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Introduction. Let W be a complex manifold. Let V be a compact
complex submanifold of W. Let F be the sheaf over V of germs of
holomorphic sections of the normal bundle F of V in W. Let H\V, F)
be the first cohomology group of F. In 1962, Kodaira proved the follow-
ing theorem:

THEOREM (K. Kodaira [4]). // H\V, F) = 0, then there exists a maxi-
mal family {V8}seS of compact complex submanifolds of W such that
Vo = V for a point oeS where the parameter space S is a complex
manifold.

The main purpose of this paper is to drop the assumption Hι(V, F) = 0.
We get:

THEOREM 1. There exists a maximal family {V8}ses of compact com-
plex submanifolds of W such that Vo = V for a point oe S where the
parameter space S is an analytic space.

The idea of the proof is due to Kuranishi's proof of his theorem on
the existence of the local moduli spaces of complex structures [6]. (See
also [7].)

Fixing W, we can easily patch these maximal families together and
get the following theorem.

THEOREM 2. Let W be a complex manifold. Then the set of all
compact complex submanifolds of W forms a (not necessarily connected)
analytic space S(W) in a natural way.

Our space S(W) is naturally identified with an open subspace of the
Douady space [1].

For each point seS(W), we denote V8 the corresponding compact
complex submanifold of W. Using our concrete construction of maximal
families, we get:

THEOREM 3. Let W be a complex manifold. Let S(W) be the analytic
space in Theorem 2. Then,
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{(8,t)eS(W) x S(W)\V.c:Vt}

is a closed subvariety of S(W) x S(W).

COROLLARY. Let V be a compact complex submanifold of a complex
manifold W. Then

{seS(W)\V8iD V)

is a closed subvariety of S(W)

This paper is a revised version of the main part of the author's Ph.
D. thesis, Columbia University, 1971. The author expresses his deep
gratitude to Professsor Masataka Kuranishi, the thesis advisor, for his
instruction, guidance and many thoughtful comments.

1. Preliminaries. Let W be a (r + <Z)-dimensional (connected) com-
plex manifold. Let V be a cZ-dimensional (connected) compact complex
submanifold of W. We may assume that V is covered by a finite num-
ber of open subsets {Wi}ieI of W, each of which has a local coordinate
system:

(wi9 Zi) = (w\, , wl, z\, , zf)

such that V is defined in Wι by the equation w{ = 0. We put Z7* =
W{ ΓΊ V. Let

Wi = fik(wk, zk) ,

«< = 9ik(wk9 zk)

be the coordinate transformations in Wt ΓΊ Wk, where fik and gik are vector-
valued holomorphic functions of (wk, zk) e Wt ΓΊ Wk. We define matrix-
valued holomorphic functions Fik(zk) by

Fik(zk) = (dfik/dwk){OfZk) for zk 6 Ui Π Uk .

Then we get the following identities:

F<i(*iWjk(*k) = Fik{zk) for zk e V, n C/,- ΓΊ Z7* and Zj = gik(0, zk) .

Thus the system {Fik} defines a holomorphic vector bundle F on V. We
call this bundle the normal bundle of V in W. We denote F the sheaf
of germs of holomorphic sections of F.

Now we consider another compact complex submanifold V of W
covered by {Wi}ieI. We assume that V is defined in Wt by the equation:

where φ{ is a vector-valued holomorphic function of zt e Z7<. These ^i
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must satisfy the following compatibility conditions:

fik{Φk{*k), Zk) = Φi(9ik(Φk(Zk)>, Zu)) for (φk(zh), zk) eWtΓiW*.

We want to consider families of such V\

DEFINITION 1.1. Let X and S be analytic spaces* and let π:X—>S
be a proper surjective holomorphic map. The triple (X, π, S) is called
a family of compact complex manifolds if and only if there are an open
covering {Xa} of X, open subsets Ωa of Cn, and holomorphic isomorphisms

Ύ]a: Xa-+Ωa x Sa

where Sa — π(Xa) is open in S, such that the diagram

Xa—
v-—>ΩaxSa

commutes for each a. S is called the parameter space of the family
(X, π, S).

DEFINITION 1.2. Let W be a complex manifold. A family (X, π, S)
of compact complex manifolds is called a family of compact complex sub-
manifolds of W if and only if X is an analytic subvariety of W x S and
π is the the restriction to X of the projection map: W x S —> S

For each point s e S of a family (X, π, S) of compact complex sub-
manifolds of W, the fiber TΓ"1^) can be written as π^s) — V8 x s where
V8 is a compact complex submanifold of W. We identify π-1(s) with V8

and write the family as {V8}seS to simplify the notations.

DEFINITION 1.3. A family {V8}8es of compact complex submanifolds
of a complex manifold W is said to be maximal at sQe S if and only if
for any family {Vt}teτ of compact complex submanifolds of W with a
point tQe T such that Vh = V8Q, there exist a neighbourhood U of ί0 in
T and a holomorphic map f of U into S such that f(tQ) = s0 and such
that

y/(4) = F* for all t e U.

A family of compact complex submanifolds of W is called a maximal
family if and only if it is maximal at every point of the parameter
space.

* By an analytic space we mean a reduced, connected, Hausdorff complex analytic space.
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Now, let W, F, Wi and (wi9 «<) be as above. In order to prove
Theorem 1, we may take the parameter spaces of families as small as
we want. Thus, by the implicit mapping theorem, we may restrict our
attention to families {VS}SBS of compact complex submanifolds of W such
that Vo = V for a point oeS and such that, for each point seS, Vs is
defined in Wi by the equation:

w< = Φi(ziy s)

where φt is a vector-valued holomorphic function of (zi9 s)e Z7i x S.

2. Some lemmas. Let W, V, {Wi}ieI, (wi9 «<) and ^ be as above. We
may assume that, for each i e I, Wt (the closure of Wi in W) is compact,
the local coordinate system (wi9 zj is extended to an open set W{ Z) Wt

and t h a t Wt = {(wi9 z{) e Wi\\Wi\ < 1 and | zt \ < 1} where

\Wi\ = s u p { | w i | : λ = 1, -- ,r}

and

We also assume that F is defined in Wt by the equation w{ = 0. We
put Ui= VΠ Wi. Then

We may assume that, for each positive integer n and for each w-tuple
(ii, ''', in) of indices, Uhf] Π Uin and Uh Π Π &iw are connected and
Stein, unless they are empty.

