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1. In the present paper we shall consider the following stochastic
integral equation:

(1) X, =+ g’f(XquMu + Yg(Xu_)dAu , X, —uzecR
0 0

where (M,) is a local martingale and (4,) is an increasing process. This
is a continuation of [1] in which we assumed the square integrability of
each M, and the continuity of the process (A4,).

2. Let (2, F, P) be a complete probability space, given an increasing
right continuous family (F,) of sub o-fields of F. We assume as usual
that F, contains all the negligible sets. In addition, suppose the family
(F,) is quasi-left continuous; namely, for every stopping time T and every
sequence (T,) of stopping times such that T, 1 T, the o-field F, is gen-
erated by the field ;- Fr,. A notation such that “let M = (M,, F,) be
martingale” means that the martingale property is relative to the family
(F,). All martingales below are assumed to be right continuous.

By a normal change of time C = (F,, ¢,) we mean a family of stop-
ping times of the family (F), finite valued, such that for a.e ® the
sample function c.(w) is strictly increasing,

6(@) = 0, c.(@) = lim¢,(w) = oo
t—oo

and continuous.

As usual, we do not distinguish two processes X and Y such that
for are ®w X.(w) = Y.(w). This is important for the understanding of
uniqueness statements below.

DEFINITION. A right continuous process M = (M,, F') is a local mart-
ingale if there exists a sequence of stopping times T, { o such that for

every n the process M,.;, on the set {T, > 0} is a uniformly integrable
martingale.

We assume in this paper that M, = 0.
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3. We are now in a position to state our result.

THEOREM. Let f and g be real valued bounded functions such that
for all z,ye R

(2) Max(|f(x) — f(@)], [9(x) — 9()]) = alz — y|
where a is some constant. Then the equation (1) has a unique solution.

The key to the proof of this theorem is the following lemma which
is closed to the Gundy decomposition of martingales. Since it is proved
in [2], we omit the proof.

LEMMA. Let M be a local martingale. Then there exist stopping
times R, 1 oo such that the process M, can be written as

(3) MtAR,, = H, + Vt, V.= MRnI(thn) + B — B®

where (H,) is an L*-bounded martingale stopped at R, and each (B/P), i =
1, 2, is a natural increasing process.
Of course, H and B’ depend on R,. Note that if the family (F,) is

quasi-left continuous, then any natural increasing process is continuous;
so B is continuous. This fact is important in the following.

PrOOF OF THEOREM. Let us keep the notations used in the lemma.
As is well known, there exists a unique continuous increasing process A,
such that the process Af = A, — A, is a martingale. Then we can rewrite
the equation (1) in the form

(4) X =+ | £, + [o(X,)dAr + [lox.)dA, .

Therefore, there is no loss of generality in assuming that the process A
is continuous, as we now do.

First, we shall treat the equation (1) on the stochastic interval [0, RJ,
where R is one of the stopping times (R,) in the lemma. On this interval
we have

t t t
(5) X.=a+ | f(X)dH, + | FX)BY - | F(XIBE + | o(X, a4, .
0 0 0 0
As is well known, there exists a unique continuous increasing process
{H)» such that H* — (H) is a martingale.
Define now:
(6) M =t+ (H),+ B» + B® + A4,, 0, = inf {u: n, > t} .

Clearly (A;) is a continuous increasing process with P(Ay =0, A\, = + o) = 1.
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Then an easy computation shows that 6 = (F, 6,) and 4 = (F,, \,) are
normal change of time. It is obvious that \; is a stopping time with
respect to the Family (F,) and the process (t — <(H),, — B{’ — Bf¥ — A,,,
F,,) is increasing. As 6, < R on the set {t < \z}, we get from (5)

(T) X, = 2+ | £, )i, + [ 9(X,, )id,,

t t " .
=+ Sof (X, )AH,, + Sof (X5, )dB§ — Sof (X,, )dBY + Sog( X, )dA,,

on the stochastic interval [0, \;[ relative to the family (F,,).

Therefore, in order to show the existence of a unique solution of the
equation (1) on the interval [0, R[, it suffices to consider the equation (7)
in stead of (1). Namely, there is no loss of generality in assuming that
the process (¢t — (H), — B — B{® — A,, F,) is increasing, as we now do.
For simplicity, the proof is spelled out for 0 <t < 1 only.

Define in succession:

(8) X ==
X+ — ot S’f(X:_)dMu + S'g(X;_)dAu . =12 ..
0 0
Clearly the processes (f(X?) and (9(X?)) are right continuous.

