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Introduction. In this paper, starting from the papers of T. Yoshi-
zawa [14] — [18] and V. A. Pliss [13], we prove that in the case of the
finite dimensional spaces, every ω-periodic ultimately bounded system is
uniformly bounded (Theorem 2.2), is uniformly ultimately bounded
(Theorem 2.3) and has at least one periodic solution of period ω (Theorem
2.4). However, for almost periodic systems, ultimate boundedness does
not necessarily imply uniform boundedness.

We give also some necessary and sufficient conditions in order that
the systems (1.1) and (2.1) be uniformly bounded (Theorem 3.1 and
Theorem 2.1 with Remark 2.1, respectively). Consequences of Theorem 2.2
are a result of V. A. Pliss and the fact that some conditions of Proposition
5 in [14] and of Corollary 1 in [14, p. 116] are superfluous (Remark 2.3).
Theorem 2.2 of V. A. Pliss [13] and Theorem 9.3 of T. Yoshizawa [16] follow
from Theorem 2.3, and in addition it follows that some conditions of
Proposition 6 in [14] and of Theorem 3 in [18] are superfluous. Moreover,
form Theorem 2.3 it follows that in the case of the periodic system, the
concepts of ultimate boundedness, equiultimate boundedness and uniformly
ultimate boundedness are equivalent. So far, it was known only the fact
that the concepts of equiultimate boundedness and uniformly ultimate
boundedness are equivalent in the case of the periodic systems (see
Theorem 9.3 in [16].)

In the last section, a necessary and sufficient condition in order that
the equation (4.1) (considered on a real Banach space X, with its dual
space X* strictly convex) be strictly uniformly bounded is given (Theorem
4.1). Theorem 4.2 is similar to a result of Gerstein and Krasnoselskii [6].

We mention that the ultimately bounded systems defined by T.
Yoshizawa (see e.g. [14], [16]) are identical with the dissipative systems
of Levinson [9]. From Corollary 2.1 in [13] it follows that every dis-
sipative system (ultimately bounded system) periodic in t of period ω
(ω-periodic) has at least one periodic solution of period kω, for some in-
integer k > 1. From Theorem 2.4 it follows that such a system has a
periodic solution of period precisely ω. A similar result for the equiulti-
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mately bounded systems is Theorem 29 3 of T. Yoshizawa [16].
The idea to prove Theorem 2.2 by using the Liapunov's function has

been suggested to me by Professor C. Corduneanu. We mention that
Theorem 2.2 may be proved with the method of Liapunov's function, but
only in the case f(t, x) e C^t, x) (see Section 2).

On this opportunity the author wishes to thank Professors T. Yoshi-
zawa, C. Corduneanu, D. Petrovanu and Gh. Bantas for their useful sug-
gestions during the preparation of this paper.

1. Definitions. Let us consider the initial value problem

(1.1) ~=f(t,x)
at

(i) x(Q = x0 ,

where / : R+ x Rn-*Rn is continuous, R+ = {t e R, t > 0} and Rn denotes
Euclidean w-space. Assume that the initial value problem (1.1) and (i)
has a unique solution x(t, t0, x0) for every (t, t0, xQ)eR+x R+x Rn [3]

We say that feC1^, x), if it is continuously differentiate with
respect to (t, x). For the definitions of C0(t, x) and of different concepts
of boundedness of the solutions of (1.1), see Yoshizawa [14], [15], [17].

Roughly speaking, we will say that (1.1) is bounded or uniformly
bounded, if the solutions of (1.1) are bounded or uniformly bounded
respectively. In the same way, we define ultimately bounded systems,
equiultimately bounded systems and uniformly ultimately bounded systems.

We denote:

|| x || = the Euclidean norm of x;

Sa = {xeRn, \\x\\ <a, α > 0 } , Sα* = {xeRn, \\x\\ >a}

/la = the product space R+ x Sa

At = the product space R+ x Si .

We say that the system (1.1) is ω-periodic (resp. almost periodic) if f(t, x)
is periodic in t of period o) (resp. almost periodic in t).

2. Periodic bounded system. Let us consider the following ω-
periodic system

(2.1) 4=L = f(t, x)
at

under the same hypotheses as (1.1).
In this section, using Liapunov's function method, we will discuss
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relationships between uniform boundedness and ultimate boundedness of
(2.1).

THEOREM 2.1. 1) Assume that there exists a continuous function
V(t, x) which is defined in Δ% (a > 0, arbitrary) and satisfies locally a
Lipschitz condition with respect to x. If in addition,

2) V(tp, xp) —> + °o as p —> + °o, for every (tPf xp) e R+ x Rn

with \\Xp\\ —> + oo as p—> + oo,

3) V;tΛ}(t,x)£0fσr (t,x)e4*,

then (2.1) is uniformly bounded.