Let Cp = C P (F, F, {Ui}) be the (not necessarily skew symmetric) p-th
cochain group of F on the nerve of the covering {Ui}. We introduce a
norm || || in Cp. For each ξ = {ξio...ip} eCp

f we define | | £ | | by

|| ξ || = sup {| ξlQ...ip(z) |: λ - 1, . . . , r, z e Uk n ΓΊ Uip, (%, , ί,) e Z^1}

where fio...ίp is the representation of the component £ίo...< of f with respect
to the coordinate (wίo, zio). We put

C*(|| ||) = { f e C » | | | f | | < + - } •

It is easy to see that Cp(\\ ||) is a Banach space and the coboundary map
δ maps Cp(| | ||) continuously into Cp + 1(| | | |). We put

Zp = {ξeCp\δξ = 0} ,

Hp = Zp/Bp ,

Zp(\\ ||) = {feC'( | | ||) I if = 0},



ON MAXIMAL FAMILIES OF COMPACT COMPLEX 585

B>(\\ \\) = Bpf]Cp(\\ I I ) ,

Hp{\\ II) - Zp(\\ | | ) / B ' ( | | II) .

LEMMA 2.1. Hp and Hp(\\ ||) are canonically isomorphic to HP(V, F)
(the p-th cohomology group of F).

PROOF. HP is canonically isomorphic to HP(V, F) by Leray's theorem.
Since Zp(\\ ||) is a subgroup of Zp and

^ ( | | | |) = B ' n C ( | | \\) = BP n zp(\\ II),

we have the canonical injection:

Hp(\\ \\)-+Hp.

Let Cp be the (not necessarily skew symmetric) p-th cochain group of F
on the nerve of the covering {Ui}ieI. We put

Zp = {ξeCp\δξ = 0} ,

Bp = δC'-1 ,

Hp = Zp/Bp .

Then Hp is canonically isomorphic to Hp. Since the restriction maps

jres ψ\ map Cp into Cp(|| ||), Zp into Zp(\\ ||) and Bp into Bp(\\ ||), we have

a homomorphism:

It is clear that the diagram

Hp >H'(\\ ||)

\ /
s \ /

Hp

is commutative. Hence £ΓP(|| ||) = Hp. q.e.d.

Let e be a small positive number such that the open sets

Wί = {(wi9 zJeWiWwiKl, I %i | < 1 - e], i e I,

again cover V. We put U{ = W? Π V = {(0, z%) e Wi \ \ zt | < 1 - e}.

Besides C p , we must consider additive groups Cp. An element ξ =

{ίio...i } € Ce
p is a function which associates to each (p + l)-ple (i0, •• ,/ί ί ))

of indices in / a holomorphic section £<0... ip on UiQ Π ΓΊ t/iβ

p-1 Π 17<p. In

particular, Ce° = C°. We define t h e coboundary map

δe: C! — Cp+1

by
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for

zeu/o n n utpf\ uip+1.
We introduce a norm | |, in Cf. For each ξ = {£io...{} e Ce

p, we define | f |,

by

I f I. = sup {15^,(2)1:

λ = l, ., r, ze £/> n n ui^ n ί/i,, (v , *,)e/p+1}

where ζio...if is the representation of the component ξio...ip of £ with respect
to the coordinate (wio, zio). In particular, we define

If l . = IISII for ί s C e

0 = C ° .
We put

Cf(\ D = {ζeC?\\ξl< +00} .

It is easy to see that Ce

p(| |,) is a Banach space and the coboundary map
δe maps C>(\ I.) continuously into Cξ+1(\ |,) We put

Z.' = {f6C*|δ.f = 0},

; ,fl f = Z.'/B;

Z>{\ L) = {feCf(| | .) |ί.f = 0},

B>(\ I.) = 5.' n C.'(| L) ,

fl/d L) = z>(\ \MB>{\ I).
LEMMA 2.2. There is a canonical identification: Z\(\ |.) = Z^H ||) and

the norms \ |, ami || || are equivalent in them.

PROOF. Each element ξ — {ξi^eZ^W ||) corresponds to the element
ξ' = {ξ'ik} e Zi(\ I.) with ξ'iu = Sn I Ui n CT4. It is clear that | f l . ^ II f ll
Conversely, let ξr = {ξ'ik} e Zι.{\ \.). We take a point z e U( Π !/•». Since
{C7>} is a covering of V, there is an index j such that z e U-. We define
an element ξik(z) of the fiber i*^ of F by

( 1 ) £«(*) = « * ( * ) - & ( * ) .

We show that ξik(z) does not depend on the choice of the index j . Let
us take another index I such that z e U'. Since ξ' 6 Z.'d |,),

= 0 .



ON MAXIMAL FAMILIES OF COMPACT COMPLEX 587

Thus ξik(z) is a well defined holomorphic section of F on Ui Π Uk. We
set f = {ξik}. We express (1) in the coordinate in U^.

f <*(*<) = FMΪM - FM&fa)
where z = (0, z{) and Zj = ^^(0, zt). Then we get

\ξM\£r\\F\\(\ξ'Jk(zi)\ + |fί,(s,)|)

^ 2 r | | J P | | | f ' | .

where || F 1 | = sup {| F}iy{zs) |; λ, v = 1, , r, i, i e J, z, e C7i n IT,-}. Hence
| | f | | ^ 2 r | | ί τ | | | f ' | # .

We show that f is a cocycle. Let us take a point z e Ui f] U3 Π Uk.
There is an index I such that z e Uf. Thus

fy*(s) - f«(«) + fϋ(2) = {f!*(») - fΊfc)} ~ MM ~ f«(«)} + {fίi(«) - f«(2)}

= 0 .

Now, ξ'eZi(\ I) corresponds to ξeZ'iW II). ? β.d.
The following lemma is a slight modification of Kuranishi's Proposi-

tion 2.5', [5].

LEMMA 2.3. There is a continuous linear map

E:Bl{\ D-C.KI I.)

such that δeE = ίΛβ identity map on Bl(\ |β).

PROOF. First of all, we define additive groups Ce

p(g, #'), p, q, q' —
0,1, 2, . An element ξ e C?(q, q') is a function which associates to each
(p + l)-ple (i0> •• ,ip) of indices a C°°-differential (g, g')-f° r m f*o—*p

 o n

C/"/o Π Π Uip_γ Π C/"̂  with coefficients in F. We define a norm [ f \e by

I f I. = SUP {| fίo. .ίp.ir-Vr .V^) h λ, = 1, , r,

z e σ? o n ••• n K ^ n uip, (ϊ0, . . . , i , ) e / » + ι ,

1 ^ ii < < iff ^ d, 1 ^ &! < < kq, ^ d]

where ξio ..ip,jι...3 qkv..kq, is the coordinate expression in UiQ of the component

f<o-«p = Σ ξ<0.. ipjι.. iqkV .kqMi Λ Λ dzi* A dz\ι A Λ dzfr .

We also define a map

«.:G/(ff,g')-C;+1(ff>g')

by

(^βf)ίo» * p + 1 = Σ (""lί^fio ^-Λ+r ^+i '

It is clear that Cf is a subgroup of Cf(O, 0) and
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is the restriction map of

δe: C*(0, 0) - C/+1(0, 0)

defined above.

