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Introduction. Let W be a complex manifold. Let V be a compact
complex submanifold of W. Let F be the sheaf over V of germs Qf
holomorphic sections of the normal bundle F of V in W. Let HY(V, F)

be the first cohomology group of F. In 1962, Kodaira proved the follow-
ing theorem:

THEOREM (K. Kodaira [4]). If H'(V, F) = 0, then there exists a mawi-
mal family {V,},es of compact complex submanifolds of W such that

V.=V for a point 0€S where the parameter space S s a complex
manifold.

The main purpose of this paper is to drop the assumption H(V, F)=0.
We get:

THEOREM 1. There exists a maximal family {V,},.s of compact com-
plex submanifolds of W such that V, =V for a point o€ S where the
parameter space S is an analytic space.

The idea of the proof is due to Kuranishi’s proof of his theorem on
the existence of the local moduli spaces of complex structures [6]. (See
also [7].)

Fixing W, we can easily patch these maximal families together and
get the following theorem.

THEOREM 2. Let W be a complex manifold. Then the set of all
compact complex submanifolds of W forms a (not mecessarily connected)
analytic space S(W) in a natural way.

Our space S(W) is naturally identified with an open subspace of the
Douady space [1].

For each point se S(W), we denote V, the corresponding compact
complex submanifold of W. Using our concrete construction of maximal
families, we get:

THEOREM 3. Let W be a complex manifold. Let S(W) be the analytic
space in Theorem 2. Then,
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{5, )eS(W) x S(W) |V, Vi}
18 a closed subvariety of S(W) x S(W).
COROLLARY. Let V be a compact complex submanifold of a complex
manifold W. Then
{seS(W)|V,o V}
is a closed subvariety of S(W).

This paper is a revised version of the main part of the author’s Ph.
D. thesis, Columbia University, 1971. The author expresses his deep
gratitude to Professsor Masataka Kuranishi, the thesis advisor, for his
instruction, guidance and many thoughtful comments.

1. Preliminaries. Let W be a (r + d)-dimensional (connected) com-
plex manifold. Let V be a d-dimensional (connected) compact complex
submanifold of W. We may assume that V is covered by a finite num-
ber of open subsets {W.}:.; of W, each of which has a local coordinate

system:
(W, 2;) = (W}, =+, W], 2}, =+, 2)
such that V is defined in W, by the equation w; = 0. We put U; =
W.NnV. Let
w; = fu Wy, %) »
2 = Ga(wy, 2i)

be the coordinate transformations in W;N W,, where f;, and g;, are vector-
valued holomorphic functions of (w,, z,)€ W;N W,. We define matrix-
valued holomorphic functions F,(z.,) by

Fi(20) = (0Fi/0wi) 0,2 for 2, e U; N U, .
Then we get the following identities:
Fij(z)Fji(z) = Fi(z,) for 2,eU;nNU;N U, and 2; = gu(0,2,) .

Thus the system {F,} defines a holomorphic vector bundle Fon V. We
call this bundle the normal bundle of V in W. We denote F' the sheaf
of germs of holomorphic sections of F.

Now we consider another compact complex submanifold V'’ of W
covered by {W}..;. We assume that V’ is defined in W; by the equation:

w; = $;(2;)

where ¢; is a vector-valued holomorphic function of z;€ U;. These ¢;
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must satisfy the following compatibility conditions:
Fi(u(20), 21) = 6:(9an(9e(2)s, 21)) for (Bu(z)s z) € Wi W, o
We want to consider families of such V.

DEFINITION 1.1. Let X and S be analytic spaces* and let 7: X — S
be a proper surjective holomorphic map. The triple (X, w, S) is called
a family of compact complex manifolds if and only if there are an open
covering {X,} of X, open subsets 2, of C", and holomorphic isomorphisms

Vot Xo— 2, X S,
where S, = n(X,) is open in S, such that the diagram

X, —2 50, %8S,

AN /.
7:\ /pro;
Sa

commutes for each . S is called the parameter space of the family
(X, «, S).

DEFINITION 1.2. Let W be a complex manifold. A family (X, z, S)
of compact complex manifolds is called a family of compact complex sub-
manifolds of W if and only if X is an analytic subvariety of W x S and
7 is the the restriction to X of the projection map: W x S — S.

For each point se S of a family (X, 7, S) of compact complex sub-
manifolds of W, the fiber 7'(s) can be written as 77'(s) = V, X s where
V., is a compact complex submanifold of W. We identify 7~'(s) with V,
and write the family as {V,},.s to simplify the notations.

DerFiNITION 1.3. A family {V,},.s of compact complex submanifolds
of a complex manifold W is said to be maximal at s, €S if and only if
for any family {V.}.., of compact complex submanifolds of W with a
point t,€ T such that V, = V,, there exist a neighbourhood U of ¢, in
T and a holomorphic map f of U into S such that f(t) = s, and such
that

Vi =V, for all te U.

A family of compact complex submanifolds of W is called a maximal
family if and only if it is maximal at every point of the parameter
space.

* By an analytic space we mean a reduced, connected, Hausdorff complex analytic space.
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Now, let W, V, W, and (w;, 2;) be as above. In order to prove
Theorem 1, we may take the parameter spaces of families as small as
we want. Thus, by the implicit mapping theorem, we may restrict our
attention to families {V,},.s of compact complex submanifolds of W such
that V, = V for a point o€ S and such that, for each point s€ S, V, is
defined in W, by the equation:

w; = ¢:(2;, 8)
where ¢; is a vector-valued holomorphic function of (z;,s)e U; x S.

2. Some lemmas. Let W, V,_{ Wiier, (w;, z;) and F be as above. We
may assume that, for each ¢e I, W, (the closure of W, in W) is compact,
the local coordinate system (w;, z;) is extended to an open set W,> W,
and that W, = {(w;,z)e W;||w;| <1 and |z;| < 1} where

Iwi| = sup{[w“: A= 1, "'9,)”}
and

|z =sup{|z]a=1,-..,d}.
We also assume that V is defined in W, by the equation w; = 0. We
put U, = VN W;. Then

U=W.nV={0,2)el|lzl<1}.

We may assume that, for each positive integer n and for each n-tuple
(¢y, +++, %,) of indices, U; N --- NU;, and 17}1 Nese N l7,-n are connected and
Stein, unless they are empty.

