OPERATORS WITH α -CLOSED RANGE

JOHN ERNEST

(Received July 20, 1971)

Let \mathscr{H} denote a Hilbert space of infinite dimension h. In an earlier work we have introduced the notion of α -closed subspace, where α is a cardinal, $\aleph_0 \leq \alpha \leq h$ (definition 2.1 of [2]). A subspace \mathscr{K} of \mathscr{H} is called α -closed if there is a closed subspace \mathscr{L} of \mathscr{H} such that $\mathscr{L} \subset \mathscr{K}$ and such that

$$\dim(\mathcal{L}^{\perp}\cap\mathcal{K})^{-}<\alpha$$
.

This notion is of interest only when $\alpha > \aleph_0$, since a subspace \mathscr{K} is ≥ closed if and only if it is closed (lemma 2.3 of [2]). This concept is important for the study of operators on nonseparable spaces, as it is used in characterizing invertibility modulo the closed two-sided ideals of the algebra $\mathcal{L}(\mathcal{H})$ of all bounded operators on \mathcal{H} . (Cf. definition 2.7 and theorems 2.6 and 2.8 of [2].) For each α , $\aleph_0 \leq \alpha \leq h$, let \mathscr{I}_{α} denote the set of operators of rank $\rho(A)$ less than α and let \mathcal{J}_{α} denote the norm closure of \mathcal{J}_{α} . Then the \mathcal{J}_{α} , $\aleph_0 \leq \alpha \leq h$ are precisely the closed twosided ideals of $\mathcal{L}(\mathcal{H})$, and the elements of \mathcal{J}_{α} are called α -compact operators. (Cf. [5] and theorem 0 of [2].) In this terminology, the \aleph_0 compact operators are precisely the compact operators. Then the operators which are invertible modulo \mathcal{J}_{α} (i.e., the operators A in $\mathcal{L}(\mathcal{H})$ for which there exists an operator A' in $\mathcal{L}(\mathcal{H})$ such that $I - AA' \in \mathcal{J}_{\alpha}$ and $I-A'A\in\mathcal{J}_{\alpha}$) are precisely the α -Fredholm operators. An operator A is called α -Fredholm if its range is α -closed and its nullity $\nu(A) < \alpha$ and its corank $\rho'(A) < \alpha$. In this context we see that the notion of an operator having α -closed range is fundamental for the study of operators on a nonseparable space. We therefore examine this new concept in more detail in this paper.

We first obtain a characterization of operators with α -closed range as those which have closed range modulo the ideal \mathcal{I}_{α} . More explicitly, A has α -closed range if and only if there exists an operator C in \mathcal{I}_{α} such that A+C has closed range. This enables us to generalize the well-known fact that A has closed range if and only if A^* has closed range, to the case of operators with α -closed range.

We give two applications of this result. The first gives the conditions

46 J. Ernest

under which an operator is right invertible modulo the ideal \mathcal{J}_{α} . The second gives a generalization of a definition given by T. Kato [4] of the "essential spectrum" for possibly non-normal operators. This research was supported by the National Science Foundation.

LEMMA 1. Let T be an operator on a Hilbert space \mathscr{H} such that ran T is closed. Let \mathscr{H}_0 be a closed subspace of \mathscr{H} and let F denote the projection onto $\mathscr{H}_0 \cap (\ker T)^{\perp}$. Then TF has closed range.

PROOF. Let $\{\psi_n\}$ be a sequence in \mathscr{H} such that $TF\psi_n$ is convergent. Since ran T is closed, there exists $\varphi \in (\ker T)^{\perp}$ such that

$$\lim_{n} TF \psi_{n} = T \varphi.$$

Now T is bounded below on $(\ker T)^{\perp}$ (since ran T is closed, cf. problem 41 of [3]) and hence $F\psi_n$ converges to φ . Since \mathscr{H}_0 is closed we have $\varphi \in \mathscr{H}_0$. Thus $\varphi \in \mathscr{H}_0 \cap (\ker T)^{\perp}$ and $\varphi = F\varphi$. Since $F\psi_n$ converges to $F\varphi$, we have $TF\psi_n$ converges to $TF\varphi$. Thus ran TF is closed.

THEOREM 2. Let A be a bounded linear operator on a Hilbert space \mathscr{H} of infinite dimension h. Let α be a cardinal number, $\aleph_0 \leq \alpha \leq h$. Then the following conditions are equivalent.

- (i) There exists $C \in \mathscr{I}_{\alpha}$ such that ran(A + C) is closed.
- (ii) A has α -closed range.
- (iii) A^* has α -closed range.

PROOF. We first show i) implies ii). Let E denote the projection onto

$$\ker C \cap [\ker (A+C)]^{\perp}$$
.

Let $\mathscr{L} = \operatorname{ran}((A+C)E)$. By lemma 1, \mathscr{L} is closed. Since the range of E is contained in ker C, we have (A+C)E = AE. Thus

$$\mathcal{L} = \operatorname{ran}(AE) \subset \operatorname{ran} A$$
.

