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Introduction. Let M" be an n dimensional Riemannian space, and
denote by o(X, Y) the sectional curvature of a 2-plane spanned by vectors
X and Y. For a g-plane = at a point P, we take an orthonormal base
{e;} of the tangent space T,(M) such that e, ---, e, span 7. Such a base
is called an adapted base for w. The mean curvature p(z) for = is
defined by

1 Xnt Eq.: lo(ei’ ea)

qin — g)e 7 &

o) =
and independent of the choice of adapted bases for z.
In a recent paper [3], we have proved the following

THEOREM. In an m (>2) dimensional Riemannian space M", if the

mean curvature for q-plane is independent of the q-plane at each point,
then

(i) M~ is an Einstein space, for ¢ =1 or n — 1,
(ii) M is of constant curvature, for n — 1 > q > 1 and 2q # n,
(iii) M" is comformally flat, for n — 1> q > 1 and 29 = n.

The converse 1is also true.

The purpose of this paperis to prove an analogous theorem in Kahlerian
spaces taking holomorphic 2p-plane in place of g-plane in the above theorem.

1. Preliminaries. In [3], the following has been proved.
LEMMA A. Let A = (a;;) be an m X m symmetric matric whose dia-
gonal elements are all zero. If 1< p < m— 1 and A satisfies
h,kzi'lai"i" =0
for any 1, < +++ < 1, taken from {1, .-, m}, then A is the zero matriz.
We shall generalize this lemma as follows:

LeEMMA 1.1. Let B = (b;;) be an m X m symmetric matrixz. If 1 <



158 S. TACHIBANA

p < m—1 and B satisfies
y 4

2 bihik = O

h, k=1

for any i< +++ < 1, taken from {1, --+, m}, then B satisfies

1 .
bi; = —————(bi; + b;)) , 1# ]
2(p—1)

PrROOF. The matrix A = (a;;) defined by

a; =0,
ai; = by + —1:_(bii + bj5) (R
2(p—1)
satisfies all the conditions in Lemma A, which proves our lemma.

Let M™ be an n dimensional Riemannian space with positive definite
metric g,,. We shall denote by R,.*, R, = R;.,* and R the Riemannian
curvature tensor, the Ricei tensor and the scalar curvature respectively.”
Putting R, = 9., we shall denote by R the tensor (Riuve)-

Let X and Y be orthonormal vectors at a point P of M", and the
sectional curvature for the 2-plane spanned by them is given by

oX,Y) = — Ri.tp&n° = - RX,Y,X,Y),

where &* (resp. 7*) denotes the components of X (resp. Y) with respect to
the natural base.

Consider a g¢-plane 7 in the tangent space T,(M) and an adapted base
{e;} for m. Let &,7=1, .-, g, be components of e, with respect to a
natural base. We consider the simple g-vector determined by e, ---, ¢, at
P and denote it by 7 again. Its components with respect to the natural
base are determined within sign and are given by
Sfl eee 521

R

77_'11"
Efq SN éflq .
The ambiguity of signs does not matter in the following discussions.

With respect to the adapted base {e;} in consideration, the components
ﬂ:zl---lq = ﬁzl...zq turn to

1) Tensors are written in terms of their components with respect to a natural base and
the Greek indices run from 1 to =, if not otherwise stated. The summation convention will
be assumed for these indices when they appear in components of tensor with respect to natural
bases. When we consider a tensor with respect to orthonormal bases, its components are
written with lower indices only and Z is not omitted.
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sign (\y, +++,N,) , if (A, +++,),) is a permutation of
71'11...1‘1 = {1y ) q} ’
0, other cases ,

because of & = 0;;. Therefore we have

(1.1) 20 Taupgeo vony- o,
Pgse+1Pg=1 q
— (q - 2)! (Blvapm - 52")5#;,) ’ if 7\:, ﬂ, ))’ @ = 1’ e, q,
0, other cases ,

with respect to the adapted base.
Let L = (L;,,.) be the tensor given by

L),uwu = 2(q - 1)R2/lum + Rlvg,um - leg,llu + gluR#w - ngR/lu

for 1 < ¢ < n, and consider a quadratic form L, (u) of skew symmetric
tensor u;,...;:

Ly(u) = Ll/zmuzﬂpyupqumpa...pq .
This form appears, for example, in the following theorem.?

