T6hoku Math. Journ.
24 (1972), 423-433.

TRANSFORMATION OF THE GENERALIZED WIENER MEASURE
UNDER A CLASS OF LINEAR TRANSFORMATIONS

J. YEH aAND W. N. HuDpsSoON

(Received Nov. 9, 1971)

1. Introduction. Let C, be the Wiener space consisting of continuous
real valued functions x(f) on [0,1] with 2(0) = 0. It is the purpose of
this paper to investigate the transformation of the generalized Wiener
measure on C, corresponding to the generalized Brownian motion process
(i.e. Brownian motion process with nonstationary increments) when the
elements of C, are transformed by a Volterra integral equation of the
second kind.

For 0 =t¢t<t <+ <t, =1, let §,,.., be the o-field of subsets of
C, of the type

(1.1) E ={xecC,; [x(), +--, x(t,)] € B}, Be®B"

where 8" is the o-field of Borel sets in the n-dimensional Euclidean space
R*. Let b(t) be a strictly increasing continuous function on [0, 1]. It is
well known that if we define a set function m on ..., by

(1.2) m(E) = 1 SOl
{emriipe - berf
13 (6 — &) .
exp {_ E; m}d& ds,
with & = 0, then m is well defined on the o-field ¥ generated by the field
o which is the union of all the o-fields %, ..., and is in fact a probability
measure on (C,, F). (See for instance K. Ito [4] and P. Lévy [6].) Let
¥* be the Carathéodory extension of &, relative to m. Then (C,, F*, m)
is a complete probability measure space. We shall refer to F*-measura-
bility as Wiener measurability, and to m as the generalized Wiener
measure corresponding to b.

The real valued function X(¢, ) =x(t), z € C,, t € [0, 1] is then a stochastic
process with independent increments on the probability space (C., F*, m).
In fact X(0, ) = 0 for every z€ C,, and the increment X(t”, x) — X(¢', )
is distributed according to N(0, b(¢”) — b(t)), i.e. the probability distribu-
tion @ of the above increment is a normal distribution with density
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function

o 1 17
w0 = e s T e )

Furthermore the space of sample functions X(-, z), x€ C,, coincides with
the sample space C,.

Throughout this paper the topology of C, will be the metric topology
defined by the uniform norm |||«||| = sup,; |*()], v€ C,. In this topology
C, is a separable Banach space, an open subset of C, is always F-measur-
able and so is every continuous real valued functional F[z], x¢ C,.

neR.

Our main results are the following theorems:

THEOREM 1. Consider the probability space (C,, F*, m) where b(t) has
a positive and continuous derivative b'(t) on [0,1]. Let Fly],yeC,, be a
bounded and continuous real valued functional on C, which vanishes outside
of a bounded subset of C,. Let K(t) be a continuous real valued function
on [0, 1] and define a transformation T of C, into C, by

1.4) (Tx)(t) = x(t) + S:b’(s)K(s)x(s)ds , for xeC, .
Then
(1.5) SC Flylm(dy) = SC F[Tx]J[x]m(d)

with the “Jacobian” J[x] given by
J— ! 1 ! ’ 2 2
(1.6) J[z] = exp {— SOK(t)X(t, 2)dX(, x)} exp { —Egob (O K*(t)r (t)dt}

where the integral in the first exponential factor is the stochastic integral
of the process K(t)X(t, ®) with respect to the process X(t, x) = x(t).

THEOREM 2. For the linear operator T defined by (1.4) which maps
C, one-to-one onto C, and is continuwous with a continuous tnverse T
we have T, TI" e §* for every I'€ F* and

(L.7 m(T) = ‘T_IFJ[x]m(dx) .

Moreover if Fly], ye C., is a Wiener measurable real wvalued functional
then

(1.8) [ Floim@y) = | FITolT1aim(@)

in the semse that the existence of one side implies that of the other and
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the equality of the two. Similarly

L.7) m(TT) = SFJ[x]m(dx)

(1.8) LPF[y]m(dy) . SF[Tx]J[x]m(dw) .

We remark that according to the Volterra integral equation theory
(see for instance pp. 145-149, K. Yosida [7])

T =1+ [|]d]]]
and
1T~ = exp{l||b’K]][} -

The transformation of the standard Wiener measure (i.e. when b(t) = ¢
on [0, 1]) under transformations of the elements of C, by Fredholm integral
equations of the second kind has been investigated by R. H. Cameron and
W. T. Martin [1]. The results, specialized to transformations by Volterra
integral equations of the second kind with kernels depending on one variable
only, were applied to evaluate various Wiener integrals by means of Sturm-
Liouville differential equations in [2]. Aside from the fact that the measure
is the generalized Wiener measure in our case the proofs of our results
are considerably different from those of the theorems in [1]. The proofs
of Theorem 1 and Theorem 2 are given in §3. In §2 we prove some lemmas
for Theorem 1.