Let C? = C?(V, F, {U;}) be the (not necessarily skew symmetric) p-th
cochain group of F' on the nerve of the covering {U;}. We introduce a
norm || || in C?. For each & = {§;..; } € C?, we define ||£[| by

”E” = sup {IE~§0~--ip(z) I: A= 1, cee, T, 2€ Uio Neee N I]ipy (iOy M ?:P) eIzH—l}
where & ..; is the representation of the component Eigni, OF & with respect
to the coordinate (w;, z;). We put

Cr(ll ) ={eC?[[|§ll < 4o}

It is easy to see that C?(]| ||) is a Banach space and the coboundary map
o0 maps C?(]| ||) continuously into C?*'(|| [|). We put
2" ={£eCr|o¢ =0},
B? =4C?,
H? = Zp/Bp ,
Z*(| ) =1{seCx(] )]s = 0},
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B*([ ) =B>nC(l D) >
He (| 1) = 21 /Bl 1) -
LEmMMA 2.1. H?” and H*(|| 1) are canonically isomorphic to H?(V, F')
(the p-th cohomology group of F').

PROOF. H? is canonically isomorphic to H?(V, F') by Leray’s theorem.
Since Z?(|| ||) is a subgroup of Z? and

B*(]| [) = B*nC*(| Ih =B*n2zZ*(| 1),
we have the canonical injection:
H*(| |) — H? .

Let C® be the (not necessarily skew symmetric) p-th cochain group of F
on the nerve of the covering {U;};.;,» We put

Zr = {£eCr| e = 0},
gp = 36?—1 )
H?» = Z7/B* .

Then H” is canonically isomorphic to H?. Since the restriction maps

~

{res g.} map C* into C*(| ||), Z” into Z*(|| |[) and B? into B*(| ||), we have

A

a homomorphism:

H»— H*(| |)) .
It is clear that the diagram
A — H*(]| )
AN /
=N
HP
is commutative. Hence H*(|| ||) = H". q.e.d.

Let ¢ be a small positive number such that the open sets
Wie = {(w.,;,zi)e W¢||w1|<1 ’ |z¢|<1 - e}’ieIQ

again cover V. We put U= W NV ={0,z)e W;||2|<1-—e¢.
Besides C?, we must consider additive groups C?. An element & =
{6iyi,} €C2 18 @ function which associates to each (p + 1)-ple (%, «+-, %,)
of indices in I a holomorphic section §igiy o0 Ui N e N UE_ N Uy, In
particular, C? = C°. We define the coboundary map

0. C?—C
by
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(Beé)io...iﬁl(z) = Z_, (— 1)”&,;0...;y_liy+1...ip+1(2)
for
zeUS Ne--+ N Ufpn U;

We introduce a norm | |, in C?. For each & = {§,....} € C?, we define | &,
by

p+1 °

|1, = sup {[&l...,(2) |
N=1,c0,mzeUsNe--NUL_ NU;, (G, 0, 1,) € 17
where & ..; is the representation of the component &;,...;, of ¢ with respect
to the coordinate (w;, 2;). In particular, we define
161 =1I€1] for £eC!=C".
We put
Co(| |) ={6eC2]€&l. < +oo}.
It is easy to see that C?(] |,) is a Banach space and the coboundary map
0, maps C?(] |,) continuously into C?*'(| |). We put
Zp =1{eC?|o8 =0},
B‘p = 3eCep_1 ’
H? = Z}|B?,
ZX| 1) =1{eCx( |) 0.6 =0},
Bz ) =BrnCx ) »
Hx(| 1) = 22( 12/B2( 1) -
LEMMA 2.2. There is a canonical identification: ZX| 1) = Z'(|| ||) and
the morms | |, and || || are equivalent in them.

Proor. Each element & = {¢;,} € Z'(|| ||) corresponds to the element
& ={&hleZX |,) with &, =&, |U:N U,. It is clear that [&'|, = [[€]]
Conversely, let & = {¢l,} e ZX(] |.). We take a point ze U;N U,. Since
{U¢} is a covering of V, there is an index j such that ze U;. We define
an element &,,(z) of the fiber F, of F by

(1) Eule) = &i®) — £u(2) .

We show that &;,(2) does not depend on the choice of the index j. Let
us take another index ! such that ze Uy. Since &' € Z!(| |.),

{€5(2) — &:(a)} — {Eiu(a) — €L(a)} = {£0(@) — Eu(@)} — {§5:(2) — €ul2)}
= £5(2) — €il2)
=0.
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Thus &,,(2) is a well defined holomorphic section of ¥ on U,N U,. We
set & = {€;,}. We express (1) in the coordinate in U;:

&) = Fi(25)E50(2;) — Fi5(2;)85:(25)
where z = (0, 2;) and 2; = g;:(0, 2;). Then we get

[6a(z) | = v || F [ (| €5x(25) | + |85:(25) 1)

sS2r||F €],
where ||F'|| =sup{|F%,@); M, v=1,--+,7,4,5e€l,2;€ U;N U;}. Hence
el = 2r || F] €.
We show that & is a cocycle. Let us take a point ze€ U; N U; N U,.
There is an index ! such that ze Uy. Thus
Ein(2) — Eul?) + £ii(2) = {€(2) — €Li(2)} — {§1(2) — €L(2)} + {£14(2) — £L:(2)}
=0.

Now, & e ZX(| |.) corresponds to &€ Z'(|| ||). g.e.d.

The following lemma is a slight modification of Kuranishi’s Proposi-
tion 2.5, [5].
LEMMA 2.8. There is a continuous linear map
E: B ) —C 1)
such that 6,E = the identity map on B |,).
Proor. First of all, we define additive groups C?(q, q¢'), »,4q,q =
0,1,2, ... An element &€ C?(q, q¢') is a function which associates to each

(» + 1) ple (i, -+, ;) of indices a C=-differential (g, ¢')-form &;..; on
uin---nU:_ N U with coefficients in . We define a norm |£&], by

'Itp 1
|§ |e = sup {IE‘O"‘ipvfl"'qux' kg (Z)| A= 1 oo,
ze Ufon e N Ufp_ n U, . (%, .,.’?:p)eIp+1’

1§j1<"'<‘7q§dy1§k1<"'<kq'§d}

where & ...; is the coordinate expression in U; of the component

pri1r e dgki ke
Eigip = 20 Eigripriyeighyrkg QAL N\ oo N Q2lg N dZELN <o 0 N dBEC
We also define a map
9,2 C2(q, ¢') — C2*(q, 4)
by
(08)igipps = 20 (= 1) Eipsty iy provvipyr *

It is clear that C? is a subgroup of C?(0, 0) and
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0,: C?— Cr™
is the restriction map of
o.: C¥(0, 0) — C2?*(0, 0)
defined above.
Let {g:};c; be a partition of unity subordinate to the covering {U:}ic;.
Given £eBX| |) we define an element 7 = {n;}eC¥0,0) by %; =
Dlier i Eie Then

7] = ; sup {| ¢:(z) F}i.(2:)615(2)) |2 2:€ Us 0 U; N Uy}
<al¢l,

where ¢, is a constant. We claim that §,7p = ¢&.