Let {qi}ieI be a partition of unity subordinate to the covering {Z7/}ίeI.

Given ξ e B2

e{\ \e) we define an element η = {ηsι} e CJ(O, 0) by rjn =

ΈiieiQiζiji Then

I v I. ̂  Σ sup {| ftί^F/^ί^α ϊ^i) M< e w n tr; n tf,}
i

where Cj. is a constant. We claim that deη = ξ.

(δ.V)in = Vu - Vn + Vik = Σ Qiiξiu ~ ξm + ξuk)
i

— Σ Qiζjkl — ζjkl

Let dη = {3% fc}. Then 9^ is an element of Cj(0,1) and satisfies δβη = 0,
for 3(%4) - 3(^fc) + d{ηi3) = d(ξiSk) = 0. Let λ, = Σ * 5*3^- Then

= Σ
Since λ, = Σ« ^ ^ = Σ*,* ?i3(ff*f *ϋ) = Σ*,* Qiξkadqk9 we can find a constant
c2 such that

( 1 ) | 3 , 1 . . . 3 ^ λ i | ^ c 2 | f | ;

where dβl = d/dzβl etc. and p = 0,1, •••, d. We now denote by ιcά the
Newlander-Nirenberg operator on U, ([8] or p. 186 [9]), and use its properties;
for a (vector valued) (0, l)-form λ, on Z7, ,

(NJ I fCjXj I ̂  c3 sup I dβl â λ̂j I with c3 a constant ,

(N 2) λ, = (dKj + tcβ)\j .

From (1) and (N^ above, it follows that

I tCjXj I t ί C i \ ξ \ e with c4 a constant .

Now we get 3λy = dxk on ZTy Π ί/̂ . Hence 3λy defines a global C°° —(0, 2)
form ω with coefficients in F.

Let 0 < a < 1 be a constant and | ω \d+a be the Kodaira-Nirenberg-
Spencer norm [3]. Then by estimating \o)\d+a on U- we have

I w \d+a ^ cδ\ξ\e with cδ a constant .

We introduce a Hermitian metric on V and let 3* and G be the adjoint
operator of 3 and the Green operator respectively. Let £{,-, be the restric-
tion of ξijΊ on Uf Π Z7J Π Uΐ. Since f e 5e

2(| | e), f' - {f̂  J is a coboundary
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of F on the nerve of the covering {U-}. It is clear that ω corresponds
to ξ' by Dolbeault's isomorphism. Since ζ' is a coboundary,

a) = dd*Gω .

We put π = d*Gω. Then there is a constant c6 such that

I π \d+a ^ c 6 1 ξ \e .

Let us denote π€ the restriction of π on TJ^ Then we have

I 3^ . . . dhπi I ̂  c71 ξ \e

where c7 is a constant, by (Nλ) above, we get

I ιcjπά I ^ c 8 1 ξ \e

where c8 is a constant.
We put λ; = \ — π{. Then we have

dxl = ω - ω = 0 ,

(jTJij =Z λ/j X;̂  = \j \>i

Hence we have

= 0

by (N2) above.
Now, we define β = {βij} by βiS = %• — A:^- + /ĉ λ . Then it is an

element of Cl and there is a constant c such that

We define E: ξ-> β. We claim δeβ = ξ.

(δeβhok = Vik - Kjλ'k + iCjX) - ηik + fckx[ -

Using the map E in Lemma 2.3, we define a map

Λ:Cί(| | . ) - > ^ ( | I.)

by Λ — 1 — .£y<5e. Then yl is a projection map.
Since the proof of the following lemma is similar to (and simpler than)

that of Lemma 2.3, we omit it.

LEMMA 2.4. There is a continuous linear map

TΓ Dl/Ί I \ v /°Ό/Ί I \ /°Ό/Ί| ||\

A o . i>β(| |#)"-*O β (| |e) — O (II II)
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such that δeE0 = the identity on Bι

e{\ |β). Finally, we prove the following
lemma.

LEMMA 2.5.

( 1 ) There is a canonical identification: B^W ||) = Bι

e(\ |β),
( 2 ) Hl(\ \e) is canonically isomorphic to H\V,F),
( 3 ) S .C*(\ \e) = Bl{\ \ e ) ,

( 4 ) Bl{\ I.) is closed in Zi(\ \e).

PROOF. First of all, we show (1). Each element ξ = {ζ^eB^W ||)
corresponds to the element ξ' = {ξ'ik} e Bed l ) with ξ'ik = ξik \ Ui Π Uk. It is
clear that \ξ'\e ^ \\ξ ||. Conversely, we take an element ξeBi(\ \e). By
Lemma 2.4, EΌf is an element of C°(|| ||) and each component of ξ = 3eEoξ
is the restriction of the corresponding component of δ(Eoξ) e C^H ||) Since
Ui Π Uk is connected for each pair (i, Λ), the extension δ(EQξ) is uniquely
determined by ?. We associate 5(JSΌf) to ξ. Thus we get (1). (2) follows
from (1), Lemma 2.1 and Lemma 2.2. δe(Eoξ) = f shows (3).

To prove (4), let {ξ{n)} be a sequence in Bίfl |β) which converges to
ξ e Z}(\ \e). We put ψ' = EQξ^ e C°e(\ | e), n = 1, 2, . . . . Then

where c and ikf are constants. Thus, for all point zt e Z7<,

l ^ } f e ) l ^ ^ , n = 1 , 2 , ...
where rj{n) — {η^}.

By MontePs theorem, there is a subsequence

nly nif • oo

such that tfi^izt) converges absolutely and uniformly on each compact
subset of Ui for each iel.

We put y]i(Zi) = l im^ί^fe). Then η{ is holomorphic on U^ We put
V — iVi) a n ( i regard η as an element of C°. For each fixed z^e ί/̂  we
have

fa) I = I lim ^i^^fe) | ^ lim sup 19?W(̂ ) | ^ ΛΓ .

Thus 13? \e g I f so that η e C°e(\ \e). Now, for each fixed zt e Ui n J7*, we
have

where

Letting i; —̂  oo, we have
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Fik(zk)ηk(zk) - 7ii(Zi) = Sik(zt) .

Hence δeη = ξ. q.e.d.
It is well known that Hι(V, F) is of finite dimensional. Hence, by

(2) and (4) of Lemma 2.5, there is a subspace H}(\ | e)* of Z\{\ \e) isomorphic
to H\V9F) such that Z\{\ \e) splits into the direct sum of Bl(\\e) and
Hi(\ I.):

Zi(\ \.) = Bi(\ \.)®Hi(\ L).

Let

B:Zi(\ | . ) - B . ι ( | L)

and

H:Zi(\ \.)-+Hi(\ L)

be the projection maps corresponding to the splitting.