2. Lemmas for Theorem 1. Suppose that b(f) has a positive and
continuous derivative b'(¢) on [0, 1]. For every positive integer n let ¢, =
in,1=0,1,2, +++, % and let z;e({,_,t;) be such that b(t;) — b(t;,—) =
b'(z)/n for 1 =1,2 -+, n. With 7; fixed, let g, = b’(z;). Similarly for
a real valued continuous function K(¢) on [0, 1] let K; = K(t,).

Consider the trasformation T, of C, defined by
[nt]
@) (T)t) = 2(O) + 2 3 BK;-0(t-) + —BuwresKnotltian) (0 — [t

with the convention that B,,, = g8,. For t = ¢, we have [nt] = ¢ = nt so
that

@2 (Lo - at) = =5 8Kalt),  i=12 0 n

(T,2)(t) — a(t) = 0.

Thus (T,x)(t) — #(t) is a polygonal function with % equal steps, [¢,_, &], ¢ =
1,2, ---, n, whose values at ¢; are given by (2.2). The function (T,x)(t)
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is a polygonal function with » equal steps if and only if x(¢) is.

For later reference we remark at this point that since (), t € [0, 1],
ze€ C, is a stochastic process on the probabity space (C., §* m) with m
given by (1, 2), we have for every real valued B"-measurable function

f[El, R En] on R*

R W YR

= I TR
(o1 e - b}
S (=6 dn. «eod
X exp{ P gf_—ﬁg } YA M
in the sense that the existence of one side implies that of the other and
the equality of the two.

LEmMMA 1. Let H[y, +++, 7.] be a real valued, bounded and continwous
fumnction on R™ and let Gly], ye C., be defined by

@.9) Glyl = H [?/(%) y(%)]

then

@5 | Glyim@y = |, GIT.0lexp{-

n

K. aft)[o(t) — ot}

x exp{— oL 3\ 8K a(t:-) jm(do)
PROOF. According to (2.3),

@8 | clmay = {—n—}’g )| Hin, -7

v R Y
x exp{ 2 33 U= Tk ‘B?f~1) bz, - dn,

where the integrals exist from the boundedness of H. Consider the
transformation S, of ¢ =[¢, +++,&,]€ R™ into n = [n,, +++, 7,] € R" defined
by

(2.7) n= Snf ’ N = & + %gﬁi-ﬂKaéh T = 19 2’ cee, M.

The Jacobian of this transformation is equal to 1. Applying (2.7) to the
right side of (2.6) we obtain
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@8 | Gluim@y)

=(—2 )" wml” 155 Ke
- {(2@*;_11,3;} |- o| #le o+ L8k

X exp{—g,: Ki—lsi—l(éi - Ei—l)

Sl St e e G— ) g, L,
5y 2 Bl — 3 S b, - e, .

On the other hand in the right side of (2.5) we have by (2.4), (2.2)
G[Tnx] = H[(an)(tl), Yy (Tﬂx)(t'n)]

= H|a(t), -+, a(t) + = 3, 85K n(t) | -
n i=1

If we apply (2.3) to the right side of (2.5) the result is precisely the right
side of (2.8). This proves (2.5).

LEMMA 2. Let X be a random variable on a probability space (2, B, P)
which s distributed mormally with mean 0 and variance v. Let Y be a
random variable on (2, B, P) which is measurable with respect to a o-field
AcCB. If the o-field o(X) B generated by X and the o-field A are
independent then

1

2.9) E{exp {XY — v Yz}

u=1.

The proof will appear in [3].

LEMMA 3. Let X(t, x) be the stochastic process on the probability space
(C., F*, m) and the domain of definition D = [0, 1] defined by X(t, x) = x(t)
for xeC, and te D. Let g(t) be a real valued function on D and let
fa(t, x) be an a stochastic process on (C.,, F*, m) and D defined by

@10)  fult, %) = g(%)X(—% x) , for € C, and teD .

Then the stochastic integral I(f,)(t, x) of the process f,(t, x) with respect to
the Browmnian motion process with nonstationary increments X(t, x) stisfies

@.11) E’[exp {I( f,,)(;i—, x) — %S’ f2t, ac)db(t)}] ~1,

for 1 =1,2, e m .

Proof. Since f, is a stochastic step function
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()= S x(E ) - (5L )

Let
v = (I afx(5e) - x(Eh )} - g EA(IT R ).
Observe that
$8n(izL
= S a(EE oo — e} = [ v
Let
7o) = exp {3 Yio)} = exp {1£)(L) — [ " sct, vt} -

In terms of Z,, (2.11) becomes E(Z) =1 for 1 =1,2, -+, n.