PROOF. Suppose that (2.1) is not uniformly bounded. Then there
exist

r o > a, tp, xp

oeSro, tp > tp, Rp> r0, p - 1, 2, . . ,

Rp —> oo as p —> cχ5, such t h a t

(2.1)' || x(t*, tl, xl) || = Rp, p = 1, 2, . . . .

Let θp e [if, ίp) be such that

(2.2) || s(0p> *?, ôp) II = r0 , p = 1, 2, ,

and

(2.3) r0 < || α?(ί, %, xl) \\ for ^ < t < t» , p = 1, 2, .

If we set

(2.4) θp = mpω + β P , 0 < θp< ω, mpe N ,

where N is the set of natural numbers, and set

(2.5) tp = tp - mpω , xξ = x(θp, t$, xl) p = 1, 2, ,

we have

(2.6) x(t, θp, xl) = x(t + mpω, if, xζ) p = 1, 2, •

since (2.1) is ω-periodic. Taking into account (2.1)'-(2.6), we obtain

(2.7) ||Sf|| = r 0 , \\x(t*,S9,xi)\\ = R,

(2.8) ro<\\x(t9θPfSS)\\ for ^ < i < tp , p = 1, 2, ••• .

From the hypothesis 3) it follows that

(2.9) V'(t, x(t, θp, fig?)) < 0 for θv < t < t* .

Therefore
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(2.10) V(tp, x(tp, δp, xl)) < V(θp, xl), p = 1, 2, .

Since 0 < θp < ω, \\xl\\ = r0 and V(t,x) is a continuous function on d*,
there exists a constant ikΓ independent of p such that

(2.11) V(t>, x(tp, θp, xl)) < M, p = 1, 2, .

The contradiction obtained from (2.7), (2.11) and the hypothesis 2) proves
the theorem.

REMARK 2.1. If f(t,x)eCQ(t,x), from Theorem 5 in [14] it follows
that the conditions of Theorem 2.1 are also necessary.

COROLLARY 2.1. Assume that the hypotheses 1) and 3) of Theorem
2.1 are satisfied. If in addition

2°) δ(|| x ||) < V(t, x), (£, x) € Δ* where b(r) is a positive function such
that δ(r)—> + oo as r—> +©o, then (2.1) is uniformly bounded.

PROOF. Obviously, 2°) implies the condition 2) of Theorem 2.1, and
hence Corollary 2.1 follows from Theorem 2.1.

The following theorem which has been reported in Boll. U.M.I. [11]
is important, because many results of the present paper are closely related
to this theorem.

THEOREM. 2.2. Any ultimately bounded periodic system is uniformly
bounded.

PROOF. Assume that (2.1) is ultimately bounded for bound R, but
not uniformly bounded. Then there exists r0 > 0 such that for every
R> 0, there exist tf> 0, xfe SrQ and t* > tf such that \\x{t*, tf, xf)\\>R.
Let a > 0 be such that

(2.12) R<ro + a.

C o n s i d e r a s e q u e n c e {Rp} s u c h t h a t R p — • + oo a s p — > + ° o a n d

(2.13) RP>rQ + a, p= 1 ,2 , •-• .

Then there exist £o

p, %o, tp such that

(2.14) xl e Sro, t
p > tl, \\ x(tp, tP, xl) \\>Rp>r0 + a, p = 1, 2, . . . .

Let us consider x(t) = x(t, if, xl). Since ||x(tl)\\ = \\xl\\ <ro<ro + a
and \\x(tp)\\>Rp>r0 + a, denoting θp the largest of all θe(tl,tp) with
the property || x(θ, if, α f) || = r0 + α, we have

(2.15) \\x(θP,tl,xl)\\ = ro + a

and
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(2.16) \\x(t,tξ,xζ)\\>ro + a, for θp<t<V , p = l , 2 , . . . .

Using the relations (2.4) and (2.5) we derive

(2.17) x(t, θp, xξ) = x(t + mpω, t>, x$) , p = 1, 2, .

Taking into account (2.4), (2.5), (2.14) - (2.17), we obtain

(2.18) || x(t>, θp, xl) II > Rp > r0 + a

and

(2.19) \\x{t,(fp,xξ)\\>r0 + a f o r θp<t<tp , p = 1, 2 , •••.