3^ Proof of Theorem 1. Let W, V, {^} i e ί, {W,}^ {W{}ieI, {wiyz%)
and F be as above. We assume that a compact complex submanifold V
covered by {Wi}ieI is defined in Wt by the equation:

Then, for such V , we associate an element

Φ = {Φi}eC\\\ ||)

φ must satisfy the compatibility conditions:

for (

Conversely, an element φ = {^}€C°(|| ||) which satisfies 11 φ \\ < 1 and the
above compatibiliy conditions defines a complex submanifold Vφ of W
by the equation:

We show that there is a small number ε > 0 such that Vφ is compact if
| | 0 | | < ε . For this purpose, we need the following lemma. The proof
will be given at the end of this section.

LEMMA 3.1. There is a small positive number ε such that if \\ φ \\ < ε
and if φ defines a submanifold Vφ, then Vφ is covered by {Wfykei

Now we show that Vφ is compact if 11 φ \ \ < ε where ε satisfies Lemma
3.1. Let {PvK=i,2,... be an arbitrary sequence of points of Vφ. By Lemma
3.1, {P"},=i,2,... c U Wi We want to choose a subsequence of {P*K=i,2,...

* We use the same notation for the convenience.
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converging to point of Vφ. Since the number #(I) of indices is finite, we
may assume that Pu belongs to a fixed Wi for all v. We write Pu =
(Wi, Zi) in the local coordinate (wif zt). Then

wϊ =

For each P% we associate a point Qv in V defined by

Q» = (0, zί) e Ui .

Since V is compact, we may assume that {Ql/}v=i,2f... itself converges to a
point

Q = (0,s,).et7i.

Now, we put

P = (φfa), Z<) 6 TF< .

Then PeVφ and

zi) = lim &(#) = lim wj .

Hence {Pv}v=1)2,... converges to P. This shows that Vφ is compact.
Now, we need the following two lemmas. The proofs will be given

at the end of this section.

LEMMA 3.2. There is a small positive number ε such that if \ wk \ < ε,
then (wk, zk) e Wi n Wk for all zkeUff] Uk.

LEMMA 3.3. Let ef be a small positive number greater than e such
that the open sets

Wΐ = {(wi9 z^ e Wi I I Wi | < 1, | zi | < 1 - e'} i e l ,

again cover V. Then there is a small positive number ε such that if
\wk\<ε and if (wk, zk) e W? Π W°f, then zkeUief] Uk.

Now, let B(ε) be the open ε-ball of C°(|| ||) = Ce°(\ \e) with the center
0, where ε satisfies Lemmas 3.1, 3.2 and 3.3. We define a map

K: 3 ( e ) - C i ( | |.)

by

{Kφ)M = fiMzk), zJ - ΦiiQiMZk), «*)) for zt e Ui Π Uk,

where zk = gki(0, zt). Since (φk(zh), zk) e WiΓ) Wk by Lemma 3.2, K maps
B(ε) into Cl It is clear that | Kφ \, < 1 + ε so that K maps B(ε) into
Cl(\ I.).

We assume that φ e B(ε) satisfies Kφ = 0. If zk e Uk satisfies
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(Φk(*k),Zk)eWi'n Wϊ ,

then zk e U{ Π Uk by Lemma 3.3 so that

fik(φk(Zk), zh) = Φi(gik(Φk(Zk), zk)) .

Thus the equations: w{ = φi(z^ define a compact complex submanifold Vφ.
Conversely, we assume that φeB(ε) defines a compact complex sub-

manifold Vφ defined by the equations: w4 = &(#*), then

MΦk(*k), zk) - Φi(gik(φk(zh), zk)) = 0

for (φk(zk)9zk)eWiΠWk.

Hence Kφ = 0 by Lemma 3.2.

Thus the problem is reduced to analyze the set

{φ e B(e) IJK^ = 0} .

LEMMA 3.4. There is a small positive number ε' < ε such that

K:B(er)-+Ci(\ I)

is an analytic map and K'(0) = δβ.

PROOF. We want to show that there is a small positive number
ε' < ε such that for any affine line L in C°(|| | |), K is analytic map of
Ln-B(ε') into Q(\ |β). This implies that K: B(ε') -> Ci(\ Q is analytic.
(See e.g., Proposition 2, [1]).

We take a point φ° e L Π B(ε'). Then L can be written as

L(s) = φ° + sφ1

where seCand φ1 eC°(\\ | |). We may assume that φ1 eB(e') and L(s) e J5(ε')
for all seA where Δ is the unit disc in C. Now, putting zk = gki(0, ^ ) ,
we have

(KL&UZi) = fik(φl(zk) + sφ\{zk), zk)

-φXΰikiΦKZk) + sφl(zk),zk))

-sφ\(gik(Φl(zk) + sφl(zk), zk)) .

We put

A(8)M = MΦl(zk) + sφl(zk), zk) , A(s) = {A(s)ik} ,

β#}(ft*(Λ(«*) + # U ^ ) , «*)) , C(β) = {C(s)ik} .

We show that B(s) is an analytic map of Δ into C^d |β). Similar argu-
ments show that A(s) and C(s) are analytic. We put

^ = ^(s) = gik(φ°k(zk) + sφk(zk), zk) - gik(Φl(zk), zk) .
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We also put wk — φl(zk), and x — sφ\{zk). Then

y = v(s) = gik(Wk + χf zk) - gik(wk, zk).

If I wk + x I < ε, then | gik(wk + x, zk) | < 1 for all zk e Ui Π £7* by Lemma
3.2. Let ε' be a positive number smaller than ε. Then by Cauchy's
estimate,

y < Σ αϊ1 #r/(e ~ εy^'"+"r = D(x) for | wk | < ε'

where X is extended over all non-negative integers vu , vr with
v1 + . . . + vr ^ 1 and < means that the absolute values of the coefficients
of y in the formal power series in xl9 , xr are less than the absolute
values of the corresponding coefficients of D(x). Hence

y = v(s) < Σ (ε's)^+-+^/(ε - εT 1 + - + ^ = E(s) .

E(s) converges for s e Δ and is equal to

Vl-ε ' s/ (ε- e')/

provided ε' < ε/2.
Taking ε' sufficiently small, we may assume that

I E(s) I < e/2 for all s e A .

Thus,

( 1 ) Iy(s) I < e/2 for all seJ.

Next, if I Wfc I < ε then by Cauchy's estimate,

gik(wkJ zk) - gik(0, zk) < Σ

Thus, if \wk\< ε', then

, zk) - gik{Q, zk)

Taking ε' sufficiently small, we may assume that

thus

( 2 ) I gik(wk, zk) | < 1 - e/2 for | w 4 1< ε' and zke U{'Π Uk.

Now,

(B(s) -

where «5 = gik(φl(zk), zk).
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( 2 ) shows that | z S | < l - e / 2 when | | ^ ° | | < ε \ Thus, again by
Cauchy's estimate, we have

ΦWi + V)- #(«ί) « Σ e'2# yM(e/2yi+"+»* = F(y) .