O = N — Niu + N = g Qi — i + Eig)

= ; @i&ime = Eim +

Let oy = {07;1}. Then a7 is an element of C/(0,1) and satisfies 6.,0n = 0,
for d(;) — 0(My) + 0(Ms;) = 0(€i5) = 0. Let N; = 3%, q:07;;. Then

N — A = ; 0:(0(0:5) — 0(01)) = ; Q:07is = Oss «
Since A; = 3 q:00:; = Sk €:0(QiEri;) = Dok €:E 13005 We can find a constant
¢, such that
(1) |05, +++ 3, N | S €] €,

where 0, = 0/0z" etc. and p =0,1,---,d. We now denote by &; the
Newlander-Nirenberg operator on U; ([8] or p. 186 [9]), and use its properties;
for a (vector valued) (0, 1)-form \; on Uj,

(N, | KN | < ¢;sup |, ++ 05 0;|  With ¢ a constant ,
(Ny) Ny = (0K; + K0, -
From (1) and (N,) above, it follows that

[EN | S e | €, with ¢, a constant .

Now we get on; = o\, on U; N U,. Hence o\, defines a global C=— (0, 2)
form @ with coefficients in F.

Let 0 < @< 1 be a constant and |®|,.. be the Kodaira-Nirenberg-
Spencer norm [3]. Then by estimating |® |;-, on U; we have

W gra < €5 1€, with ¢, a constant .

We introduc_e a Hermitian metric on V and let 6* and G be the adjoint
operator of ¢ and the Green operator respectively. Let &l;, be the restric-
tion of &; on Uy N U:n U;. Since &€ BX(| |.), & = {&/;)} is a coboundary
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of ' on the nerve of the covering {Usg}. It is clear that w corresponds
to & by Dolbeault’s isomorphism. Since &’ is a coboundary,

® = 00*Gw .
We put @ = 0*Gw. Then there is a constant ¢, such that

| T lasa S €6 | €1,
Let us denote x; the restriction of 7 on U;. Then we have
| O, + =+ 5ﬁp75i| =clél
where ¢, is a constant, by (N,) above, we get
[k | < e |61

where ¢; is a constant.
We put A = \; — m;. Then we have

o =w—w=0,
My = Nj — N = Ny — M
Hence we have
(s — ENj + M) =Ny — M — 0K\ + 0k
= (Nj — 0K\ — (N — 9N
= K;0N; — K0\,
=0
by (N,) above.
Now, we define g = {Bi;} by Bi; = i — £ + £M. Then it is an
element of C! and there is a constant ¢ such that
1Bl =clél. .
We define E: &£ —g. We claim d,8 = &.
(0.8)isk = Nix — Kxhe + KjN; — iy + Ky — KN+ iy — KN + B\
= Eijn o q.e.d.
Using the map E in Lemma 2.3, we define a map
A: Gl ) — Z( 1)

by 4 =1 — Eo6,. Then 4 is a projection map.
Since the proof of the following lemma is similar to (and simpler than)
that of Lemma 2.3, we omit it.

LEMMA 2.4. There is a continuous linear map
Ey: Bl 1)—CX| 1) = C°(l 1)
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such that 6,E, = the identity on BX(| |.). Finally, we prove the following
lemma.

LEmMmA 2.5.

(1) There is a canonical identification: B'(|| ||) = B.( ),

(2) HX| |) is canonically isomorphic to HXV, F),

(3) 5803(] Ie) = Bel(l le)’

(4) BY| |.) is closed in ZX| |,)-

ProoF. First of all, we show (1). Each element & = {&;,} € B(]| |))
corresponds to the element & = {&},} € BX| |,) with &, = &, | U N U, It is
clear that |&|, < [|£]|. Conversely, we take an element &€ B)(| |,). By
Lemma 2.4, E¢ is an element of C°(|| ||) and each component of é=0,E¢
is the restriction of the corresponding component of o(E,&) € C'(|| ||). Since
U; N U, is connected for each pair (¢, k), the extension 6(F,&) is uniquely
determined by &. We associate 0(F,&) to &, Thus we get (1). (2) follows
from (1), Lemma 2.1 and Lemma 2.2. 4,(E) = & shows (3).

To prove (4), let {£*} be a sequence in B!(| |.) which converges to
EeZX |.). Weput ™ =E&~eC |.), n=1,2, +--. Then

(7™, sclé™]. =M
where ¢ and M are constants. Thus, for all point z; ¢ U,
7P@) | S M, n=1,2 .

where »™ = {n{~}.
By Montel’s theorem, there is a subsequence

Nyy Mgy * o0 —> O

such that 7{™'(z;) converges absolutely and uniformly on each compact
subset of U, for each 7¢l.

We put 7,(z;) = lim, »{"(z;). Then 7; is holomorphic on U;,. We put
7 = {n;} and regard 7 as an element of C° For each fixed z;¢ U;, we
have

[7:(2:) | = [ limp{~(2;)| < limsup | p{™'(2,) | < M .

Thus [7], < M so that e C(| |,). Now, for each fixed z;e Uf N U,, we
have

Fo(z)ni () — 0™ (2:) = E56(25)
where
2 = 910, 2;) «
Letting v — o, we have
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Fi(z)n(z) — 7:(2:) = () -

Hence 6,y = &. N q.e.d.
It is well known that H(V, F') is of finite dimensional. Hence, by

(2) and (4) ~of Lemma 2.5, there is a subspace H}(| |.)* of Z!(| |.) isomorphic
to HY(V, F) such that Z!(| |.) splits into the direct sum of BI(|'|,) and
H(] L)

Z(| ) =B ) B HA ) -
Let

B: Z\(| ) — B 1)
and

H: Z(| |)— HA )

be the projection maps corresponding to the splitting.

3. Proof of Theorem 1. Let W, V, (Wi, {Wikicr, {Wikics, (i, 2))
and F be as above. We assume that a compact complex submanifold V’
covered by {W};.; is defined in W, by the equation:

w; = ¢4(=;) -

Then, for such V’, we associate an element
¢ = {geC( ) .
¢ must satisfy the compatibility conditions:
Fu(9u(20), 20) = 6i(9:(9i(24), 21) for (¢u(20), 2) € Wi W, .

