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1. Let M be a complete Kidhler manifold of complex dimension n.
If P is a 2-plane in the real tangent space M, at some point pe M, we
recall that the Kdahlerian sectional curvature k*(P) is defined as follows:

k*(P) = 4k(P)/(1 + 34X, JY?)

where k(P) is the Riemannian sectional curvature, {, > is the metric, J
is the almost complex structure tensor, and X, Y is an orthonormal basis
for P. It is easy to check that %*(P) is independent of the choice of the
orthonormal basis X, Y, and it is also well-known that for the special
case in which M is complex projective space equipped with the metric of
constant holomorphic curvature ¢, £*(P) = ¢ for all sections.

We say that M is d-pinched, where 0 < 0 < 1, if there exists a positive
constant B such that 0B < k*(P) < B for all sections P. Kahlerian 6-
pinched manifolds have been studied by do Carmo [2], Klingenberg [5],
and Kobayashi [7], and their investigations have yielded the following
theorem: there ewists a 6 <1 such that any oJ-pinched complete Kdhler
mamnifold ts homotopically equivalent to complex projective space of the
same dimension. (The best estimate to date is ¢ = 9/16, proved by
Klingenberg [5, IIJ).

In addition, Cheeger [12] has studied a more general pinching con-
dition for a larger class of manifolds, and his results contain, as a special
case, the theorem that a sufficiently pinched n-dimensional complete Kahler
manifold is homeomorphic to complex projective n-space. (Here the pinch-
ing may depend on the dimension). In the same paper, and also in an
abstract in the AMS Notices for January, 1969, Cheeger has announced
that his result may be strengthened to yield a diffeomorphism.

In this note we wish to point out that the theorem of Kobayashi may
be combined with a theorem of Hirzebruch and Kodaira to obtain:

THEOREM. There exists a sequence 6,, with 0 <6, <1, such that any
n-dimensional 0,-pinched complete Kiahler manifold is biholomorphically
equivalent to complex projective n-space.
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A key step in the proof is in establishing a relation between the
curvature of a pinched Kahler manifold and its volume. In particular,
we shall need the following lemma, to be proved in §3:

LEMMA 1. Given any A, 0 < A <1, and a positive integer m, there
exists an €,0 < € < 1, with the following property: if M is any n-dimen-
stonal e-pinched complete Kdhler manifold whose Kdahlerian sectional
curvature satisfies k* < A for every section, then

volume(M) > (4z)"/n! .

Finally, it should be mentioned that the above theorem is an easy con-
sequence of Cheeger’s result together with the main theorem of Hirzebruch
and Kodaira [4], which asserts that if M is a compact Kahler manifold
diffeomorphic to complex projective space P* whose first Chern class is
not negative definite, then M is biholomorphically equivalent to P*. (As
was observed by Morrow [13], the hypothesis may be weakened to homeo-
morphism, using the result of Novikov on invariance of the rational
Pontrjagn classes). The chief purpose, then, of this paper is to present
a more elementary proof of the main theorem above which does not require
the use of Novikov’s result or Cheeger’s diffeomorphism theorem.

2. In this section we discuss the analytic aspeets of the problem,
and then show how the theorem is derived from lemma 1. For the
moment, all that we require of M is that it be a compact n-dimensional
Kahler manifold with positive definite first Chern class, whose cohomology
ring is isomorphic to that of complex projective n-space, i.e., H*(M) =
H*(P"). It follows from a theorem of Kodaira that M is projective alge-
braic [3, theorem 18.1.2]. (We refer to [3] for basic facts concerning
Chern classes, line bundles, ete.). Also, since ¢(K) = —c¢,(M) is negative
definite, where ¢(K) is the Chern class of the canonical line bundle, it
follows from Kodaira’s vanishing theorem [38, theorem 18.2.2] that for the
sheaf ¢ of germs of holomorphic sections we have H (M, 7)) =0, 7 = 1.
Thus from the sequence 0 — Z — &~ — ~* — 0, we obtain H'(M, 7*) =
H*(M, Z), so that the line bundles on M are in one-to-one correspondence
with their Chern classes.