Let ,=0{X(/n, +),5=0,1,2, -+, 3} for 1=0,1, 2, --+, n. Then f,(¢, +)
is ,-measurable for t€ [0, (¢ + 1)/n] so that in particular f,((¢ — 1)/n, -)
is 2A;,_,-measurable for ¢ = 1,2, ---, n. The random variable X(i/n, -) —
X((7 — 1)/n, +) is normally distributed with mean 0 and variance b(t;) —
b(t;—)) = Bi/n. Also the o-field o{X(i/n, -)} and the o-field 2;_, are inde-
pendent. Thus by Lemma 2
2.12) Elexp{Y}|¥; ] =1for 1 =1,2 «++, m.

We proceed to show that E(Z) =1 for 1 =1,2, ---, n by induction.
First of all, £,(0,2) =0, Y,(x) =0, Z(x) = 1 for x€ C, so that E(Z) = 1.
Now suppose E(Z;) = 1. Then

E(Z,) = E[Z;exp{Y:..}] = E[E[Z;exp{ Y. }|2:]] .
Since Y, -+, Y; are all 2U;-measurable so is Z; and consequently
E[Z;exp{Y.,}|] = ZElexp (Y.} |W] = Z; .
Thus E(Z;, = E(Z;) = 1. This completes the proof for E(Z;) =1 by
induction.
Let L, be the linear transformation of C, into C, defined by

(2.13) (Lo)(®) = alti-) + A= B ¢ g, )

for te[ti_l, t,‘], xr e Cw’ and 7 = 1’ 2’ e M.
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Clearly
214) Ll = max |a(L)| < lo]| and
(2.15) lim [[| Lo — off| = 0 .

Also for T and T, defined by (1.4) and (2.1) respectively, we have
(2.16) lim|||L, T, — Tx||| =0.

This follows from
WL Tow — Tell| < [[| Ly Tow — L,T[l| + || L Tw — Tal|| .
where
Lo T — L, Te|ll = || Taw — Telll

by (2.14), lim,_.. ||| T,® — Tx||| = 0 from the uniform continuity of b'(£)K(t)
on [0, 1], and lim,_. ||| L, Tz — Tz||| = 0 by (2.15).

LEmMMA 4. Let X(t, x), 9(t) and f,(t, ) be as defined in Lemma 3.
Then the random variables Z,(x), on (C,, §*, m) defined by
(2.17) Z@ = exp{I)1, o) - [ fi, DO} m=1,2:-.
0
are uniformly integrable on C,. If g(t) is bounded on D then for every
B = 0 the random variables Y,(x),n =1, 2, «++, defined by
(2.18) Y.(®@) = Yol L2l exp {I(f)X, z)}
are uniformly integrable on C,.
Proor. For ¢ = 0 let
r,,={xeC,; Z,) >a}.
To show the uniform integrability of Z,,n =1, 2, .-+, we show that for
every € > 0 there exists A = 0 such that
S Z(x)m(dx) <e, for m=1,2, -+,
FA,'n

For each n» define a function I,(«, ) on [0, ) x C, by
I(a, @) = i 1 when a< Z,(x)
0 when a=Z,(z) .

Then Z,(x) = S[ I, (e, x)da for every x e C,. Thus for an arbitrary 4 = 0,
0,00)
by Tonelli’s Theorem
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I, Zeamida) = | {S L(a, ©)m(da) |da

S[o )m({“’ Z,(x) > A} N {z; Z,(x) > a))da

[0500)

[, me Z,@) > Apda+ | _me; Z@) > a)da
Am

(Fhn) + S | m(T)da

Now for a« > 0

ML) S - ZHom(da)
& JCy

= L exn{f 1700 o) - [ 126, 9aveo [pmiam) = L

since the last integral is equal to 1 according to Lemma 3 applied to 2f,.
Then for A > 2/¢

1 1
Sr Zy(@ym(d) S A + L el = Z <e for m=1,2

proving the uniform integrability of Z,,n =1, 2, ..
Finally consider the case where g(¢t) is bounded on D. Now

[me]\|
x(M)] = iz
Thus z€C,, ||| L||| < B and B = 0 imply |f.(¢, )| < |/|g|| B and
| £3t, )de@) < 19 |IBTW) - 0] -

max
teD

Then with
v = exp {[[lg[[FB*[b(1) — b(0)]}

we have
Y@ = Zooslll LuzlDZ(@) exp{ | £i(t, 2)b(®)} < v2,0) -
Therefore when a = 74

S Y, (@)m(dz) < 7§ Zuwymdz) < ve for m=1,2, -
{2:Y p (2) >a} {z:Zy(2)>alr}
proving the uniform integrability of Y,,n =1,2, «--.