Conversely, an element ¢ = {¢,;} € C°(]| ||) which satisfies ||¢|] < 1 and the
above compatibiliy conditions defines a complex submanifold V, of W
by the equation:

w; = $4(2;) «
We show that there is a small number ¢ > 0 such that V; is compact if

[|¢]] < e. For this purpose, we need the following lemma. The proof
will be given at the end of this section.

LEMMA 3.1. There is a small positive number & such that if ||¢]| < ¢
and if ¢ defines a submanifold V;, then V, is covered by {Wilie:.

Now we show that V, is compact if ||¢ | < e where ¢ satisfies Lemma
3.1. Let {P*,_,,,.. be an arbitrary sequence of points of V,. By Lemma
3.1, {P*},=1e,...C UWs:. We want to choose a subsequence of {P*},_,,....

* We use the same notation for the convenience.
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converging to point of V,. Since the number #(I) of indices is finite, we
may assume that P* belongs to a fixed W; for all v. We write P* =
(wy, z;) in the local coordinate (w;, 2;). Then

wi = ¢(2}) .
For each P*, we associate a point @* in V defined by
Q =(0,2)eUs.

Since V is compact, we may assume that {@},_,... itself converges to a
point

Q=(0,2)eU;.
Now, we put
P = (¢:2:),2)e W, .
Then Pe V, and
$i(2:;) = ¢i(liym Z) = liym $:(25) = liym wi .
Hence {P*},.,.,... converges to P. This shows that V, is compact.

Now, we need the following two lemmas. The proofs will be given
at the end of this section.

LEMMA 3.2. There is a small positive number ¢ such that if |w,|<e,
then (wy, z,) € W, N W, for all z,€ UsN U,
LEMMA 3.3. Let ¢ be a small positive number greater than e such
that the open sets
Wi ={(w;, z)e Wil|lw:| <1, [z]<1-—¢} iel,

again cover V. Then there is a small positive number ¢ such that if
lw, | < e and iof (wy, 2)€ W NW, then z,€ UsN U

Now, let B(¢) be the open e-ball of C°(|| |) = CX] |.) with the center
0, where ¢ satisfies Lemmas 3.1, 3.2 and 3.3. We define a map

K: B(e)—C:(| )
by
(K@)irn(2:) = Fin(Du(2h), 26) — B:(9i(Pi(20), ) for 2, Us N U, ,

where z, = 9.:(0, ;). Since (¢,(2.), 2,) € W;N W, by Lemma 3.2, K maps
B(e) into C;. It is clear that | K¢ |, < 1 + ¢ so that K maps B(e) into

Gl L)
We assume that ¢ € B(e) satisfies K¢ = 0. If z,¢€ U, satisfies
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(9u(20), 2) € W' WY,
then z,¢ Us N U, by Lemma 3.3 so that

Fi(:(20), 2) = 6:(Gs(B1(20), 21)) «
Thus the equations: w; = ¢,(2;) define a compact complex submanifold V.

Conversely, we assume that ¢ ¢ B(¢) defines a compact complex sub-
manifold V, defined by the equations: w; = ¢;(z;), then

Fie(Bu(21), 2) — 8:(9:(1(21), 26)) = O
for (¢u(21), zs) € W:N W, .
Hence K¢ = 0 by Lemma 3.2.
Thus the problem is reduced to analyze the set
{peB(e)| K¢ = 0} .
LEMMA 3.4. There 1s a small positive number & < & such that
K: B()—C.( 1)
is an analytic map and K’'(0) = 0.

Proor. We want to show that there is a small positive number
¢’ < ¢ such that for any affine line L in C°(j| [|), K is analytic map of
LN B(e') into CX(| |,). This implies that K: B(¢’) — CX(] |,) is analytic.
(See e.g., Proposition 2, [1]).

We take a point ¢°c L N B(¢’). Then L can be written as

L(s) = ¢" + s¢"

where se C and ¢'€ C°(|| |[)» We may assume that ¢'c B(¢’) and L(s) € B(¢')
for all se 4 where 4 is the unit disc in C. Now, putting z, = g,,(0, z,),
we have

(KL(s))u(2) = fulh(2s) + s64(2), 22)
—8U9:(91(2e) + 58(21), 24))
—801(9:(31(26) + 861(21), 21)) -
We put
A(8)i(2:) = fu(Bh(ze) + s8i(2e), 20) 5 A(s) = {A(s)us} »
B(8)u(z:) = ¢i(gu(di(2:) + 594(20), 20)) »  B(s) = {B(8)us} >
C (8)ir(2:) = 89i(9in(94(21) + 8¢i(21), 21)) »  C(s) = {C(s)is} -
We show that B(s) is an analytic map of 4 into CZ(| |,). Similar argu-
ments show that A(s) and C(s) are analytic. We put

Y = Y(8) = gi(9(e) + 891(21), 2) — Jar(B%(20), 24) -
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We also put w, = ¢%(2,), and = = s¢i(2;). Then
Y = Y(8) = gu(wi + , 2) — Gur(Wi, 24) -
If |lw, + 2| <e, then |g;(w, + 2,2,)| <1 for all z,€ Uf N U, by Lemma

3.2. Let ¢ be a positive number smaller than . Then by Cauchy’s
estimate,

Yy L DL a e ayrf(e — &)t = D(w) for |w,| < ¢
where >, is extended over all non-negative integers v, ---, v, with
Y, + ++« + v, =1 and « means that the absolute values of the coefficients

of y in the formal power series in x,, ---,, are less than the absolute
values of the corresponding coefficients of D(x). Hence

Y = y(s) K 2 ('s)t /(e — eyt = K(s) .

E(s) converges for se 4 and is equal to

<1 — e’s}(s - e’))r -1

provided ¢’ < ¢/2.
Taking ¢’ sufficiently small, we may assume that

|E(s)| < e/2 for all sed.
Thus,
(1) [y(s) | < e/2 for all sed.
Next, if |w,| < ¢ then by Cauchy’s estimate,
Gir(Wy, 2) — 9a(0, 2,) K X (wi)te o « () r/ferttor
Thus, if |w,| < ¢, then

[ 9ir(Wry 2) — 9:1(0, 25) | < (ﬁ) -1

Taking ¢’ sufficiently small, we may assume that

( 1 )r—1<e/2.

1—¢/e
thus
(2) [gar(wi, 2) [ < 1 — ¢/2 for |w,|<¢ and 2,e UsN T, .
Now,

(B(s) — B(0))u(z:) = #3(zi + y) — ¢3(21)
where 2i = g,,(6%(24), ).
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(2) shows that [2i|<1—e/2 when || ¢°||<é¢’. Thus, again by
Cauchy’s estimate, we have
Wz + y) — ¢ilz) < ey e ydf(ef2)1 e = F(y) .
Thus
(B(s) — B(0))i(2:) < F(E(s)) -
Hence
B(s) — B(0) € F(E(s)) .