We choose an isomorphism H*(M, Z) = Z such that the generator
ec H*(M, Z) corresponding to 1 is represented by a positive definite form,
and we shall denote line bundles and cohomology classes with the cor-
responding integer under this isomorphism. The theorem of Hirzebruch
and Kodaira [4, theorem 6] referred to earlier, implies the following: if
dim H°(M, q) = dim H(P*, q) for ¢ =0, 1, 2, ---, then M is biholomorphical-
ly equivalent to P*. TUsing this, we prove:
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LEMMA 2. Let M be a compact n-dimensional Kdahler manifold with
positive definite first Chern class, ¢, > 0, and assume H*(M, Z) = H*(P*, Z).
If ¢, >mn — 1, then M is btholomorphically equivalent to P™.

Proor. By Kodaira’s vanishing theorem, dim HY(M,q)=dim H/(P",q)=0
for =1 and ¢ = 0, so that

dim H*(M, q) = g(—l)jdim H(M, q) = (M, q)

for ¢ = 0, and the same is true for dim H°(P", q). From the Hirzebruch-
Riemann-Roch theorem for line bundles [3, theorem 20.3.2], x(M, q) and
% (P", q) are both polynomials of degree n in ¢ (with rational coefficients),
and they have the same leading coefficient. To show that they agree for
all ¢, it suffices to show that they agree for any % distinet values of q.

We first observe that y(#,0) = y(P",0) =1. Next, if —1=¢=—(n—1),
Kodaira’s vanishing theorem implies

dim H'(M, q) = dim H(P*, q) = 0

for 0=<j<mn — 1. Applying Serre’s duality theorem [3, theorem 15.4.3],
and observing that for the canonical bundles K(M) and K(P*) we have
¢(K(P")) = —(n + 1) and ¢(K(M)) = —¢, £ —n, we obtain
dim H*(P", q¢) = dim H*(P*, —(n + 1+ q)) =0
and
dim H*(M, q) = dim H*(M, —(¢, + q)) = 0.

Therefore, (M, q) = x(P", q) for ¢ =0, —1, ---, —(n — 1), and the lemma
follows from the Hirzebruch-Kodaira theorem.

We are now in a position to prove the theorem, assuming lemma 1.
We first recall that the curvature assumptions imply that M is compact,
by a theorem of Myers [9]. Next we define on M two exterior forms of
type (1, 1): the fundamental form

(X, ¥) = 2<IX, ¥>

and the Ricci form
0X,Y)=8SJX,7Y),

where S is the Ricei tensor on M. We shall call the metric on M a

generating metric if the form /2w generates H*(M, Z). (Note that in
the case M = P" the metric of constant holomorphic curvature 1 is a
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generating metrie, and o = (» + 1)w).

Now for a given n, take A = n/(n + 1) in lemma 1, and let ¢, denote
the corresponding ¢. Let 8, = max[9/16, ¢,, (» — 1)/n], and suppose that
M is 0,-pinched. By normalizing, we may assume that the metric on M
is a generating metric. Corresponding to this metric there is some B > 0
such that

0,B<k*<B.
We claim that B > n/(n + 1); for otherwise, by lemma 1 and our choice
of d,, we would have
volume(M) > (4n)"/n! .

However, the volume form on M is easily seen to be the form (2w)*/n!
and since the metric on M is a generating metricand H*(M, Z) = H*(P", Z),
we have:

volume(M) = SM% = %Sm(%)n - (4;5!)" .

Let X be a unit vector in the tangent space at some p e M, and extend
X to an orthonormal basis of the form X = X,, JX,, X,, JX,, +--, X,, JX,.
Then

o(X, JX) = S(X, X)
= KX, A JX) + 33 (H(X, A X)) + b(X, A TX))

= (X, A JX) + %

= (s

3 (X, A X)) + k(XA JX)

i=2

n
—0
>2,.
> -1
- 2

= (n - NuX, JX).
Since the first Chern class of M is represented by the form o/27 (see, for

example [1, § 7-8]), and since w/27 generates H*(M, Z), it is evident that
¢, > (m — 1), and the theorem now follows from lemma 2.