Since 0 < 0P < ω, and || xl || = r0 + α, p = 1, 2, , we can assume (with-
out the loss of generality) that the sequences {θp}? and {xξ}? are con-
vergent. Let θ0 (resp. x0) be their limits.

Since (2.1) is supposed to be ultimately bounded for bound R, there
is τo>θo such that

(2.20) || x(τQ, θ0, x0) \\< R< r0 + a .

Taking into account that the solution x(t, ΘQ, x0) depends continuously on ΘQ,
x0, and using (2.18), (2.19) and (2.20), it follows that for pQ sufficiently
large, the cases tp°>τ0 and tPo < τ0 are impossible (see also [13] p. 31).
This contradiction proves the theorem.

REMARK 2.2. 1°) f(t,x)eC1(t,x), Theorem 2.2 may be proved by
using the Liapunov's function.

Indeed, from Theorem 2.6 in [13] it follows that there exists a func-
tion V(t, x)eC1(t, x) with the following properties:

a) V(t + ω, x) = V(t, x), (t, x) e Δ*a.
b) V(t,x)>0 on Δ*.
c) V(t, x)—> + oo as | | a ; | | ~ > + 0 0 uniformly with respect to t e [0, ω].

d) dV/dt + Σ?=i dV/dXtft < 0, (ί, x) e Δ*a.

Set δΛIMI) = i n f o ^ V(t,y) for each xsS*.
112/11=11*11

Obviously we have

(2.21) fti(ll»ll)

There exists ίj e [0, ω] such that

(2.22) 6i(ll»ll)= V(tζ,y), | |vll = l l« l | .

Taking into account b) and c), it follows that V(ίJ, j/)—• +oo as | |α; | | +co,
and therefore bγ{r) —> + oo as r —• + oo so that Theorem 2.2 is a con-
sequence of Corollary 2.1.
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2°) In the case of almost periodic systems, the ultimate boundedness
does not necessarily imply the uniform boundedness.

Indeed, by Theorem 1 in [14] for the linear system the ultimate
boundedness is equivalent to the asymptotic stability, and the uniform
boundedness is equivalent to the uniform stability. But there exists a
linear almost periodic equation for which the zero solution is asymptotical-
ly stable, but not uniformly stable (see C. C. Conley and R. K. Miller [4]).

REMARK 2.3. From Theorem 2.2 it follows that the conditions
"II %(t; %o, 0) || < it for xQeEB, t > 0" and "the solutions issuing from 77(0)
are equibounded" of Proposition 5 in [14] and of Corollary 1 in [14],
respectively, are superfluous.

THEOREM 2.3. Ultimate boundedness of the solutions of (2.1), implies
uniformly ultimate boundedness.

PROOF. This theorem follows from Theorem 2.2 and Proposition 5 in
[14]. However, we mention the following simple proof.

a) First of all, it is easy to see that it is sufficient to prove only
that the solutions from Mω, where Mω = {x(t, t0, xQ), with (ί0, x0) e [0, ω] xRn}
are uniformly ultimately bounded.

b) Since ultimate boundedness of (2.1) implies uniform boundedness
(Theorem 2.2), for proving that the solutions belonging to Mω are uni-
formly ultimately bounded, it is sufficient to prove only that the solutions
issuing from Π{ω) are quasi-equiultimately bounded.

c) Therefore, let us consider the solutions issuing from Π(ω). If
yeSa (α>0, arbitrary), there exists ty such that

(2.23) \\x(ω + ty,ω,y)\\ <b ,

(where 6 is the bound of ultimate boundedness of (2.1)). There exists a
neighborhood Vy of y such that

(2.24) || x(ω + ty, ω, x) || < 6 for every x e V
y

But {Vy}yesa covers Sa and hence there exist x19 •• , # p e S α such t h a t Sa

be covered by { F ^ K ^ p and

(2.25) || x(ω + tiy ω, x) \\ < b for xe VXi .

Let us consider now T(a) = max(^, •••, tp). By Theorem 2.2 there exists
β(b) such t h a t

(2.26) \\x(t,to,xά\\<β for (ίOf x0) e R+ x Sb and t > t0 .

Now, if xoe Sa, there exists ί, 1 < i < p, such that xoe Vx.. But
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| | χ(t, ω, xQ) | | = | | x(t, ω + tiy x(ω + U, ω, x0)) \\.

From (2.25), (2.26) we obtain

(2.27) || x(t, ω, x0) | | < β for t > ω + T{a) ,

and hence the solutions issuing from Π(ω) are quasi-equiultimately bound-
ed of bound β(b). The proof is completed.