If L(u) is positive definite in a compact Riemannian space, there
exists no harmonic q-form other than the zero form.

A geometrical meaning of L is given in terms of the mean curvature
for g-plane as

o) = L —— L @),

(n — g)q!
where 7 in L, (7) means the simple g-vector, [3].

2. K-curvature-like tensor. Hereafter we shall consider a Kahlerian
space K*™ of complex dimension m (>1). K® is a 2m (=mu) dimensional
Riemannian space admitting a parallel tensor field J = (®%) such that

¢j{¢£ = - 3? ’ (pl,u(: (p(lxgay) = - ?’yz .

A tensor U = (Ujpmo) of type (0,4) will be called K-curvature-like, if
it satisfies

(2.1) Ux,um = - Uyzuw = - Ul/zwu ’
(2.2) Uzppm + Upy}m + Uvipw = 0 ’
(2.3) Uzyua¢$ = - UZ#aw¢3 .

As is well known,
2) Yano and Bochner [4], p. 64 and Mogi [1].
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Ulyym = Usoap » Pz Ua/zym = _q)z UXaytu
hold good, and (2.3) means that U is hybrid with respect to the last two
indices. R
The Riemannian curvature tensor R = (R;.,.,) of K™ is an example
oAf K—cul;vature-like tensor. Other examples are given by the following
@ and T:
QZ/ww = gsz;lu - g#mRZu + Rx«;gpy - Rpwglu
+ SDwayu - @flwsly + SZw(P/zv - Spwgplv - 2¢lysuw - 2S]ll¢yw ’
TZ/ww = glmg,uu - g#wgh + q)qu)pv - ?ym?iv - 2@1#?1«0) ’

where S;, is a skew symmetric tensor defined by

(2.4) Sy = PiRa, ,
and satisfies 9;S,, = — R
Q and T satisfy
(2.5) 9 Qo = 2(m + 2)R,, + Rg,, ,
(2.6) 9" T = 2(m + 1)g,, .

Let X be a unit vector at a point P. A 2-plane spanned by X and
JX is called a holomorphic 2-plane, and the sectional curvature o(X, JX)
of such a plane is called a holomorphic sectional curvature.

If the holomorphic sectional curvature of a Kahlerian space K®*™ has
a value independent of the holomorphic 2-plane at each point, the space
is called a space of constant holomorphic curvature. Such a space satisfies

(2.7) R=aTl

for a scalar function «, and the converse is also true, [4], [5].
As (2.7) is proved algebraically by means of (2.1)~(2.3), we have the
following

LemMA 2.1. If U is a K-curvature-like tensor and U(X,JX, X, JX)

18 independent of the unit vector X at a point P, then
U=al

holds good at P, where a 1is a scalar.

Let K,,* be the Bochner curvature tensor [2], then K = (Kiuo) 18 a
K-curvature-like tensor given by

L o+ 2 7
2(m + 2) 4(m + 1)(m + 2)

K=R-
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Now we shall introduce a K-curvature-like tensor M by
M=4p+1)R-Q, (p: an integer) ,
which will play a leading role in this paper.
LEMMA 2.2. In a Kahlerian space K™ the equation
M= aT
is valid for a scalar function a, if and only if

(i) for 2p = m, K*™ s a space of constant holomorphic curvature,
(ii) for 2p = m, the Bochner curvature temsor vanishes identically.

For both cases, the value of « 1s given by
__m—-DP
m(m + 1)

and hence « is constant for the case (i).