F(y) converges for |y|< e/2 so that F(FE(s)) converges for all sed by
(1). This shows that B(s) is analytic.

Similar arguments show that A(s) and C(s) are analytic provided ¢’ is
sufficiently small. Since ¢° is an arbitrary point of L N B(¢’), K is analytic
on L N B(e.

Finally, we show that K’(0) = d,. Since K(0) =0, K¢ — KO = K¢.
Now

(Kg)a(2:) = fir(u(20), 21) — 6:(9ar(B2(21), 21))
= [fi(dx(z1), 2i) — [i(0, 2,)] — ¢i(2:)
— [p:(g:(P2(21), 21)) — 6:(9:1(0, 24))]
= Fu(21)g1(21) + 0(9) — ¢:(2)
- (a¢i/azi)z,;(agik/awk)(O,zk)¢k(zk) + o(9)
where z, = ¢,:(0, 2;) and o(¢) is some function of ¢ (and of z,) such that

lo(g) [/l ¢ ] —0 as [[¢][—0.
There is a constant M, such that
[ (09:k/0Wi) 0,2y | = M, for z,e Usr N U, .
On the other hand, there is a constant M, such that
| (0¢:/02.)., | = M, || ¢ || for z,e Us .
Thus,
(a¢i/azi)zi(agik/awk)(O,zk)¢k(zk) = o(¢) .
Hence
(Kg)ir(2:) = (0.8)ix(2:) + 0(9)
so that

K¢ = 3e¢ + 0(¢) q.e.d.
Let ¢’ be a small positive number such that Lemma 3.4 holds. We
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define an analytic map L: B(e') — C°(J| ||) by
L¢ = ¢ + E,BAKp — Ef,¢
where E,, B and A are continuous linear maps defined in § 2. Then we
get
L) =0,
L'0) =1+ EBA}, — Ep, =1+ Ep, — Ep, = 1.

By the inverse mapping theorem, L is an analytic isomorphism of an
open neighbourhood 2 of 0 in B(¢') onto an open neighbourhood £’ of 0
in C°| ||)» We put

M={4cQ|Kp=0}.
LEMMA 3.5. L(M)c HYV, F).

Proor. If ¢c M, then 6,Lp = 0,(p — Ef,9) = 0,6 — 0,6 =0 q.e.d.
We put & = L™ ' — Q2 and put

S = {se H(V, F)n 2| K(&(s)) = 0} .

Then it is clear that S = L(M) and &(S) = M. Let sc H(V,F)n .
We put ¢ = @s. Then

0=20,s=0,L¢ =6,6 + 0,E,BAK¢$ — 0,E,0,6 = BAK¢ .
Let H be the projection map defined at the end of § 2. Then
K&(s) = BAK¢ + HAK¢ + Ej,K¢
= HAK¢ + EJ,K¢
= HAK®(s) + K, KO(s) .
In other words, K&(s) has no coboundary part.
LEMMA 3.6. Taking 2 sufficiently small, we have
S ={seH(V,F)n Q2| HIK®(s) = 0} .
PRrROOF. Let ¢ be a small positive number greater than ¢ such that
the open sets
W ={(w;, z)e W, ||lw;| <1, || <1—¢}, tel, coverV.

We put Uf = W NV. We introduce a norm | |, in C? as follows: for
each ¢ = {£,;,} € C%, we define |£], by

&l =sup{| i@ M=1, .-, 7, 2e U NU; N U, (t, 5, k) € I?)

where &};, is the representation of the component &;;, of ¢ with respect
to the coordinate (w;, 2;). Then it is clear that
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(1) |$|e'§|5|e forEeCez(l Ie)'
We show that there is a constant ¢, > 0 such that
(2) [E]. S ¢l for £ ZX( |.) .

Let 2,e Us N U; N U,. Since {U!'} covers V, there is an index ! such that
z;€ Uf. Since £eZ%(] |,), we have

Eiin(z) = Fu(z)&1::(2) — Fau(2)&(2) + Fau(2)E:(2) »
where 2, = ¢,;(0, 2;). Thus
|E|e S 37'”F[| |§|e'

where || F || = sup{| Fi.(z)|: M, v =1, ..o, 1,9, kel, z,€ U N Ul
Now, let z,e Us N U; N U,. Taking |/ 4] sufficiently small, we may
assume that (4,(2.), z,) € W N W2 N W, where z, = g.:(0, 2;) and

Wit = {(w;, z) € Wil |wi| < 1, 2] <1— e/2}.

This follows from Lemma 8.2 by replacing W, to W¢”* (and W; to W;P).
We put {; = g;u(¢(24), 2). Then

$:(C) = Fi(8u(20), 2:) — (K9);i(2;) where 2; = g;:(0, 2,) .

Again, taking || ¢ || sufficiently small, we may assume that

LeUmn U and (3G, ) e Wi nWie
where

U ={0,2)e U; | |2 <1— ¢/3},

Wbt = {(w;, z)e W ||lw; | <1, |2|<1— e/d}.
We put

R'(kg, ¢) = {R'(kg, 6)ijs} 5
R'(Kg, ¢)iin(2:) = Fis(8:(C3), &) — Fu(9u(2), 20) + Fij(2;)(K9);1(24)
= fi5($:(Cs), €) — [ii(Fir(6u(2), 20), $i) + Fij(25)(K)(25) «

R'(K¢, $) is an element of CZ%(| |,). Then it is easy to see that there is
a constant ¢, such that

(3) | E'(Kg, ). = e[ Kol llgll

provided | K¢ |, and ||¢|| are sufficiently small.

This follows from the mean value theorem applied on the real and
the imaginary parts of the functions fi(w;, 2;), A =1, -« 7.

In a similar way, if we put
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R'(Kg, ¢) = {R (K¢, ¢)is} € C( 1) »
RYK3, 6)iin(2:) = 6:(9a(P (=), 20)) — $:(9:(85(C), £3)

then, we can show that there is a constant ¢, such that

(4) | R*(Kg, ¢)|. = c:| Ko |. Il $]] -
Now, we put
R(K¢, ¢) = {B*(Kg, ¢)ii} € C2( )
R(K9, 8)iin(2:) = fii(8:(3), §i) — 6:(9:i(85(Ls), C5)) — (Kp)is(2i)

We assume that z; belongs to U N U;N U,. Then, taking || ¢ || sufficiently
small, we may assume that {; = ¢;.(3.(z0), 2:) € Uf N Us>. Thus

RY(K9, )iii(z:) = (K¢)i;(C:) — (K¢)ii(25)
where {; = 90, {;) .