From Theorem 2.3 it follows:

COROLLARY 2.2. In the case of the periodic systems, the concepts of
ultimate boundedness, equiultimate boundedness and uniformly ultimate
boundedness are equivalent.

REMARK 2.4. The Theorem 9.3 in [16] follows from Corollary 2.2.
Taking into account the Corollary 2.2 we easily see that the condition:
"the solutions issuing from /7(0) are quasi-equiultimately bounded" of Pro-
position 6 in [14] is superfluous.

THEOREM 2.4. // (2.1) is ultimately bounded, then it has at least a
periodic solution x(t, 0, xQ) of period ω and in addition

(*) \\x(t,0,xά\\<b

for all t>0, where b is the bound of uniformly ultimate boundedness.

The proof is immediate, using a fixed point theorem of Browder [2],
in a similar way as in the proof of Theorem 29.3 in [16], so that we
omit it.

The relation (*) is obviously necessary.
Theorem 2.4 specifies Corollary 2.1 in [13], which shows that (2.1)

has at least one periodic solution of periodic kω for some integer k > 1.

REMARK 2.5. From Theorem 2.2 and Theorem 2.3 we shall derive
two results of V. A. Pliss [13].

// (2.1) is ultimately bounded, then there is h>0 such that for every
a > 0, there exists a number k(a) such that

1°) TkSadSh for every k>k(a), where T is defined as usually:
T xo= x(ω, 0, x0), [1], [16].

Since ultimate boundedness of (2.1) implies uniformly ultimately
boundedness, we have

(2.28) || χ(t, 0, x0) | | < b for t > T(a) , xoeSa

where b is the bound of uniformly ultimate boundedness. Let kγ{a) be
the first natural number such that kλ(a)ω > T(a). Obviously, letting
k(a) = kjμ) and h—b, Theorem 2.2 in [13] can be obtained.
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In the proof of the result mentioned above, Pliss used the following
proposition [13, p. 31].

Assuming that (2.1) is ultimately bounded for bound δ, there is a
number h>0 such that

(2.29) TkSbdSh & = 1 , 2 , •••.

From Theorem 2.2 there exists 5 such that

(2.30) || x(t, 0, xQ) || < b for t > 0 and xoeSb,

so that (2.29) follows from (2.30) with h = b.

3. Generalizations. Let us consider again the system (1.1). In this
section we shall give a slight extension of Theorem 10.2 in [16].

THEOREM 3.1. 1) Assume that there exists a Liapunov function
V(t, x) defined in Δ* {a > 0, arbitrary) such that

2) V(tp, xp) —» + oo as p—> + oo for every (tPf xp) e R+ x Rn with
I I ^ P I I — > + ° ° a s p — > + oo,

3) V(t, x) < 6(|| a? ||), where b(r) is a continuous positive function,

4) VVufo s) < 0.
Then, (1.1) is uniformly bounded.

PROOF. Suppose that (1.1) is not uniformly bounded. Following the
proof of Theorem 2.1 (Section 2), there exist r0 > a, ίj, a;jGSro, ί*>ί?,
to <θn<tn, Rn>r0 with i2w-> + 0 0 a s ^ ~ ^ + o o , such that

(3.1) || x(θn, tl, x*) || = r0, || α? || ^ r0 , w = 1, 2, . . .

(3.2) || x(t*, if, a?) || = Λ. > r0 , n = 1, 2, •

(3.3) n<| |a?(ί fί?,α??)| | for θn<t<tn , n = 1, 2, •••.

Taking into account 3), 4), (3.1) and (3.3), we derive

(3.4) V(ί , a?(f, if, a??)) < F(^%, »(«., ί0
TO, ^n)) < M

where n = 1, 2, and ikf is a constant independent of ti. The contradic-
tion between (3.4) and the hypothesis 2) proves the theorem.

REMARK 3.1. The hypothesis 3) of Corollary 2.1 (or the hypothesis
(ii) of Theorem 10.2 in [16]) may be weakened by using a method in
[10].

4. Some remarks in the case of a Banach space. We consider now
the initial vulue problem
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(4.1) - ^ = f(t, x ) , ( i ) x(t0) = x0

dt

with / : R+ x X—»X, where X is a real Banach space and / is a con-
tinuous function. Assume that the initial value problem (4.1) and (i)
has a unique solution for every (t0, x0) e R+ x X. In addition, we assume
that the norm of the solutions of (4.1) is differentiable almost every-
where (a.e.).

We denote by (, ) the pairing between X and X* (X* being the dual
space of X), and by F the duality mapping of X into X*(see e.g. [7],
[8]).