’

PROOF. Let us assume that M = af‘, then
(2°8) 4(1’ + l)Rlﬂum - QX#M) = aT}va
holds. Transvecting ¢g** with (2.8) and taking acecount of (2.5) and (2.6)
we have
(2.9) 2(2p — m)R,, = {R + 2(m + Da}g,, .
Thus, if 2p + m, we have
R+ 2(m + 1)«
2.10 R, =
(2.10) i 5Cp — m)
which means that K*™ is an Einstein space. Hence it holds that

2.11) R, = Ly, .
2m

Substituting (2.11) into (2.8), we know K*™ to be of constant holomorphic
curvature. The value of « is obtained from (2.10) and (2.11). If 2p =
m, we have from (2.9)

(U

_ R
2(m + 1)
and eliminating « in (2.8) by the last equation we get the case (ii). The
converse is almost trivial. g.e.d.

3. J-base. Let P be an arbitrary point of a Kdhlerian space K"
and consider an orthonormal base {¢;} of the tangent space T,(K*") such
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that
e = Je; , t=1,,m; =14+ m.

Such a base will be called a J-base.
In this section, components of all tensors are given with respect to

J-bases and so appear with lower indices only.
Taking account of g¢,, = 6, and e, = (d;.), we have

= e tmn
The Ricci tensor E;, and S, in (2.4) satisfy

(3.2) ' R;; = R..;. R;. = —R,;,

(3.3) Si;; = Sisje = Rj y  Sijv = —Siu; = Ry .

From the hybrid property of a K-curvature-like tensor U, we know
that its components U,,,, = Ule,, €., ¢,, €,) satisfy

(3'4) Uijvw = Ui*i*m ’ Uij*»w = — Ui*ivw .
Taking account of (2.1), (2.2) and (3.4) we can get
(3.5) Uiiii + Usjrige = Uingje »

The sectional curvatures oles, e,) = — Rles, ey, €, e.) satisfy by virtue
of (3.4)
(3.6) p(e;, €;) = 0(es, €;) » p(e;, e;:) = p(es, €;) «

LEMMA 3.1. Let U be a K-curvature-like temsor at a point P in a
Kahlerian space K,,, m = 3. If U satisfies

(3.7) Ulii‘jj" = a«(Uii*“* + U]J:]]t) + b ’ ?: i j ’
(,7 =1, -+, m) for any J-base, then
U=aTl

holds good for a scalar a, where a and b are scalars independent of J-bases
and a #+ 0,1/4.

Proor. Let {e¢;} be a J-base at a point P and ¢, j, k be different from
one another. If we put

e; = 1717(@- + e, ey = %(e,— — e,

the following equations hold good:
(3.8) (@*3’3"*) = a{(@e*) + ("7} + b,
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where we have put (\ww) = Ule,, e, €,, €,) and (43*) = (43*45*) for simplicity.
On the other hand, we have

2(i*5'5"*) = Ules, e, €; + €x, €5 + €4)
= (11*55*) + 2(@1*5k*) + (1*kk*)
= 2a(it*) + a{(j5*) + (kKk*)} + 2b + 2(it*jk*) ,
4(5'7%) = Ule; + ex, ey + €4, €; + €4, €50 + €32)
= (J5*) + (kk*) + 2(55" k")
+ HUk*Ik*) + (5*5k*) + (kk*kj*)}
= (2a + 1{(s*) + (kk*)} + 2b
+ Mk jk*) + (15*IK*) + (kk*k*)}
Substituting these equations into (3.8) we get
3.9 4(t*Jk*) = aa — 1){(95*) + (kk*)} + 2ab
+ 4a{(GE*IK*) + (5% 5k*) + (kk*kj*)} .
If we replace ¢, in (3.9) by —e,, it follows that
—4(*jk*) = aa — 1){(5*) + (kk*)} + 2ab
+ 4a{(Jk*jk*) — (J5*5k*) — (kk*kj*)} .
Adding the last equation to (3.9) side by side, we obtain
(3.10) (20 — 1){(55*) + (KE*)} + 2b + 4(jk*jk*) = 0.

Now let us notice that (3.7) is valid for ¢, 5 = 1, «++, m, 1*, <<« m* (i # j).
Then we may replace k, k* in (3.10) by k*, —k respectively. Thus we have
(2a — 1){(55*) + (kk*)} + 2b + 4(jkjk) = 0 .