Applying the mean value theorem on the real and the imaginary parts
of the functions (K¢)%(z;),» =1, .-+, 7, we have

| RM(K¢, ¢)ijn(2:) | = ¢s | KB 1o || 8]
with ¢; constant. Hence
(5) | R(K¢, ) |l < ;| Ko, |l o] -
Now, we assume that z; belongs to UsNU; N U,. Then
(K¢)ii(z:) = fur(Bu(zi), 21) — 0:(9ar(1(20), 20)
= fii(9:(85), &) — 6:(9:5(65(C;), €5))
+ Fii(2,)(K$)i1(2;) — (R (K9, ¢) + R*(K9, 9))iin(2:)
= (K9¢):j(z:) + Fyi(2;)(Kg);i(2;)
— (R'(K¢, ¢) + R(Kg¢, $) — R*(K9, 9)):ir(2:) «
Hence we have
0.K¢ = R' (K¢, ¢) + R'(Kg, 9) — R* (K¢, ¢) «
By (1), 3), (4) and (5), we have
[0.Kp | < ci| Kploll o]l
with ¢, a constant. Thus, by (2),
|36K¢ |a é 6004|K¢ Ia ”¢” *
Thus there is a constant ¢ such that
|EoKpl. <c| Kol |lg]l .
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Now, let se H(V, F) N 2'. Taking @' sufficiently small, we may as-
sume that

[|@(s) || < 1/e for se H(V,F)n 2 .

Now, K&(s) = HAK®(s) + Eo,K®(s). We assume that HAK®(s) = 0. Then
| KO(s) |, = | B0, KO(s) |, < ¢ | KO(s) |, || D(s) || -

If K&(s) #0, then1 <c||D(s) |, i.e., 1/e < || @(s) ||, a contradiction. Hence

Kd(s) = 0. q.e.d.

Now, for each se S, @(s) = {@,(z;, s)} defines a compact complex sub-
manifold V, and @,(z;, s) is a vector valued holomorphic function of

(2;,8)eU; x S.
This is easily seen, because for each fixed z;¢ U,
¢ C(|| ) = gu(z) e C”
is a continuous linear map, so that
s€S—D(s) — D,(z;, 8)

is an analytic map. Thus {V,},.s forms a family (X, 7, S) of compact
complex submanifolds of W.

We show that (X, 7, S) is a maximal family. Let s,eS. Let (Y, u, T)
be a family of compact complex submanifolds of W with a point pe T
such that p™'(p) = V,. Let w;= w; — ®,(z;, s). Then (shrinking T if
necessary) we may assume that there are vector valued holomorphic
functions 6j(z;,t) on U; x T such that 8i(z;, p) = 0 and that the equation
w; = 0i(z;, t) defines the submanifold g~'(f). We put

0:(z;, t) = 0i(z;, t) + Di(z;, 8y)
and
0(t) = {0:(z;, )} € C°(l] 1)) -
Then it is easy to see that
G:te T—0@)eC (| |)

is an analytic map. We may assume that 6(T)c Q2. We have K(4(t)) = 0.
Let f(t) = L(@(t)). Then f is a holomorphic map of T into S with
f(p) = s,. We have &(f(t)) = 0(t). Hence we get p~'(t) = 77(f(t)).

This completes the proof of Theorem 1.

REMARK 3.1. It is clear that the map f, with the property: g '(¢) =
77 (f(t)) for te T, is uniquely determined.
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REMARK 3.2. If HY(V, F) =0, then S = HY(V, F)N 2’ by Lemma 3.6.
This is Kodaira’s case (see the Introduction).

PROOF OF LEMMA 3.1. Let m,: W,— U, be the projection map defined
by 7.(w., 2,) = 2. For each positive integer n, we set

W) = {(wy, z:) € Wi | |w,| < 1/m, |2, < 1}
and
Ay(n) = Wi(n) (the closure in W) .
Since A,(n) is compact,
A(m) = U Ai(w)
is also compact. It is clear that A(n) contains V. We show that
ﬁ Am) = V.

Let be 3=, A(n). Then there are an index kel and a subsequence

n, < My < -+ such that be 4,(n,) for v=1,2,-...
Then

|wy(d) | < 1/n, , v=12 ...
Hence w,(b) = 0 so that be V. If we find an integer » such that
A(n) C L,:, Wi

then ¢ = 1/n satisfies Lemma 38.1. Thus the proof of Lemma 3.1 reduces
to the following lemma. The proof is straightforward.

LEMMA 8.7. Let A be a compact subset of a Hausdorff space X. Let
A(n) be compact subsets of X such that

(1) A1) D A@)D---D A,
(2) QA(n):A.

Let U be an open mneighbourhood of A. Then there exists an integer m
such that U>D A(n).

Proor or LEMMA 3.2. Let W, (n) be as in the proof of Lemma 3.1.
We put

A(n) = Wi(n) N 75;1([75 NnT .

Here, the closure is taken in W.
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First of all, we show that A(n) is a closed subset of W. Let {b},_.....
be a sequence of points of A(n) converging to a point b of W. b belongs
to W.(n). Since m,(b,)e U N U, converges to m,(b), b also belongs to
n;'(Us N U,). This shows that A(n) is closed. Since A(n) < W,(n) and
the later is compact, A(n) is also compact. We put A = U:n U,. In
order to apply lemma 3.7 to X = W, U= W, it is enough to see that
w An) = A. Let be N, A(n). Then
lw(d) | =1/n, n=1,2, ...
and
[2(0) | = 1.

Thus w,(d) = 0 so that be U,. Since ben;' (TN Ty, mm(d) = be U:NT,.
Hence be A.
Thus there is an integer n such that A(n) C W,. Hence

Wi(n) N7y (U N U,) C A(n) C W, .
On the other hand, W,(n) N 7;*(Us N U,) is contained in W,. Hence
W) N (U N U)W N W, .
Now, ¢ = 1/n satisfies the requirement. q.e.d.

ProoF OF LEMMA 3.3. Let W.(n) be as above. In order to prove the
lemma, it is enough to find an integer » such that

W NWi NWn) o (UsNT,) .
We put
A(n) = W N Wi 0 Win)
and
A=T7nT; .

A(n) and A are compact.
We claim that N2, A(n) = A. Let be N3-, A(n). Then |w,(b)| < 1/n,

7

n=12 «... Hence w,(d) =0. be W7 N W; implies that |z,(0)|<1—¢
and [z(b)| <1 —¢. On the other hand,
w;i(0) = fu(wi(D), 2u(b)) = fu(0, 2,(b)) =0 .