Thus

(B(s) - B(0))M « F(E(8)) .
Hence

B(s) - E(0) « F(E(s)) .

F(y) converges for \y\< e/2 so that F(E(s)) converges for all se Δ by
(1). This shows that B(s) is analytic.

Similar arguments show that A(s) and C(s) are analytic provided ε' is
sufficiently small. Since φ° is an arbitrary point of Lf)B(ε'), K is analytic
on L Π .B(ε').

Finally, we show that K'{0) = de. Since K(0) = 0, Kφ - K0 = Kφ.
Now

M =fik(φk(zk), zk) - ΦAg^φjciz,), zk))

), zk) - fik(0, zk)\ - φfa)

) , zk)) - Φi(gίk(O, zk))\

= Fik(zk)φk(zk) + o(φ) - φfa)

- (dφi/dzdt.idgjdwώn^φkizu) + o(φ)

where zk = gki(Q, zt) and o(φ) is some function of φ (and of zk) such that

\o(Φ)\I\\Φ\\->0 as 11011 — 0 .

There is a constant Mx such that

I (dgίk/dwk){QfZk) I ̂  M x for ^ e Uf Π ί/Λ.

On the other hand, there is a constant Λf2 such that

{(dφi/dzλ.l ^M2\\φ\\ ΐov z.eϋi .

Thus,

Hence

(^)ίfcfe) - (δ^M*,) +
so that

Kφ = deφ + o(φ) q.e.d.

Let ε' be a small positive number such that Lemma 3.4 holds. We
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define an analytic map L: B{ε') ->C°(|| ||) by

Lφ = φ + EQBΛKφ - Eodeφ

where Eo, B and Λ are continuous linear maps defined in §2. Then we
get

L(0) = 0 ,

1/(0) - 1 + EQBΛδe - Eoδe = 1 + Eoδe - Eoδe = 1 .

By the inverse mapping theorem, L is an analytic isomorphism of an
open neighbourhood Ω of 0 in B(ef) onto an open neighbourhood Ω' of 0
in C\\\ | |). We put

M = {φ e Ω I Kφ = 0} .

LEMMA 3.5. L(M) c H°(V, F).

P R O O F . If φ e Λf, then <5eZ^ = <5e(̂  - Eoδeφ) = δeφ - δeφ = 0 gf.e.ί.

We p u t Φ = L~ι: Ω'-+Ω and put

S = {se H°(V, F)ΓίΩΊ K(Φ(s)) - 0} .

Then it is clear that S = L(M) and Φ(S) = M. Let s e H°(V, F) n Ω'.
We put ^ = Φs. Then

0 = δes = δeLφ = δeφ + δeEQBΛKφ - δeEoδeφ = BΛKφ .

Let H be the projection map defined at the end of § 2. Then

KΦ(s) = BΛKφ + HΛKφ + EδeKφ

= HΛKφ + EδeKφ

= HΛKΦ(s) + EδeKΦ(s) .

In other words, KΦ(s) has no coboundary part.

LEMMA 3.6. Taking Ω' sufficiently small, we have

S = {se H°(V, F) n Ω' \ HΛKΦ{s) = 0}.

PROOF. Let ef be a small positive number greater than e such that
the open sets

W ί = {(wi9 zt) e Wi I I Wi I < 1, | z , \ < 1 - e') , i e l , c o v e r V.

We put Vf = Wt Π V. We introduce a norm | \e> in Cl as follows: for
each ξ = {ξijk} e Ce

2, we define | ξ |#, by

I f U = sup {| fί i t(«) |: λ = 1, . , r, z e Uf n f// Π C7fc, (i, i , k) e P)

where ξ\άΊt is the representation of the component ξijk of ξ with respect
to the coordinate (wi9 zt). Then it is clear that
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( 1 ) I f L ' ί S l f L for ξeCϊ(\ L) .

We show that there is a constant c0 > 0 such that

( 2 ) If I. ^ * If I* for ξeZ2

e(\ \.) .

Let Zi e Ui Π U] Π Uk. Since {U?) covers V, there is an index I such that
Ziβ U{\ Since f eZ!(\ | e), we have

ξϋk(Zi) = Fil{zι)ξι5k{zι) - Fniziϊξmfa) + Fuizjξwfa) ,

where zt = gu(0, z{). Thus

\ξ \e ^ 3r \\F || \ξ \e>

where || F \\ = sup {| Flkit{zk) |: λ, v = 1, , r, i, fc e I , «* e Ui Π ?7fc}-
Now, let ZiβU ΓiU- f]Uk. Taking | | 0 | | sufficiently small, we may

assume t h a t (φk(zk)9 zk) e TΓ//2 Π Wf2 Π "PΓfc where ^ = gki(0, zt) and

T7//2 = {(wi9 Zi) e Wt I I Wi I < 1, I Si I < 1 — e/2} .

This follows from Lemma 3.2 by replacing W{ to Wi12 (and W, to TΓ;/2).
We p u t ζy = gίk(φk(zk)9 zk). Then

Λ (Cy) = fik(Φk(zk), zk) - (Kφ)jk(zj) where 3y = flry<(0, s<) .

Again, taking | | ^ | | sufficiently small, we may assume t h a t

ζ, e E7?'3 n ί///2 and (^y(ζy), ζy) G Wi1' ΓΊ W7/2

where

Wΐ* = {(wi9 zJ

We put

)ίifcfe) =Λy(^(ζy), ζj)-MΦk(Zk), zh) +

= /ϋ(Λ(Ci), W " fuMMZk), Zh), Cy

R\Kφ, φ) is an element of Ce

2(| |β). Then it is easy to see that there is
a constant cx such that

( 3 ) \Rί(Kφ,φ)\e^cι\Kφ\e\\φ\\,

provided \Kφ\e and | | 0 | | are sufficiently small.
This follows from the mean value theorem applied on the real and

the imaginary parts of the functions flj(wί9 z5), λ = 1, , r.
In a similar way, if we put
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)tik}eC:(\ I),

R\Kφ, φ)M = φt(gik(φt(zj, zk)) - Φώuiφ&j), ζ,))

then, we can show that there is a constant c2 such that

(4) \I?(Kφ,Φ)\.£Ct\Kφ\.\\Φ\\.

Now, we put

R\Kφ, φ) = {R\Kφ, φ)ijk) e Cl{\ I.) ,

R\Kφ, φ)m(zd =MΦi(Cj), 0) - ΦMΦiiQΛi)) ~ (Kφ)d*i)

We assume that z{ belongs to U('C\ 17/Π Uk. Then, taking | | ^ | | sufficiently
small, we may assume that ζ, = gjk(φk(zk), zk) e U- Π Z7/'2. Thus

R\Kφ, φ)m(zj = (KφUζ{) - (KφMzd

where ζ{ = g^φ, ζ, ) .