Put now: ¢} = f(X7) — £(X7™), df = g(X7) — 9(X?). For simplicity,
we assume that o < 1/4. Then, by using the Schwarz inequality, we have

D,,(t) = E[(X:”_H - ZL)ZI(t<R)]
t t t 2

E[(S o dM, + S ¢ dBY — S ¢ dBY + Sd:_dAu> IM,]
0 0 0

< 48] | @ Lucnd(BD. + B | (@ Lucnd B
0 0

+ BE | (@ TucndB? + A @cndd.]
0
< (4a)2StE’[(X,I‘ — X2 e )b
0

< S‘Dn_mu)du; Di(t) < (4K)'t, where K = Max (|| f I, [|g]L) -
0

As supes:<:Do(t) < (4K)?, we derive the estimate
t'n+1

(9) D.() = (4K )2m .

t
Since the process (S cr_dH,, F,) is an L*-bounded martingale, the extension
0



466 N. KAZAMAKI
of Kolmogorov’s inequality to martingales shows that for any ¢ > 0
P(sup = <) < B | eorac,

t _
(10 < B | @ TucndCB]  ( Ho= Hpw)

S’c:_dﬂu

0

1
=< a2s‘2§ D,_(w)du .
0
Next, we get by using the Schwarz inequality

Ycﬁ_dBif’l > s> = P(sup (Stc:_dB‘,j’y > ez>

0 0sts1 0

P(sup

0sts1

< P(sup Bi")gt(c:_)de,‘f) gsZ>
0st=1 0

(1) 1
= P([@ ) ucrdnze) ¢ B = Bl
0

< azs‘leDn_L(u)du .
0
Similarly we obtain

(12) P(sup = e> =< aze“2S:Dn_l(u)du .

0=st=s1

S'd:_dAuAR

0

Thus P(supy<:<; | X7 — X | icp = 4¢) < Const. X €7%/(n + 1)!. Pick e =
(n — 1)!. Then e¢*/(n + 1)! is the general term of a convergent sum, and
so the Borel-Cantelli lemma shows that the processes (X/;[..r) converge
uniformly almost surely for 0 < ¢ <1 to some right continuous process
X? = (X, F,). Furthermore by using the extension of Kolmogorov’s
inequality to martingales we have
P(sup = s)
ost=1

< e B[ | (70X = A Lucnd(E.] .

According to the bounded convergence theorem, the right hand side of
this inequality converges to 0 as » — «. Thus the processes (St f (X,Z‘f)dHu)
converge uniformly almost surely to the process (S: f (X?R_)dI-_;u> for some
subsequence (n,). It is not difficult to see that (So f(X;‘_)dij’) and

(S:g(X,:’_)dAuAR> converge uniformly almost surely to (g f (X,fi)dBff’) and

t
0

|f(xXeyad, - | f(Xam,

t
(Sog(XuR—)dAu/\R> respectively. Consequently the process X? satisfies the
following equality:
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18) X7 =+ | roxzaH, + | rxasy — | pxeasy + (o(xzaa,

on [0, B[ .
That is, X* satisfies the equation (1) on the interval [0, R][.

Now let X and Y be two solutions of the equation (1) on [0, R[. Then
we can obtain as in the proof of (9)

(14  D@t) = EI(X, — Y)Iyen] < S:D<u>du, sup D() < 32K,

from which D(f) = 0. This implies that X = Y on [0, R].

Next, for each 7, let X% = (XF», F,) be a solution of the equation
(1) on the stochastic interval [0, RB,[. X?%»+ being also a solution of (1)
on [0, R,[, we get X®» = XF»+1 on [0, R,[. This relation therefore defines
a right continuous process X such that
15) X=X on [0,R,[,n=1,2,, -

Furthermore, for each =,

s[{{'rxm - rexnar] = f [ - FE uadca.] =0,

0
from which S F(X.)dH, = S F(XE)dH, on [0, B,[ .
0 0
Obviously we have on the interval [0, R,[
S’ F(X,)dBY = St f(X2)dBY and Stg(Xu_)dAu - S'g(Xf_«»)dAu.
0 0 0 0

Thus, the process X satisfies the equation (1) on each [0, R,[. As R, 1 o,
X is a solution of (1).

Finally, we are going to show its uniqueness. If X and Y are two
solutions of (1), then these processes satisfy the equation (1) on each
interval [0, R,[. Therefore X = Y on [0, R,[ for each n. Hence X = Y.
This completes the proof.

4, In the following, instead of the quasi-left continuity of the family
(F,), we assume that the local martingale M and the increasing process
A are continuous.

PROPOSITION. Let o and & be positive imcreasing function defined on
(0, ). Suppose that

) | otwdu=t o, | e =+ -
[f@)—f@)I=ple—yl), lg@)—9@ | =k(e—y]), V,yecR
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and K 18 concave.
Then the uniqueness holds for the equation (1).

By using a normal change of time, this proposition can be proved in
the same way as Theorem 1 of [3].
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