Thus it remains to show that

$$\dim(\mathscr{L}^{\perp}\cap \operatorname{ran} A)<\alpha$$
.

Note that

$$\operatorname{ran} A = \operatorname{ran} AE + \operatorname{ran} A(I - E) = \mathscr{L} + \operatorname{ran} A(I - E)$$
.

Also ran $A = \mathcal{L} \bigoplus (\mathcal{L}^{\perp} \cap \operatorname{ran} A)$ since $\mathcal{L} \subset \operatorname{ran} A$. Thus

$$\dim (\mathscr{L}^{\perp} \cap \operatorname{ran} A) \leq \dim \operatorname{ran} A(I - E) = \rho(A(I - E))$$
.

The range of (I - E) is

$$((\ker C) \cap (\ker(A+C))^{\perp})^{\perp} = (\ker C)^{\perp} \vee (\ker(A+C))$$
.

Now dim(ker C) $^{\perp} = \rho(C) < \alpha$ and hence dim $A((\ker C)^{\perp}) < \alpha$. Further note that if $f \in \ker(A + C)$, then $Af = C(-f) \in \operatorname{ran} C$. Hence

$$\dim A(\ker(A+C)) \leq \rho(C) < \alpha$$
.

Hence $\rho(A(I-E)) < \alpha + \alpha = \alpha$. Thus dim $(\mathcal{L}^{\perp} \cap \operatorname{ran} A) < \alpha$.

We next show ii) implies i). Since A has α -closed range, there exists a closed subspace $\mathscr L$ of $\mathscr H$ such that $\mathscr L \subset \operatorname{ran} A$ and

$$\dim(\mathscr{L}^{\perp} \cap \operatorname{ran} A) = \dim(\mathscr{L}^{\perp} \cap (\operatorname{ran} A)^{-}) < \alpha$$
.

(Cf. lemma 2.2 of [2], which asserts that $(\mathscr{L}^{\perp} \cap \operatorname{ran} A)^{-} = \mathscr{L}^{\perp} \cap (\operatorname{ran} A)^{-}$.) Let E denote the projection onto $\mathscr{L}^{\perp} \cap (\operatorname{ran} A)^{-}$. Then $E \in \mathscr{I}_{\alpha}$ since $\rho(E) < \alpha$. Since \mathscr{I}_{α} is a two-sided ideal, we have $C = -EA \in \mathscr{I}_{\alpha}$. We assert that $\operatorname{ran}(A + C) = \mathscr{L}$ and hence that A + C has closed range.

Suppose $f \in \mathcal{L}$. Then there exists $g \in \mathcal{H}$ such that f = Ag, since $\mathcal{L} \subset \operatorname{ran} A$. Since $f \in \mathcal{L}$ we have Ef = 0. Hence (A - EA)g = f - Ef = f. Thus $\mathcal{L} \subset \operatorname{ran} (A + C)$.

Next suppose f is an arbitrary element of \mathscr{H} . Let g=Af. Then we may write $g=g_1+g_2$, where $g_1\in\mathscr{L}$ and $g_2\in\mathscr{L}^{\perp}$. Since $\mathscr{L}\subset\operatorname{ran} A$, there exists $f_1\in\mathscr{H}$ such that $Af_1=g_1$. Let $f_2=f-f_1$. Then $Af=Af_1+Af_2=g_1+g_2\in\mathscr{L}\oplus((\operatorname{ran} A)\cap\mathscr{L}^{\perp})$. Hence

$$(A + C)f = (A - EA)f$$

$$= Af_1 + Af_2 - E(Af_1 + Af_2)$$

$$= Af_1 \in \mathscr{L}.$$

Thus ran $(A + C) \subset \mathcal{L}$.

We next show ii) implies iii). Since A is α -closed there exists $C \in \mathscr{I}_{\alpha}$ such that $\operatorname{ran}(A+C)$ is closed. By theorem 4, p. 488 of [1], $\operatorname{ran}(A^*+C^*)$ is closed. Since \mathscr{I}_{α} is self-adjoint we have $\operatorname{ran} A^*$ is α -closed. Applying the same argument to A^* gives the equivalence of conditions ii) and iii).

PROPOSITION 3. The only α -compact operators with α -closed range are those of rank less than α .

PROOF. Let A be an α -compact operator and suppose $\rho(A) = \dim \operatorname{ran} A \geq \alpha$. If \mathcal{K} is a closed subspace and if $\mathcal{K} \subset \operatorname{ran} A$, then by theorem 5.1 of [5], $\dim \mathcal{K} < \alpha$. Thus

$$\dim(\mathcal{K}^{\perp} \cap \operatorname{ran} A) \geq \alpha$$
.

Hence A does not have α -closed range.

48 J. Ernest

We remark that proposition 3 may be used to show that one cannot replace the ideal \mathcal{J}_{α} of operators of rank less than α , by its closure \mathcal{J}_{α} , in condition i) of theorem 2. Indeed if $\mathcal{J}_{\alpha} \neq \mathcal{J}_{\alpha}$ and $A \in \mathcal{J}_{\alpha} - \mathcal{J}_{\alpha}$ then ran A is not α -closed by proposition 3, yet clearly there is an operator C(=-A) in \mathcal{J}_{α} such that ran (A+C) (={0}) is closed.

