@)

< lim inf SD | P9 pu(z) | dmo(z) ,
and by Theorem 5, || P/”xpu|| < || ¢#|l. Therefore we have
[, /@ dma) < Il el -

It is clear that the coefficients of f coincide with those of ¢ since the
series (18) converges uniformly in the wide sence on D° and the system
{R,} is orthogonal. Therefore, we get f = ¢ which completes the proof.

REMARK. If ¢ is an analytic measure on 7T, then fi(m,n) =0 for
m <n and p¢ is singular with respect to m,. So that our formulation
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will be natural in a sence.

The author wishes to thank Professor S. Igari for his many helpful

criticisms and suggestions.

Added in proof, 28 January 1976: We have learned after submitting

this paper that G. B. Folland gives a spherical harmonic expansion of
the Poisson-Szego kernel for the ball, Proc. Amer. Math. Soc. 47 (1975).
One would obtain Theorem 7 using his expansion formula.
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