3. The proof of lemma 1 may be achieved in either of two ways:
by applying the techniques and estimates of do Carmo [2] or Cheeger [12]
or by using the circle bundle construction of Kobayashi [7]. The latter
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approach is presented below.

For convenience, we reformulate lemma 1 in the following way, which
is easily seen to be equivalent:

LEMMA 1. Given any N, 0 < XN <1, and a positive integer m, there
exists an €, 0 < € < 1, such that if M is any n-dimensional K&hler manifold
whose Kdahlerian sectional curvature satisfies € < k* < 1 for every section,
then

volume(M) > nd4m)™/n! .
Next, we prove the following Riemannian version:

LEMMA 3. Let P be a simply-connected m-dimensional Riemannian
mamnifold whose sectional curvature satisfies c¢/4 < k < ¢ for every section,
where ¢ is some positive constant. Then

volume(P) = volume(S™(c))
where S™(c) is the m-sphere of comstant curvature c.

Proor. Fix points pe P and p*e S™(c), and choose an isometry
F: P,—~S™(c),» between the tangent spaces. Let E: P,—P and E*: S™(c),»—
S™(c) be the exponential maps. Since k¥ < ¢, a theorem of Klingenberg
[6] asserts that E is a diffeomorphism between the open ball of radius
n/V ¢ in P, and the open ball of the same radius in P. A similar state-
ment holds for S™(c). If we let U (resp. U*) denote the open ball of
radius 7/v¢ around p (resp. p*) in M (resp. S™(c)), it follows that
the map® = E*FoE'|U is a diffeomorphism of U onto U*.

From the Rauch comparison theorem [10], it follows easily that the
differential d® has norm at most 1 at each point of U. Since moreover
U* is a dense open subset of S™, we obtain:

volume(M) = volume(U) = volume(U*)

= volume(S™(c)) ,
which completes the proof.

We now consider a Kadhler manifold of complex dimension » whose
Kahlerian sectional curvature satisfies ¢ £ k* <1 for some ¢ > 0. We
choose ¢ sufficiently large so that M is homotopically equivalent to P».
Let g denote the Kdhler metric and @ the fundamental form on M. Since
b, (M) = 1, there is a positive real number b such that 4w/b generates
H*(M, Z). We may assume that b < 87, for otherwise
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n n 4 "
volume(M) = SM(Z,,?),) = zsnr SM( l()0>

> Wo"
- nl

and lemma 1’ would be proved.

The construction in [7] now proceeds as follows. There exists a prin-
cipal circle bundle P over M, and a connection 1-form v on P such that
dy = p*(4w/b), where p: P— M is the projection. If we define a metric
h = p*(9) + (abY)* on P, where a = V¢ /2, then the sectional curvatures
on P satisfy [7, section 4]

8.1) =k=1-3a.
We next prove two lemmas.
LEMMA 4. volume (P) = ab volume (M).

ProOF. As in [7], we identify S*' with R/Z, and let x, be the coor-
dinate on R. Around a point p € P we may choose coordinates x,, ,, *+*, @y,
where «,, ---, z, are coordinates around o(p) in M. Then

Y = da, + Eﬂl%dw,- )
J=1

so that the metric takes the matrix form

a’b’ | a’b*y, «+ - a’b*y,

h— oﬂ.)z“/1
i, + a’b*Y;
azl.)zvn
It follows easily that det & = a** det g, and the lemma follows from
Fubini’s theorem.

LEMMA 5. P s simply-connected.

Proor. Let {U, be a covering of M such that P|U, is trivial.
Choose coordinates zg, x7, -+, 2% for P|U, as in lemma 4, where xf is
determined mod 1. Then P is determined by maps f.s: U, N U; — S*, and
if we choose {U,} so that U,N U, is simply connected, then we can lift
Fap t0 fus: U.N Us — R such that zg = af + Fus@?, <o+, x2) mod 1. As was
pointed out in [7], the exact sequence of sheaves 0 —»Z—R—S'—0
(where the bar denotes germs of differentiable sections) yields an isomor-
phism H' (M, S*) = H*(M, Z) = Z. The principal S*-bundles over M may
be identified with H'(M, S*), and P corresponds under the above isomor-
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phism to a generator of Z. The bundle mP, then, is determined by the
cocycle {mf,;}. With these identifications, we may, for m == 0, construct
an |m|-fold covering of mP by P as follows: P|U, and mP|U, are both
trival, and we map (x5, z7, + -+, #7) € P into (mag, af, « -+, x2) € mP.