Hence be U7 N U = A. Now, we apply Lemma 3.7 to the case X = W,
U=z;*(U: N U,). Thus there is an integer n such that

An)c oy (UsN U «
Hence
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W N W NWin) c An) c (U N U . g.e.d.

4. Proof of Theorem 2. Let W be a complex manifold. Let S(W)
be the set of all compact complex submanifolds of W. Let V be an
element of S(W). Let (X, r, S) be the maximal family with the center
V constructed in §3. Two different points s=<t¢ in S have different
fibers 77'(s) =<7n"'(f). Thus, there is a unique injective map

S— S(W)
defined by s — 77'(s). We want to take this map as a local chart around
Ve S(W). Using the maximality of (X, 7, S) and Remark 3.1, these local
charts patch up to give a (locally finite dimensional, not necessarily con-
nected) analytic space structure on S(W).

We prove that the underlying topological space of S(W) is a Haus-
dorff space. For this purpose we need the following two lemmas.

LEMMA 4.1. Let W be a metric space with metric d. Let C(W) be
the set of all compact subsets of W. For any two elements A and B in
C(W), we associate a number d'(A, B) defined by

d'(A, B) = sup {d(z, B) |z € A} + sup {d(4, y) | y € B}. Then d' s a
metric on C(W).

ProorF. It is easy to check that d’ satisfies the three axioms for
metric. q.e.d.

LEMMA 4.2. Let (X, 7w, S) be a family of compact complex submani-
folds of W. With an Hermitian metric on W, we regard W as a metric
space (W,d). Let oe€S. Then d' (n7'(s), w*(0)) is a continuous function
of se S, where d' is the metric in C(W) introduced in Lemma 4.1.

Proor. It suffices to prove that
d'(z7'(s),, ©™(0)) -0 as s—o.

It is known [7] that there is an open neighbourhood S’ of o in S and a
continuous retraction

R: 77(S") — (o)
such that R|77'(s) is a C=-diffeomorphism of 77'(s) onto 7~'(0) for each
seS’. We fix on point se€S’. We take a point Pex'(s). Then
d(P, 7*(0)) < d(P, R(P)) .
Hence
sup {d(P, 77*(0)) | Pe n'(s)} < sup {d(P, R(P)) | Pen(s)} .
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The right hand side is finite, for R is continuous and 7#~'(s) is compact.
In a similar way, we get

sup {d(Q, 77'(s)) | R e 77'(0)} = sup {d(Q, (B|77(s))™(Q) | Qe w7 (0)} .

Hence

d'(z\(s), #7(0)) = 2sup {d(P, R(P)) | Pexn'(s)} .
We show that

sup {d(P, R(P))|Pem™*(s)}—0 as s—o.
We assume the converse. Then there are a positive number ¢ >0, a
sequence {s,},,,.,... of points of S’ converging to o and a sequence {P,},-,..,...
of points of #%(S’) with P,en7'(s,),n =1,2, --- such that
d(P,, R(P,)) >¢, n=12 +--.

Since each fiber 77'(s) is compact, there is a subsequence n, < n, < ++-
such that {P, },..,.. converges to a point Pen (o). Then

v

¢ < d(P, R(P)) = d(P, P) = 0, a contradiction. q.e.d.

Now, it is easy to prove that S(W) is a Hausdorff space. Using an
Hermitian metric on W, we regard W as a metric space (W, d). Let d’
be the metric on the set C(W) of all compact subsets of W defined in
Lemma 4.1. Lemma 4.2 asserts that the identity map

I: S(W)— (S(W), d’)

is a continuos map where (S(W), d’) is a metric space with the metric
d'. Since (S(W),d’) is a Hausdorff space, S(W) is also a Hausdorff
space. This completes the proof of Theorem 2.

Henceforth, for each point ¢t S(W), we denote V, the corresponding
compact complex submanifold in W. Let
X(W)={P,t)e Wx S(W)|PeV,}.

We first show that X(W) is closed in W x S(W). Let (P,,t,),n=1,2,+..
be a sequence in X (W) which converges to a point (P, t)e W x S(W).
We claim that Pe V,.
(P, V) < d(P, P,) + d(P,, V)
S d(P, P,) + sup {d(Q, V) [Qe V. }
g d(P, Pn) + d,(th) Vt)
—0 as m— o~ by Lemma 4.2.

Hence d(P, V,) = 0 so that Pe V..
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Let (P,t)e X(W). There is a maximal family (X, 7, S) where S is an
open neighbourhood of ¢ in S(W) such that

X={Q,s)eWxS§|QeV]}.
X is a subvariety of W x S containing (P, t). Since

X=XW)n(Wx8),

X is an open subset of X (W) containing (P, t). Hence X(W) is a sub-
variety of W x S(W). Let #: W x S(W)— S(W) be the projection map.
Then (X, w, S) is the restriction of (X(W), &, S(W)) to the open subset
S of S(W). Thus we conclude that (X(W),7,S(W)) is a maximal family
of compact complex submanifolds of W.

It is clear that the family (X (W), #, S(W)) has the following uni-
versal property:

For any family (X, r, S) of compact complex submanifolds of W,
there is a unique holomorphic map

[ S—=8(W)

such that 77'(s) = #7'(f(s)) for all seS.

In the rest of this section, we show that S(W) is identified with an
open subset of the Douady space D = D(W). Douady [1] constructed a
flat family (Z, 7, D) of all (not necessarily reduced) compact complex
subvarieties of W. We consider the reduced analytic space D,.., associated
to D. Let

S (W) = {t € D..q | '(t) is non-singular} .

By Theorem 3.1 and Corollary 3.8 in VI, [2], we see that S'(W) is
an open subset of D,.; and that the triple (9 (S"(W))s %reas S’ (W)) forms
a family of compact complex submanifods of W in our sense where 7,.,:
Zea — D,oq is the holomorphic map associated to 7.

We note that 9z4(t) = 77'()ra = 77'(t) for te S'(W). Let (X(W), 7,
S(W)) be the family which we constructed above. There is a unique
holomorphic map

[ 8(W)—S(W)

such that n4(¢) = Z7'(f(t)) for all te S'(W). On the other hand, by the
universal property of the family (Z, », D), there is a unique morphism
9: S(W)—D

such that 77'(s) = p7'(g(s)) for all se S(W).
Since S(W) is reduced, there is a unique holomorphic map
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gO: S(W) - Dred
such that the diagram

S(W) L5 D,
PN
AN
D

is commutative, where D.,— D is the canonical morphism. Now it is
clear that ¢g,(S(W)) = S'(W) and that

9 = Iy »

f9o = Isom
where I ., and Iy, are the identity maps of A’(W) and S(W) respectively.

