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1. In the present paper we shall consider the following stochastic
integral equation:

(1) Xt = x + \f(Xu_)dMu + \g(X^)dA% , Xo = x e R
Jo Jo

where (Mt) is a local martingale and (At) is an increasing process. This
is a continuation of [1] in which we assumed the square integrability of
each Mt and the continuity of the process {At).

2. Let (Ω, F, P) be a complete probability space, given an increasing
right continuous family (Ft) of sub σ-fields of F. We assume as usual
that FQ contains all the negligible sets. In addition, suppose the family
(Ft) is quasi-left continuous; namely, for every stopping time T and every
sequence (Tn) of stopping times such that Tn \ T, the σ-field Fτ is gen-
erated by the field U~=i Fτn A notation such that "let M = (Mt, Ft) be
martingale" means that the martingale property is relative to the family
(Ft). All martingales below are assumed to be right continuous.

By a normal change of time C = (Ft, ct) we mean a family of stop-
ping times of the family (Ft), finite valued, such that for a e ω the
sample function c.(ω) is strictly increasing,

co(ω) == 0, c^ω) = lim ct(ω) = oo
ί->oo

and continuous.
As usual, we do not distinguish two processes X and Y such that

for a e ω X.(ω) = Y.(ω). This is important for the understanding of
uniqueness statements below.

DEFINITION. A right continuous process M = (Mt, Ft) is a local mart-
ingale if there exists a sequence of stopping times Tn \ oo such that for
every n the process MtATn on the set {Tn > 0} is a uniformly integrable
martingale.

We assume in this paper that Mo = 0.
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3. We are now in a position to state our result.

THEOREM. Let f and g be real valued bounded functions such that
for all x, ye R

(2) Max(|/(s) - f(y)\, \g(x) - g(y)\) ^ a\x - y\

where a is some constant. Then the equation (1) has a unique solution.

The key to the proof of this theorem is the following lemma which
is closed to the Gundy decomposition of martingales. Since it is proved
in [2], we omit the proof.

LEMMA. Let M be a local martingale. Then there exist stopping
times Rn \ °o such that the process MtAR% can be written as

(3) MtARn = Ht+ Vt, Vt = MRnI{t^Bn} + Bi" - B™

where (Ht) is an U-bounded martingale stopped at Rn and each (Bt

{i)), i =
1, 2, is a natural increasing process.

Of course, H and B{i) depend on Rn. Note that if the family (Ft) is
quasi-left continuous, then any natural increasing process is continuous;
so B{i) is continuous. This fact is important in the following.

PROOF OF THEOREM. Let us keep the notations used in the lemma.
As is well known, there exists a unique continuous increasing process At

such that the process A* — At — Άt is a martingale. Then we can rewrite
the equation (1) in the form

(4) Xt = x + [f(XuJ)dMu + [giX^dA* + [g(XuJdΆu .
Jo Jo Jo

Therefore, there is no loss of generality in assuming that the process A
is continuous, as we now do.

First, we shall treat the equation (1) on the stochastic interval [0, R[,
where R is one of the stopping times (Rn) in the lemma. On this interval
we have

(5) Xt = x + [f(Xu_)dHu
Jo

As is well known, there exists a unique continuous increasing process
such that H2 — (H) is a martingale.

Define now:

(6) \ = t + (H)t + B? + B? + At, θt = inί{u: Xu > t] .

Clearly (\) is a continuous increasing process with P(λ0 = 0, λ^ = + <χ>) = 1.
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Then an easy computation shows that Θ = (Ft9 θt) and A = (Fθt, \) are
normal change of time. It is obvious that XR is a stopping time with
respect to the Family {Fθ) and the process (ί - (H)dt — B% — Bf]

t — Aθt,
Fθt) is increasing. As θt < R on the set {ί < λ^}, we get from (5)

g{XθJdAθu
o

on the stochastic interval [0, XR[ relative to the family (Fθt).
Therefore, in order to show the existence of a unique solution of the

equation (1) on the interval [0, R[, it suffices to consider the equation (7)
in stead of (1). Namely, there is no loss of generality in assuming that
the process (ί — (H)t — Bp — Bf — At, Ft) is increasing, as we now do.
For simplicity, the proof is spelled out for 0 ^ t ^ 1 only.