Now let P be the universal covering space of P with covering map
7: P— P, and let F be a fibre of P. It follows from (3.1) and Meyers’
theorem that P is compact. From the homotopy sequence

. -—>7l'2(M)-——>72'1(F)—>7Z'1(P)——>TCL(M) =0

we see that z,(P) is finite cyclic and generated by the inclusion map
St~ F S P. We may therefore conclude that z7(F') is connected. For
if 7, and P, are two points of P lying above the point pe F, and if o is
a path from 7, to 7, then 7(¢) is homotopic to a path lying in F. Thus,
by the homotopy lifting property, ¥, and 7, are connected by a path in
TY(FY).

It follows that every fibre of por: P— M is homeomorphic to S', and
the action of S' on P lifts to an action on P. It is easy, then, to verify
that P is a principal S'-bundle over M, hence P = mP for some m =+ 0.
Thus P is a covering space of P, from which it follows that they are
homeomorphic, and the lemma is proved.

Combining lemmas 8 through 5, and using (3.1) we obtain the ine-
qualities:

(3.2) 47" € volume(M) > volume(P)
2n+1 4 — 38
>S <—-—4 )
2 2n+1
2'n.+1 n+1
4 (1/ 4 — 3¢ )
2n(2n — 2)---2
and hence
(4m)
(3.3) volume(M) > wh s (VL — st

where we take 4/7 < ¢ < 1. For a fixed n and a given A <1, then, we
choose ¢ sufficiently close to 1 so that Ve (V4 — 3¢)***' <1/n. This com-
pletes the proof of lemma 1’.

4. Some comments:
(i) For » = 8 or 5 we may actually take 0, = 9/16 or any other con-
stant which insures homotopy equivalence. In fact, it is possible to prove
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the following: If M is a compact Kahler manifold of positive sectional
curvature, where n =3 or 4, and if H*(M, Z) = H*(P", Z), then M 1is
biholomorphically equivalent to P*.

The idea of the proof is as follows: identifying the Chern classes of
M with integers, we have for n = 4, ¢, = 5. Also, from the Hirzebruch-
Riemann-Roch theorem,

1= M, ~) = %O(—CA + ¢se, + 3¢t + dect — cf)

and from the Hirzebruch index theorem,
1 = index(M) = %(1404 — ldeqe, + 3c; + 4ect — ) .

Using these equations, and the fact that ¢, > 0, one may compute that
¢, = 5, so that lemma 2 may be applied.
For n = 3, we have ¢; = 4, and

1= X(M, ) = c6f24 .

The index theorem is vacuous in this dimension, but a recent theorem of
Kobayashi and Ochiai [8] asserts that H(M, &) = 0 for j = 1, where 6 is
the sheaf of germs of holomorphic vector fields, so, from the Hirzebruch-
Riemann-Roch theorem, we have:

0< _ o Cs
=X(M@)——2'+T—19-

As before, one may compute from these that ¢, = 4 and apply lemma 2.

(ii) It would seem likely that lemma 1 can be considerably streng-
thened. In fact, the proof of lemma 1 is the result of an attempt to
prove the following conjecture: if M" is a compact Kahler manifold such
that 0 < k* <1 for all sections, then volume (M) > (47)*/n!.

There is some evidence for this conjecture. First there is the Rieman-
nian analogy provided by lemma 3 above. (In the even-dimensional case
the lower bound on the curvature can be replaced by zero). Secondly, if
it is true, as has been conjectured, that any compact Kahler M" with
k* > 0 for all sections is biholomorphically equivalent to P*, then the
above conjecture is true as well. To see this, assume volume(M) < (47)"/nl.
Then we may obtain a generating metric by multiplying the original
metric by some constant ¢ = 1. In this new metric the curvature still
satisfies 0 < k* < 1, and as in §2, we may conclude that ¢, < (n + 1), a
contradiction if M" = P*.
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