Applying the mean value theorem on the real and the imaginary parts
of the functions {Kφ)\j{z^, λ = 1, , r, we have

with c3 constant. Hence

(5) \R\Kφ,φ)l,SCs\Kφ\e\\φ\\.

Now, we assume that z( belongs to Uf Π Uj Π ί7*. Then

= fik(φk(zk), zk) - φifaMzt), zk))

= f«{φβ,), W - ΦMΦΛQ, Q)
- (R\Kφ, φ) + R\Kφ, φ))i

- {R\Kφ, φ) + R\Kφ, φ) - R%Kφ,

Hence we have

δeKφ = R\Kφ, φ) + R\Kφ, φ) - R\Kφ, φ) .

By (1), (3), (4) and (5), we have

\8.Kφ\t.£ci\Kφ\.\\φ\\

with c4 a constant. Thus, by (2),

\8tKφ\.£cfit\Kφ\.\\φ\\.

Thus there is a constant c such that

[Eδ.Kφl £c\Kφ\.\\φ\\.
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Now, let seH°(V, F) Π β' Taking β' sufficiently small, we may as-
sume that

|| Φ(s) || < 1/e for s e H\V, F)nfl'.

Now, KΦ(s) = HΛKΦ(s) + EδeKΦ(s). We assume that HΛKΦ(s) = 0. Then

I KΦ(s) I. - I EδeKΦ(s) I. ^ c I JΓΦ(8) I. II Φ(β) II

If KΦ(s) Φ 0, then 1 ^ c || Φ(s) ||, i.e , 1/c ^ || Φ(s) ||, a contradiction. Hence
KΦ(s) = 0. g.e.d.

Now, for each s e S , Φ(s) = {Φi(zi9 s)} defines a compact complex sub-
manifold V8 and Φi{zh s) is a vector valued holomorphic function of

(zi9 s)eUiX S .

This is easily seen, because for each fixed zt e Uiy

φeC\\\ \\)-+fi(zjeC

is a continuous linear map, so that

seS-+Φ(s)->Φi(zi,s)

is an analytic map. Thus {V8}8es forms a family (X,π,S) of compact
complex submanifolds of W.

We show that (X, π, S) is a maximal family. Let s0 e S. Let (Y, μ, T)
be a family of compact complex submanifolds of W with a point p e Γ
such that μ"\v) = V8Q. Let w\ = ιι?< — Φ f̂e, so) Then (shrinking T if
necessary) we may assume that there are vector valued holomorphic
functions θ\{zh t) on Z74 x T such that # (z;, p) = 0 and that the equation
w'i = ^-(^, *) defines the submanifold μ~\t). We put

«*(«*, ί) = θ'fa, t) + Φfa, So)

and

= {θi(zi,t)}eC\\\ | | ) .

Then it is easy to see that

θ: teT-+θ(t)eC°(\\ ||)

is an analytic map. We may assume that θ(T)cΩ. We have K(θ(t)) = 0.
Let /(ί) = L(θ(t)). Then / is a holomorphic map of T into S with
f(p) = s0. We have Φ(/(t)) = ί(ί). Hence we get ^ ( ί ) = irx(f(t)).

This completes the proof of Theorem 1.

REMARK 3.1. It is clear that the map /, with the property: μ~\t) =
π~ι(f{t)) for t e T, is uniquely determined.
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REMARK 3.2. If H\V, F) = 0, then S = H°(V, F) n Ωf by Lemma 3.6.
This is Kodaira's case (see the Introduction).

PROOF OF LEMMA 3.1. Let πk: Wk-+ Uk be the projection map defined
by τuk(wk, zk) = zk. For each positive integer n, we set

Wk(n) = {(wk, zk) sWh\\wh\<

and

Ak{n) = Wk{n) (the closure in W) .

Since Ak(n) is compact,

A(n) = U A4(n)
fee/

is also compact. It is clear that A(n) contains V. We show that

Γ\A(n)= V.

Let beC[~=1A(n). Then there are an index kel and a subsequence

nλ< n2< such that b e Ah(n^ for v = 1, 2, .

Then

I wk(b) I ̂  I K > v = 1, 2, .

Hence wA(δ) = 0 so that beV. If we find an integer n such that

A{n) c U ^ e

k

then ε = 1/n satisfies Lemma 3.1. Thus the proof of Lemma 3.1 reduces
to the following lemma. The proof is straightforward.

LEMMA 3.7. Let A be a compact subset of a Hausdorff space X. Let
A(n) be compact subsets of X such that

(1) A(l) Z) A(2) D o A ,

(2) f\A(n) = A.

Let U be an open neighbourhood of A. Then there exists an integer n
such that Uz)A(ri).

PROOF OF LEMMA 3.2. Let Wk(n) be as in the proof of Lemma 3.1.
We put

A(n)= WMΓίTtΐWΓί Uk).

Here, the closure is taken in W.
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First of all, we show that A(n) is a closed subset of W. Let {6Jv=if2f...
be a sequence of points of A(n) converging to a point δ of W. b belongs
to Wk(n). Since πk(bv) e U{ Π Uk converges to πk(b), b also belongs to
πiι{UiΓ\ Uk). This shows that A(n) is closed. Since A(n) c Wk{n) and
the later is compact, A(n) is also compact. We put A = £7/ Π Uk. In
order to apply lemma 3.7 to X = TF, Ϊ7 = T^, it is enough to see that
n~=i A(n) = A. Let 6 e fl~=i A(n) Then

I wk(b) I ̂  1/n, n = 1, 2, . . .

and

Thus wk(b) = 0 so that δe Uk. Since beπ^iUiΠ Uk), πk(b) = be UfΠ Uk.
Hence be A.

Thus there is an integer n such that A(n) c W{. Hence

Wk(n)Π πk

ι{U? Π Uk) c A(n) c W{.

On the other hand, Wk(n) Π πk

ι{Uϊ Π Uk) is contained in Wk. Hence

Wk{n) Π πk

ι(Uie ΓΊ Uk) dWiΠWj,.

Now, ε = 1/n satisfies the requirement. q.e.d.

PROOF OF LEMMA 3.3. Let Wk(n) be as above. In order to prove the
lemma, it is enough to find an integer n such that

Wf Π WS Π Wk(n) c π^iUί Π Uk) .

We put

A(n) = WFnWϊ'n WJn)

and

A = W Π US

A(^) and A are compact.

We claim that flΐU ^ W = A. Let δ e flϊ=i ^.W Then | wk(b)\ ^
n = 1, 2, . Hence wk(b) = 0. l e W n f ? implies that | zk(b) \ ̂  1 - e'
and I ^(δ) | ^ 1 — e'. On the other hand,

wι(b) = Λ*(w*(δ), ^(δ)) = Λ*(0, zk{b)) = 0 .