Hence f is a holomorphic isomorphism. Thus we conclude that S(W) is
identified with an open subspace of D,..

5. Proof of Theorem 3. Let S(W) be the analytic space constructed
in §4. We put

A={s)eS(W)x S(W)|V,cV}.

We first show that A is closed in S(W) x S(W). Let (s,, %), n =1,2, -
be a sequence of points in A converging to a point (s, t) e S(W) x S(W).
We assume that V, & V,. Then there is a point Pe V, — V,. We put
e=d(P, V,) >0 where d is an hermitian metric on W. Let d’ be the
metric on the set of all compact subsets in W defined in Lemma 4.1.
By Lemma 4.2, we can choose n so large that

(1) d(V,, V,,) < ¢/2
(2) a(Vy, Ve,) <e/2.

By (1), there is a point P, V, such that d(P, P,) < ¢/2. We note that
P,eV, CV, by the assumption. Hence

aV, V,,) =sup{d@, V,,)[Qe V,} + sup {d(@, V) | Q eV, }
z sup {d(@', V)| Qe V,}
=z d(P,, V)) =2 d(P, V,) — d(P,, P)
=¢ — d(P,, P) >¢/2.
This contradicts to (2). Thus V, < V,. Hence A is closed in S(W) x S(W).

Now, let X andNV be two compact complex submanifolds in W such
that Vc X. Let {W}i.; and {Wy};.; be finite coverings of V by open
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subsets W; and W, in W such that W,> W, (the closure in W) for all
1€ I. Moreover, we assume that there is on each W; a local coordinate
system

(ui, w'i’ zi) = (uiy cy utq) w:, ccey w:, z:, ceey, zzd)
such that.
W = {(wi, wi, 2) € Wi | |w | < 1, |wi| < 1, |2] <1}

and such that X and V are defined in W, by the equations

X: U; = 0,

V: u,- == w; — 0 .
We assume that {W,n V} and {W,n V} satisfy the similar conditions to
those in § 2.

Let {W,};., and {W,},., be finite collections of open subsets of W
having the following properties:

(@) W,> W, (the closure in W) for all v,

(b) each W, does not intersect with V,

() {Wilie:U{W,}yer is a covering of X,

(d) there is on each W, a local coordinate system

(uh vr) = (u)ly * u?’s U;, *t Y v;+d)
such that
W, = {(4;, v) € erluri <1, jv|<1}
and such that X is defined in W, by the equation: u, = 0.

(e) {(W:nX}U{W,n X} and {W;nX}U{W, N X} satisfy the similar
conditions to those in § 2.

Let F be the normal bundle of X in W and let G be the restriction
of Fon V. Let H and N be the normal bundles of V in W and in X
respectively. Then we have an exact sequence

(3) 0—-N—H—G—0.

Let CY(V, H) = CY(V, H, {W;N V}e1), etc., be the 0-th cochain groups
of the sheaf H, etc., over V of germs of holomorphic sections of H, ete.,
on the nerve of the covering {W;N V};c;» Then, by (3), we have a
canonical isomorphism

(4) C(V,H)=C(V,N)®C(V,G).
Let
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a: C(V,H)—CY(V,N),

B: CY(V, H) - C(V, G)
be the projection maps with respect to (4). Let || || be norms in C*(V, H),
etc., defined as in §2. Let C%V, H, || ||), etc., be the Banach spaces of
elements in C°(V, H), etc., with finite norms. Then it is clear that «
and @B are continuous linear maps of C(V, H, || ||) into C°(V, N, || ||) and
C(V, G, || ||) respectively.

We put Y= X N (U:ic; Wi). Then Y is an open subset of X contain-

ing V. Let C%X, F) (resp. C(Y, F'|Y)) be the 0-th cochain group of

the sheaf F' over X (resp. Ffl\l/’ over Y) of germs of holomorphic sections
of F' (resp. F'|Y) on the nerve of the covering {W,N X}, U{W,N X};er
(resp. {W; X};er). Then we have a canonical linear map

.C(X,F)—-C(Y,F|Y).
We introduce a norm || || in CX, F') (resp. C(Y, F'|Y)) and define a
Banach space C°X, F,| ||) (resp. C(Y,F|Y,| |)) as in §2. Then [
maps C°(X, F, || ||) continuously into C(Y, F'| Y, || |))-

Now, let X’ and V’ be compact complex submanifolds of W near
from X and V respectively, defined in W, by the equations:

X' uy = N(w;, 25)
Viiu, = 4i(2),  wi = 64(2) .
Then V'c X’ if and only if
¥i(z) = Ni(9i(20), ) for z e W;NV.
We assume that X’ is defined in W,, by the equation:
Uy = N(0) o
We may consider
A= {kier U{Ner €CUX, F | ) -
Then I (\) = {N}ie;€CUY, F|Y, || |)- We may also consider
N ={(s 9} € C°(V, H, || I),
¥ ={y}=pneCV, G| I,
¢ ={g} =aneC(V,N, |l 1) .
Now, we define a map
Q: B(1) x CUX, F, || Ih—C(V, G, |I'I)
by
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QM, NMi(z;) = BM)i(z:) — IN)(a())i(z), 2:) »

where B(1l) is the 1-ball of C°(V, H, || ||) with the center 0. Then it is
easy to see that @ is analytic in an open neighbourhood 2, x 2, of (0, 0).
On the other hand, (taking 2, and Q, sufficiently small), » and M\ satisfy
the equations:

Kn=0 and KAx=0
where

K: 2 —CxV,H,]| ),

K;: 2,—C/X,F,| |)

are analytic maps defined as in §3. (CXV, H,| |) and CXX, F,| |,) are
defined as in §2.) By the arguments in § 3, we know that the sets

e |Kn=0 and {re@,| K\ =0}

are (finite dimensional) analytic spaces which are taken as local charts of
S(W) in neighbourhoods of V and X respectively. Now,

AV, X) ={n, M) e2 x 2| Kn =0, K =0, Q(,») = 0}

is a finite dimensional subvariety of 2, X 2.

It is clear that, using A(V, X) as a local chart of the set A in a
neighbourhood of the point (V, X), we can give an analytic space structure
in A. It is also clear that the analytic space A thus defined is a closed
subvariety of S(W) x S(W). This proves Theorem 3.

Let o be a point of S(W). Then

{teS(W)| V., DV} =An (0o x S(W)).

This proves the corollary of Theorem 3.
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