Adding this equation to (3.10) and taking account of (3.5) and (3.7) we get
(4a — 1){(55*) + (kk*)} + 4b=0.

Hence
P
(5% = — g — (k")
which implies for m = 3 that
y .* g — 2b ] = 1 LN ]
(45%) a1’ J=Lonm.
Thus the proof is completed on taking account of Lemma 2.1. g.e.d.

4. Geometrical interpretation of M. Consider a 2p-plane 7 at a
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point P of a Kahlerian space K*". If we can find p vectors X, ---, X,
such that X, ---, X,, JX,, ---, JX, span 7, then 7 is called holomorphic.
In this section, = will always mean a holomorphic 2p-plane. A J-base {e;}
of T,(K*) will be said an adapted J-base for =, if 7 is spanned by e, ---,

6,,, ey, c ep‘o
Now we shall calculate

_ Aptpge--02;
M, () = M, m'#0 02 o,

for the simple 2p-vector 7.

The right hand side of M,(7) being a tensor equation, it is sufficient
for the calculation to do with respect to an adapted J-base {e;}.

As (1.1) is still valid relative to {e;}, we have

A(p + DRyumes enm,, = 8(p + 1)2p — 2! S, Rya®
= —16(p + D@ — 2! 3 (0(es, @) + ples, €5}
Quuororomre, . — _16(p + 1)@p — 2)! z R, ,
where we have used (3.1), (3.2), (3.3) and (3.6). Thus we get
M@ = 16(p + Dizp — 2! 3 31 {oles, e) + oles, e} -

On the other hand, the mean curvature for « is

om) = L 3 3 {oles, ) + p(es, e}
2p(m — p) o 55ts
because of its definition and (3.6). Hence we obtain
(4.1) My(m) = 32(m — p)(» + 1)p(2p — 2)! o(7)

which gives M a geometrical meaning.

5. A generalization of F. Schur’s theorem. We shall determine, in
this section, Kdhlerian spaces in which the mean curvature p(w) for 2p-
plane is independent of the holomorphic 2p-plane 7. This will be done by
making use of (4.1).

Let us assume that o(n) takes a value—say pg/8(m — p)(p + 1)—
which depends only on the point. Then from (4.1) it follows that

(5.1) szywﬂxﬂpampzpn'mpa...pzp =4p°2p — 2)! 8.

Let {¢;} be a J-base at a point P and m the holomorphic 2p-plane spanned
by e, ++-, €y, €5, *++, €. With respect to {¢;}, (5.1) becomes

3 Here, £ means the sum for 2, #=1,---, p, 1¥, - - -, p*,
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2 MZ/Au(u(BZva;lw - 32m5[1u) - 4p218 ’

where > is taken over 1, ..., p, 1* ... p»*. Then we have

(5.2) El(Mim + Miji50) = DB

%=

by virtue of (3.4). By the assumption the analogous equations to (5.2)
are valid for any 2p-plane spanned by e;, ---, €, €ipy =00, €. Now let
bi; = Myji; + Mijuje — B = Myjje — 8 1# ],

bii = Mww - B,
then the m x m symmetric matrix B = (b;;) satisfies all the conditions in
Lemma 1.1. Hence we have

1 »B
Mii*jj* = - __—(Mii'ii* + ij*jj*) + .
2(p—1) p—
Thus it follows by Lemma 3.1 that
M= al

for a scalar «, if m = 3. Consequently, by Lemma 2.2 we get the following
theorem. Its converse part is obtained by straight-forward calculations
making use of (4.1).

THEOREM. In a Kdahlerian space K*™ (m = 4), if the mean curvature

for 2p-plane is independent of the holomorphic 2p-plane at each point,
then

(i) K*™ is a space of constant holomorphic curvature, for 1 < p <
m — 1 and 2p # m,

(ii) the Bochner curvature temsor of K*™ vanishes identically, for 1 <
p<m—1and 2p = m.

The converse is also true.
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