Hence δ e t//' Π t/if' = A. Now, we apply Lemma 3.7 to the case X = W,
U = πk

ι(Uf Π Uk). Thus there is an integer n such that

A(n)(ZΊtςι{UiViUk) .

Hence
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Wf n Wϊ n Wk(n) c A(n) c π^(Ui Π Uh) . q.e.d.

4. Proof of Theorem 2. Let W be a complex manifold. Let S(W)
be the set of all compact complex submanifolds of W. Let V be an
element of S(W) Let (X, π, S) be the maximal family with the center
V constructed in § 3. Two different points s =^ t in S have different
fibers π~~ι(s) ***π~ι{t). Thus, there is a unique injective map

S^S(W)

defined by s —• π"1^). We want to take this map as a local chart around
Ve S(W). Using the maximality of (X, π, S) and Remark 3.1, these local
charts patch up to give a (locally finite dimensional, not necessarily con-
nected) analytic space structure on S(W).

We prove that the underlying topological space of S(W) is a Haus-
dorff space. For this purpose we need the following two lemmas.

LEMMA 4.1. Let W be a metric space with metric d. Let C(W) be
the set of all compact subsets of W. For any two elements A and B in
C{W), we associate a number d'(A, B) defined by

d'{A, B) = sup {d(x, B) \ x e A} + sup {d(A, y)\ye B}. Then df is a
"metric on C{W).

PROOF. It is easy to check that df satisfies the three axioms for
metric. q.e.d.

LEMMA 4.2. Let {X, π, S) be a family of compact complex submani-
folds of W. With an Hermitian metric on W, we regard W as a metric
space (W, d). Let oeS. Then d'{π~\s), Tr\o)) is a continuous function
of seS, where df is the metric in C(W) introduced in Lemma 4.1.

PROOF. It suffices to prove that

d'{mrι(8)99 it~\o)) —* 0 a s s —• o .

It is known [7] that there is an open neighbourhood S' of o in S and a
continuous retraction

R: 7Γι(S') -* π~\o)

such that JB | TΓ""1(S) is a C°°-diffeomorphism of π~\s) onto π~\o) for each
seS'. We fix on point seS'. We take a point Peπ~\s). Then

d(P, π~\o)) S d{P, R{P)) .

Hence

sup {d(P, ir\o)) \Peπ~\s)} ^ sup{d(P, R(P)) \Peπ~ι{s)} .
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The right hand side is finite, for R is continuous and π"1^) is compact.
In a similar way, we get

sup {d(Q, π-\s)) I Q e π~\o)} S sup {d(Q, (R \ TΓ^S))"^)) \ Q e ir\o)) .

Hence

d'(7rι(β), π~ι{6)) ^ 2sup {d(P, R(P)) {Perr^s)} .

We show that

Bvp{d(P,R(P))\Peπ-1(8)}-+0 as s — o.

We assume the converse. Then there are a positive number ε > 0, a
sequence {s»}w=i,2f... of points of S' converging to o and a sequence {P»}Λ=if2f...
of points of π-'iS') with Pn e π"\sn), w = 1, 2, . . such that

d(Pn, R(Pn)) > e , n = 1, 2, . . . .

Since each fiber π~ί(s) is compact, there is a subsequence nγ < n2 <
such that {PnJv=i,2,... converges to a point Per" ι (o). Then

ε ^ d(P, R(P)) = d(P, P) = 0, a contradiction. gr.e.d.

Now, it is easy to prove that S(W) is a Hausdorff space. Using an
Hermitian metric on W, we regard W as a metric space (PF, d). Let d!
be the metric on the set C(W) of all compact subsets of W defined in
Lemma 4.1. Lemma 4.2 asserts that the identity map

is a continuos map where (S(W),df) is a metric space with the metric
d'. Since (S(W), d') is a Hausdorff space, S(W) is also a Hausdorff
space. This completes the proof of Theorem 2.

Henceforth, for each point teS(W), we denote Vt the corresponding
compact complex submanifold in W. Let

X(W) - ί(P,ί)e T7x S(W)\PeVt) .

We first show that X(W) is closed in W x S(TF). Let (Pw, tn), n = 1, 2, .
be a sequence in X(T^) which converges to a point (P, ί) e Wx S(W).
We claim that P e F t .

d(P, Ff) ^ ί(P, P.) + d(P%, Vt)

£d(P,Pm) + sτφ{d(Q,Vt)\QeVti)

^ d(P, Pn) + d'(Vtn, Vt)

—> 0 as ^ —> oo by Lemma 4.2.

Hence d(P, V,) = 0 so that Pe Vt.
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Let (P, t)eX(W). There is a maximal family (X,π,S) where S is an
open neighbourhood of t in S(W) such that

X = { ( Q , s ) e ΐ 7 x S\QeV.}.

X is a sub variety of W x S containing (P, £). Since

X=X(W)f](Wx S),

X is an open subset of X(W) containing (P, t). Hence X{W) is a sub-
variety of W x S(TΓ). Let fr: W x S(I7) —S(TF) be the projection map.
Then (X,π,S) is the restriction of (X(W),π,S(W)) to the open subset
S of S(W). Thus we conclude that (X(W),it,S(W)) is a maximal family
of compact complex submanifolds of W.

It is clear that the family (X(W),π, S(W)) has the following uni-
versal property:

For any family (X, π, S) of compact complex submanifolds of W,
there is a unique holomorphic map

/ : S-+ S(W)

such that π-'is) = ̂ ( /(s)) for all seS.
In the rest of this section, we show that S(W) is identified with an

open subset of the Douady space D = D(W). Douady [1] constructed a
flat family (Z, η, D) of all (not necessarily reduced) compact complex
subvarieties of W. We consider the reduced analytic space Dreά associated
to Zλ Let

S'(W) = {ί e Dτed I Ύ)~ι{t) is non-singular} .

By Theorem 3.1 and Corollary 3.3 in VI, [2], we see that S'{W) is
an open subset of jDred and that the triple (η£ά {8r(W)), r)ΐQt, S'(W)) forms
a family of compact complex submanifods of W in our sense where ηred:
Zτed-^Dτeά is the holomorphic map associated to η.

We note that rj-^t) = ψ^t)^ = η~ι(t) for teS'(W). Let (X(W), π,
S(W)) be the family which we constructed above. There is a unique
holomorphic map

f:S'(W)~+S(W)

such that ητe\(t) = ff"ι(/(ί)) for all teS'(W). On the other hand, by the
universal property of the family (Z, η, D), there is a unique morphism

such that π-'is) = η^igis)) for all seS(W).
Since S(W) is reduced, there is a unique holomorphic map
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go:S(W)->Diei

such that the diagram

D

is commutative, where DIβΛ —• D is the canonical morphism. Now it is
clear that go(S(W)) = S'(W) and that

fQo — Is(w)

where ISf{w) and IS{W) are the identity maps of A'(W) and S(W) respectively.
Hence / is a holomorphic isomorphism. Thus we conclude that S(W) is
identified with an open subspace of Died.