DEFINITION 4.1. A mapping A: X-+X is said to be dissipative if
for any x,ye D(A) and fe F(x — y), we have

(4.2) (Ax - Ay, f) < 0 .

DEFINITION 4.2. We say that (4.1) is strictly uniformly bounded
(s.u.b) if the norm of the solutions is a nonincreasing function.

Obviously, the strictly uniform boundedness is a particular case of
uniform boundedness. The following result will be necessary.

KATO'S LEMMA. Let x(t) be a X-valued function defined on R+.
Suppose that x(t) and \\x(t) \\ are differentiable at t = s. Then

(4.3) || x(8) || 4 " H »(*) H I*- = (*'(*), /) , fe F(x(s)) .
at

THEOREM 4.1. Suppose that X* is strictly convex. Then, the equa-
tion (4.1) is s.u.b. if and only if

(4.4) {f{t, x), F{x)) < 0 , for any (t, x)eR+xX.

PROOF. Sufficiency. Let (t0, x0) e R+ x X. From (4.3) we have

(4.5) - i - -jL || s(ί, tQ, x0) ||2 = (f(t, x(t, ί0, xQ)), F(x(t, t0, x0))) a.e.

and hence

(4.6) ^ _ | | ^ , ί o , α ; o ) | | < O a.e.
az

Integrating (4.6) over [t0, t], we obtain

(4.7) \ \ x ( t , t o , x o ) \ \ < \ \ x o \ \ f o r t > t 0 .

From (4.7) (see also [12]) it follows that (4.1) is s.u.b.



30 N. PAVEL

Necessity. Assume that (4.6) is not true, therefore assume that
there exists (tQ, xQ) e R+ x X, such that

(4-8) (f(to,xo),F(xo))>O.

Set φ(t) = (f(t, x(t, t0, O), F(x(t, ί0, x0))), t > t0.
Since the duality mapping is demicontinuous (because X* is strictly

convex), it follows that φ(t) is a continuous function for t > ί0. But
φ(t0) = (f(t0, α?o), F(x0)), and therefore there is a <5>0, such that

(4.9) φ(t) > 0 for any t e [ί0, ί0 + <S] .

From (4.5) and (4.9) we obtain

(4.10) A II «(ί, ί0, »o) II > 0 a.e. on [ίCf t0 + δ] .
at

But (4.10) implies

(4.11) 11 x(t, t01 x0) 11 > 11 x011 for t e [ί0> ί0 + δ] .

Since (4.1) is supposed to be s.u.b., the inequality (4.11) is a contradic-
tion, so that the theorem is proved.

COROLLARY 4.1. If f(t,x) is a linear mapping from X to X for
every teR+, then (4.1) is s.u.b. if and only if f(t,x) is a dissipative
mapping.

PROOF. Indeed, in this case, (4.4) is the definition of dissipativeness
of f(t,x) ([19], ch.IX).

REMARK 4.1. Let us consider

(E) %- = Ax>
at

where A is a nonlinear operator which generates the nonlinear semigroups
Tt of contractions [8]. Set N(A) = {x, xeD(A), A x = 0}. If N(A) Φ 0
( 0 being the empty set), then the equation (E) is uniformly bounded.

Indeed, x(t, t0, x0) = Tt-tQxQ, t > t0, xoe D{A). Let us consider ee N(A).
Then we have x(t, t0, e) = Tt_te = e, t > ί0. But

(4.12) || x ( t , ί 0 > x0) || = || Γ t _ l o a ? o - T t . t Q e \\ + \ \ e \ \ < \\ xo\\ + 2 \ \ e \ \ .

Therefore

(4.13) l | a?( ί , ί o ,»β) l l<r + 2 | | β | | for | N 0 | | < r , t > t0

i.e. (E) is uniformly bounded with β{r) = r + 2 | | e | | ([16], Definition 9.3).
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Conversely (if X is a Hubert space), from a result of Browder men-
tioned in [5] (Section 5, Theorem 5.1) if the solutions of (E) are uniformly
bounded (or only bounded), then N(A) Φ 0 .

Finally, let us consider (4.1) again. Using a fixed point theorem of
Browder [2], it is easy to prove the following result.

THEOREM 4.2. Assume that (4.1) is periodic in t of period ω, and
the mapping T defined by Tx0 = x(ω, 0, x0) is a compact mapping.

If in addition (4.1) is uniformly bounded and uniformly ultimately
bounded, then there exists a periodic solution of period ω.

Theorem 4.2 is similar to Theorem 2.4 and to a result of Gerstein
and Krasnoselski [6].
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