In an earlier paper (cf. theorem 2.6 of [2]) we characterized the operators which are left invertible modulo the ideals \mathscr{I}_{α} and \mathscr{I}_{α} . As a corollary of this result and theorem 2 we obtain the conditions characterizing right invertibility modulo these ideals. Here $\rho'(A)$ denotes the corank of A, i.e., $\rho'(A) = \dim(\operatorname{ran} A)^{\perp}$.

THEOREM 4. Let \mathscr{H} be a Hibert space of infinite dimension h. Let $A \in \mathscr{L}(\mathscr{H})$ and let α be a cardinal number, $\aleph_0 \leq \alpha \leq h$. Then the following conditions are equivalent.

- (i) A is right-invertible modulo \mathscr{I}_{α} .
- (ii) A is right-invertible modulo \mathcal{J}_{α} .
- (iii) ran A is α -closed and $\rho'(A) < \alpha$.

PROOF. Clearly i) implies ii). We next show ii) implies iii). If A is right invertible modulo \mathcal{J}_{α} , then A^* is left invertible modulo \mathcal{J}_{α} . By theorem 2.6 of [2], ran A^* is α -closed and $\nu(A^*) < \alpha$. By theorem 2 ran A is α -closed and $\rho'(A) = \nu(A^*) < \alpha$.

We next show iii) implies i). By the previous theorem ran A^* is α -closed and $\nu(A^*) = \rho'(A) < \alpha$. Thus by theorem 2.6 of [2], A^* is left invertible modulo \mathcal{I}_{α} . Hence A is right invertible modulo \mathcal{I}_{α} .

T. Kato [4] has defined a notion of essential spectrum (which we shall refer to as the Kato essential spectrum) for nonnormal operators. For an operator A, the Kato essential spectrum $\Sigma_{\epsilon}(A)$ is the set of complex numbers λ such that either $\nu(A-\lambda I) \geq \aleph_0$ and $\rho'(A-\lambda I) \geq \aleph_0$, or ran $(A-\lambda I)$ is not closed. We next give a generalization of this notion.

DEFINITION 5. If h is the dimension of the Hilbert space and $\aleph_0 \le \alpha \le h$, we define the *Kato essential spectrum of A of weight* α , denoted $\Sigma_{\alpha}(A)$, to be the set of complex numbers λ such that either $\nu(A - \lambda I) \ge \alpha$ and $\rho'(A - \lambda I) \ge \alpha$ or ran $(A - \lambda I)$ is not α -closed.

Recall (definition 3.1 and theorem 3.2 of [2]) that the approximate point spectrum of A, of weight α , $\Pi_{\alpha}(A)$, is the set of complex numbers λ such that $\nu(A-\lambda I) \geq \alpha$ or the range of $(A-\lambda I)$ is not α -closed. Using the fact (theorem 2) that A has α -closed range if and only if A^* has α -closed range, we obtain the following characterization of the Kato spectrum of weight α .

Proposition 6. Let A be a bounded operator on a Hilbert space of dimension h. Then

$$\Sigma_{\alpha}(A) = \Pi_{\alpha}(A) \cap \Pi_{\alpha}(A^*)^*$$

for $\aleph_0 \leq \alpha \leq h$.

COROLLARY 7. The Kato essential spectrum $\Sigma_{\alpha}(A)$ of weight α is a compact set which is invariant under perturbations by α -compact operators (i.e., by elements of the ideal \mathcal{J}_{α} .) Further $\Sigma_{\bullet}(A) = \Sigma_{\aleph_0}(A)$.

PROOF. $\Sigma_{\alpha}(A)$ is compact, since $\Pi_{\alpha}(A)$ and $\Pi_{\alpha}(A^*)^*$ are compact (cf. remark 3.8 of [2].). Similarly $\Pi_{\alpha}(A)$ and $\Pi_{\alpha}(A^*)^*$ are invariant under perturbations by α -compact operators, by theorem 4.5 of [2]. Finally $\Sigma_{\epsilon}(A) = \Sigma_{\aleph_0}(A)$ since ran $(A - \lambda I)$ is \aleph_0 -closed if and only if ran $(A - \lambda I)$ is closed, by lemma 2.3 of [2].

REFERENCES

- [1] N. DUNFORD AND J. SCHWARTZ, Linear operators, part I (1958), Interscience, New York.
- [2] G. EDGAR, J. ERNEST AND S. G. LEE, Weighing operator spectra, Indiana Math. Journ., 21 (1971). 61-80.
- [3] P. R. Halmos, A Hilbert space problem book, (1967), D. van Nostrand, Princeton, New Jersey.
- [4] T. Kato, Perturbation theory for linear operators, (1966), Springer Verlag, Berlin.
- [5] E. LUFT, The two sided closed ideals of the algebra of bounded linear operators of a Hilbert space, Chechoslovak Math. Journ., 18 (93) (1968), 595-605.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA SANTA BARBARA