5. Proof of Theorem 3. Let S(W) be the analytic space constructed
in § 4. We put

A = {(s,t)eS(W) xS(W)\V8czVt}.

We first show that A is closed in S(W) x S(W). Let (sn, tn)9 n = 1, 2, .
be a sequence of points in A converging to a point (s,t)eS(W)xS(W).
We assume that V8 c£ F t . Then there is a point P e F8 — Vt We put
e = d(P, Vt) > 0 where d is an hermitian metric on W. Let d' be the
metric on the set of all compact subsets in W defined in Lemma 4.1.
By Lemma 4.2, we can choose n so large that

(1) d'(V.,VJ<6/2

(2) d'(Vt, VJ < e/2 .

By (1), there is a point Pn e V8n such that d(P, Pn) < ε/2. We note that
Pn 6 V8n c Vtn by the assumption. Hence

d'(Vt9 VJ - sup {d(Q, Vtn) \QeVt} + sup {d(Q', Vt) \ Q' e VtJ

^sup{(Z(Q', Vt)\Q'eVtn)

^ d(Pn, Vt) ̂  d(P, Vt) - d(Pn, P)

- ε - d(Pnf P) > ε/2 .

This contradicts to (2). Thus V8 a Vt. Hence A is closed in S(W) x S(W).

Now, let X and V be two compact complex submanifolds in W such
that VcX. Let {Wi}ieI and {Wi}ieI be finite coverings of V by open
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subsets Wi and Wi in W such that W{ D Wζ (the closure in W) for all
iel. Moreover, we assume that there is on each W{ SL local coordinate
system

(ui9 wif Zi) = (u\, , uΐ, w\, , w\, s}, , zf)

such that

TFt = {(uif wiy zύ e Wi 11 u< | < 1, | w, | < 1, | z, | < 1}

and such that X and F are defined in Wi by the equations

X: Ui = 0 ,

V: Ui = Wi = 0 .

We assume that {PF* Π F} and {Wi Π F} satisfy the similar conditions to
those in § 2.

Let {T7r}reΓ and {Wr}reΓ be finite collections of open subsets of W
having the following properties:

(a) Wτ Z) Wr (the closure in W) for all 7 e Γ,
(b) each ίFr does not intersect with F,
(c) {Wi}ieI{J {Wr}rer is a covering of X,
(d) there is on each W7 a local coordinate system

(Ur, Vr) = (U\, , Uq

r, V\, , Vr

r

+d)

such that

TΓr = {fa, vr) e Wr I I ur | < 1, | t;r | < 1}

and such that X is defined in TFr by the equation: ur = 0.
(e) {Wi Π X} U {W7 Π X} and {W l̂ΊX} U {Wr Π X} satisfy the similar

conditions to those in § 2.

Let JP be the normal bundle of X in W and let G be the restriction
of F on F. Let if and N be the normal bundles of F in PΓ and in X
respectively. Then we have an exact sequence

(3) 0 — iSΓ— H-+ G-+ 0 .

Let C°(V, H) = C°(V, H, {TFiΠ F} ί6/), etc., be the 0-th cochain groups
of the sheaf H, etc., over F of germs of holomorphic sections of H, etc.,
on the nerve of the covering {Wif) V}ieI. Then, by (3), we have a
canonical isomorphism

(4) C\V, H) s C°(V, N) 0 C°(7, G) .

Let
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a:C°(V,H)-> C\V, N) ,

β:C\V,H)-+C\V,G)

be the projection maps with respect to (4). Let || || be norms in C°(V, H),
etc., defined as in §2. Let C(V, H, || ||), etc., be the Banach spaces of
elements in C°(V, H), etc., with finite norms. Then it is clear that a
and β are continuous linear maps of C(V, H, \\ ||) into C"(V, N, || ||) and
C°(V, G, || ||) respectively.

We put 7 = I Π (Uie/ Wi). Then Γ is an open subset of X contain-
ing V. Let C\X,F) (resp. C\Y,F\ Y)) be the 0-th cochain group of

the sheaf F over X (resp. F \ Y over Y) of germs of holomorphic sections
of F (resp. F\ Y) on the nerve of the covering {W(nX)ieiU {WrΓ\X}rer

(resp. {WiX}iei). Then we have a canonical linear map

l:C\X,F)-^C\Y,F\ Y) .

We introduce a norm || || in C(X, F) (resp. C\Y,F\ Y)) and define a
Banach space C°(X,F,\\ ||) (resp. C\Y,F\ Y,\\ ID) as in §2. Then I
maps C° (X, F, || ||) continuously into C°(Y, F\Y,\\ | |).

Now, let X' and V be compact complex submanifolds of W near
from X and V respectively, defined in Wi by the equations:

X': ut = Xt(wit zt) ,

V: ut = ψt(zf), Wi = φ}(Zi) .

Then V c X' if and only if

ψiiZi) = XiiΦiiZi), zt) for ZieWiOV.

We assume that X' is defined in Wr, by the equation:

ur = xr(vr).

We may consider

Then £ (λ) = {λ{}{e/6C°(Γ, F\ Y, || | |). We may also consider

Now, we define a map

Q:B(l)xC°(X,F,\\ ||) -C°(F, G,

by
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where B(l) is the 1-ball of C°(V,H,\\ ||) with the center 0. Then it is
easy to see that Q is analytic in an open neighbourhood Ωx x Ω2 of (0, 0).
On the other hand, (taking Ωί and Ω2 sufficiently small), TJ and λ satisfy
the equations:

Kj] = 0 and K2X = 0

where

are analytic maps defined as in §3. (Ci(V9 H, \ \e) and Ci(X, F, \ \e) are
defined as in § 2.) By the arguments in § 3, we know that the sets

{η e Ω11 Kj] = 0} and {λ e Ω21 K2X = 0}

are (finite dimensional) analytic spaces which are taken as local charts of
S(W) in neighbourhoods of V and X respectively. Now,

A(V, X) = {(V, λ) e Ω1 x Ω2 \ Kxη = 0, K2X = 0, Q(η, X) = 0}

is a finite dimensional subvariety of Ω1 x β2.
It is clear that, using A(V, X) as a local chart of the set A in a

neighbourhood of the point (V, X), we can give an analytic space structure
in A. It is also clear that the analytic space A thus defined is a closed
subvariety of S(W) x S(W). This proves Theorem 3.

Let o be a point of S(W). Then

{teS(W) I Vt =) Fo} - A n (o x S(TΓ)) .

This proves the corollary of Theorem 3.
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