LemMmA 5. If x€C, and for some M =0
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| Laa||| > Mexp{|||0’K||l}
then

[ Lo To]l| > M .

ProoF. As in the Volterra integral equation theory one can show
that 7, defined by (2.1) transforms C, one-to-one onto C,, T, and T, are
bounded linear operators and

I T = exp{[[[0'K][]} -

Now for an arbitrary xe C, which satisfies [||z]|| > Mexp{|||b'K]||} for
some M =0 we have |||z]||| > M||T;'|l. Then |||T,xz||| > M for otherwise
we would have [||T,2[]| = M and consequently

M T < el = 1 To Twelll < (| T Tolll = (1 T M

a contradiction. Since the above x € C, is arbitrary, in particular ||| L,x||| >
Mexp {||b’K]|||} implies ||| T,L,x||| > M. But by (2.1) and (2.13), T,,L,x =
L,T,x. Thus |||L,T,x|| > M.

3. Proof of Theorem 1. From the natural one-to-one correspondence
between the polygonal functions on [0, 1] which have n equal steps and
vanish at ¢ = 0 and the elements of R" there exists for the real valued
functional F[y], ye C,, a real valued function H[»y, -+, 7,] on R™ such
that F[L,y] = H[yQ/n), «--, y(n/n)] = G[y] for ye C,. The boundedness
and continuity of F on C, imply the same for H on R* with respect to
the uniform topology of R”. Now for T, defined by (2.1) we have

G[T,o] = H[(T,pc)(%), (T,,:c)(—::—ﬂ — F[L,T.z], for zeC,

so that according to Lemma 1

CRY [, FlLayim@y) = | FIL.T.0)7,olm(d)
where
(3.2 Jula] = exp {3 K aft la(t) — o601}

X exp {— % g BiKi—lzmz(ti—-x)} .

We obtain (1.5) by letting n — c in (8.1). This is done as follows.

On the left side of (3.1) since F' is bounded on C,, by applying the
Bounded Convergence Theorem and then by (2.15) and the continuity of
F we obtain
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3.3) lim | FL,ylmdy) = [, Flulm@y) .

On the right side of (3.1) let M =0 be such that F'[x] = 0 for [||z||| = M.
By Lemma 5, |||L,z||| > B with B= Mexp{|||b'K |||} implies ||| L,T,x||| >
M. Then

64 [ FILTaL0Im@) = | sl Lo ) FIL T [olm(d) .
By Lemma 4 the functionals on C,
Lol Lo 1) exp { = 33 Koot et — o]}, m = 1,2, ++»
are uniformly integrable on C,. Then since F' is bounded on C, and
exp{—% ;::1, ,Bin_lxz(t,-_l)} <1 for zeC,,n=1,2,¢-+,

the functionals on C,
3.5) Xon (| Lo@ [|VF[ Lo Toxlul] ,  m=1,2, .-
are uniformly integrable on C,.
According to (2.16) and the continuity of F
lim F[L,T,x] = F[Tx] xeC, .

n—co

Also
lim exp {— 5177 ; ,ein_lxz(ti_l)} — exp { —%S;b’(t)Kz(t)xz(t)dt} weC, .

Let f.(t, ) = K([nt]/n)X([nt]/n), n = 1,2, -+, and f(t, x) = K(t)X(¢, x), for
xe(C,, te[0,1]. For each zeC,, lim,_. f.(¢ ©) = f(¢, «) uniformly on [0, 1]
so that

lim | [£.(t, 9) — fit, 9)Fdb(®) = 0

and this implies (see for instance pp. 185-186, Ito [5]) that I(f,)(, x)
converges to I(f)(1,x) in the m measure. Thus the sequence of functionals
on C, given by (3.5) converges in m measure to

(2D FITs] exp (1)L, @)} exp{ [ vOK O @)t}

Since the functionals given by (3.5) are integrable and uniformly integrable
on C, the above convergence in measure justifies passing to the limit
under the integral in (3.4) and have
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(3.6) 1im§0 FL, Tl [e]m(z)

n—oo

= | ol IDFITs] exp(—I(/)(L, )
X exp {—%S:b'(t)KZ(t)xZ(t)dt}m(dx) :

Now |||z||| > B implies |||L,z||| > B for sufficiently large n. For such
n ||| Thelll = maxiy,. ... [(To2)(i/n)| = |[| L, T\2|l| > M by Lemma 5. Thus
for |||z||| > B we have ||| Tz ||| = M and consequently F[Tx] = 0. Therefore
in the integrand on the right side of (3.6) we may drop the factor
Yio,z(|[|2]]]) without disturbing the equality of the two sides. Now (3.1),
(3.3) and (3.6) give (1.5).

The proof of Theorem 2 is omitted since it is the same as the proof
of Theorem 1 given in [1].
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