Define in succession:

(8) Xί = x

χ +i = x + Vf{X:_)dMu + [giX^dAv , n = 1, 2, .
Jo Jo

Clearly the processes (f(X?)) and (g(Xt

n)) are right continuous.
Put now: c? = f(X?) - f(XΓι), dn

t = g(Xt

n) - g{XΓ1)- For simplicity,
we assume that a ^ 1/4. Then, by using the Schwarz inequality, we have

Dn(t) =

: ; - x;-γiι%<B)]du

t; A(ί) ^ (*K)% where Z - Max ( | | / |U, \\g\l) .

As sup 0 S t s lD 0(ί) ^ (4if)2, we derive the estimate

( 9 ) Dn(t)

Since the process (\ cl_dHu, Ftj is an ZΛbounded martingale, the extension
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of Kolmogorov's inequality to martingales shows that for any ε > 0

(10) ^ ε-*E\[\c:yi{u<R}d<H)u] (v Ht = HtAR)

Next, we get by using the Schwarz inequality

\0£tgl JO

(11)
Vo^ί^i Jo

^ ε2)
/

Similarly we obtain

(12) P(sup ['dl-dA^B
Vo^ί^i Jo

^ ε) ^ rf

Thus P(supo^<a \Xt

n+1 - X?\I{t<R) ^ 4e) ^ Const, x + 1)!. Pick ε~2 =

(n — 1)1. Then ε~2/(n + 1)1 is the general term of a convergent sum, and
so the Borel-Cantelli lemma shows that the processes (X?I{t<B)) converge
uniformly almost surely for 0 <J t ^ 1 to some right continuous process
χR = (X/2, 2^). Furthermore by using the extension of Kolmogorov's
inequality to martingales we have

P(sup ^ ε)

\f(X;) -

According to the bounded convergence theorem, the right hand side of

this inequality converges toOasw-^oo. Thus the processes ( \ f(XΰJήdHu)

G t VJo \ /

f(Xu-)dHu) for some
0 /Γt / \

subsequence (nk). It is not difficult to see that ί \ f{X^)dB{^) and

M g(X"J)dAuAR\ converge uniformly almost surely to u f(Xu~)dB(

u

i}j and

G g(XfJ)dAuΛB) respectively. Consequently the process XE satisfies the
0 /

following equality:
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(13) Xt* = x + \f(XΪ_)dHn + \f{X?_)d&? - {'fiXfJdB*? + [g(XZ.)dAa
Jo Jo Jo Jo

on [0, R[ .

That is, XR satisfies the equation (1) on the interval [0, R[.
Now let Xand Ybe two solutions of the equation (1) on [0, R[. Then

we can obtain as in the proof of (9)

(14) D(t) = E[(Xt - Yt)I{t<R}] £ [D(u)du , sup Z)(t) ̂  32iP ,
Jo o^ί^i

from which D(t) = 0. This implies that X = Y on [0, R[.
Next, for each n, let XRn = (Xt

Rn, Ft) be a solution of the equation
(1) on the stochastic interval [0, Rn[. I ^ ^ 1 being also a solution of (1)
on [0, Rn[, we get XRn = I ^ ^ 1 on [0, Rn[. This relation therefore defines
a right continuous process X such that

(15) X=X* on [0, Rn[, n = 1, 2, , . . .

Furthermore, for each w,

{ w ] = 0 ,

from which [*f(Xu_)dHu = \*f(X**)dHu on [0, Rn[ .
Jo Jo

Obviously we have on the interval [0, Rn[

\'f(X%-)dBΪ> = ['fiX&dB? and \g{XuJdAu = \g
Jo Jo Jo Jo

Thus, the process X satisfies the equation (1) on each [0, Rn[. As Rn ] oo,
X is a solution of (1).

Finally, we are going to show its uniqueness. If X and Y are two
solutions of (1), then these processes satisfy the equation (1) on each
interval [0, Rn[. Therefore X = Y on [0, Rn[ for each n. Hence X = Y.
This completes the proof.

4. In the following, instead of the quasi-left continuity of the family
(Ft), we assume that the local martingale M and the increasing process
A are continuous.

PROPOSITION. Let p and tz be positive increasing function defined on
(0, oo). Suppose that

(16) [ ρ-\u)du = + oo , \ κ~\u)du = + oo
Jo+ Jo+

\f(χ)-f(y)\^p(\χ-y\), \g(χ)-g(y)\£κ(\χ-v\), Vχ,yeR
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and K is concave.
Then the uniqueness holds for the equation (1).

By using a normal change of time, this proposition can be proved in
the same way as Theorem 1 of [3].
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