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REMARKS ON EXTREMUM PROBLEMS IN Hι

Kόzό YABUTA

(Received November 18,1970)

1. Let Un be the unit polydisc in the n complex variables Cn and T" be its
distinguished boundary, and let mn denote the normalized Haar measure on T71.
Hι{Un) will denote the set of all holomorphic functions / on Un such that | | / | | i

— sup I I f{rw) I dmn{w) < oo. Every / € Hι(Un) has radial limits f*(w) = lim
0 < r < i J r n r->l

f(rw) for almost all weT1. An/<= Hι(Un) is said to be outer if log|/(0)| = f
J jut

\og\f*(w) \dmn(w). The following result is shown in [12];

THEOREM A. Let f z Hι(Un) and f be outer and 1/f* e Lι{Tn). Then if
g <= Hι(Un) and\\g\\1 = \\f\\ly and arg £*(«;) =arg/*(«;) a.e. on T1, it follows that
g =f where arg / denotes the argument of f

This is essentially a uniqueness theorem in extremum problems in Hι(Un).
In the next section we shall extend this theorem to bounded symmetric domains.
On the other hand in section 3 we shall discuss about the necessity of the
assumptions posed on the above theorem.

2. Let D be a bounded symmetric domain in Cn, and 0 <Ξ D. D is circular
and star-shaped with restect to the origin, that is, tz £ D when z € D and t € C
with I £ I <Ξ 1 [ 3 ]. It has the Bergman-Shilov boundary b, and b has a unique
normalized measure μ invariant under the holomorphic automorphisms γ satisfying
y(0) = 0 . This μ> is given by dμ(w) =V~1 ds(w), V the euclidean volume of b
and ds(τv) the volume element at zv € b. A holomorphic function / in D is said

to be in N(D) if sup / log+|/(nx;) | ds(w) < oo. In the same way as in Un, it
(Kr<l Jb

can be shown that every fz N(D) has radial limits f*(w) = lim f[rw) for almost
r->l

all web. A holomorphic function / on D is said to be in N*(D) if {log+ \f(rw) \
0 < r < l } forms a uniformly integrable family in Lι(b). A holomorphic function

/ on D is said to be in the Hardy class HP(D) if \\f\\p = sup Iv1 ( | f(rw) \p

0<r<l \ Jb
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)
<oo(/)>0). A function/ is said to be outer if both/ and 1/f belong

to N#(D). This definition coincides with the classical one in the case Un. We
state a characterization of HP(D).

THEOREM 1. A function f on D is in HP(D) if and only if f is in Nχ{D)
and\f*[w)\*s Lι(b).

Another characterization is given in [ 3 ], but we do not use that here. Now
in the same way as in [12], we have

THEOREM 2. Let f(z) z Hι(D),f(z) be outer and l//*(w) € Lι(b). Then if
g(z)zHι{D) and\g\i-=\f\x and if arg g*(w)=arg f*(w) a.e. on b (mod. 2π),
it follows that g(z) =f(z).

To prove these theorems, we use the following results. The first is due to A.
Koranyi [ 5 ] and the second will be found in [ 3 ].

LEMMA 1. There exists the Poisson kernel P(w, z) defined on (b, D) and
satisfying

( i ) P(w,

(ii) V'1 f P(w,z) ds(zv) = lforzzD

(iii) For any fixed w0 and a neighbourhood Ndb of w09 lim I P(w9 z)

ds{w) = 0 for zz D

(iv) P(w9z) is harmonic on D for every fixed w <= b

( v) f(z) = V-1 [ P(w z)f*(w) ds(w) for f € H*(D) (ρ>l)

(vi) P[w,z) is continuous in w for every fixed z £ D

(vii) P(u9 rw) = P(w9 ru) for u,web and 0 < r < 1.

(i)—(v) are contained in [ 5 ] explicitely and (vi), (vii) are there implicitely. A
complex-valued function h on D is said to be harmonic if Δh=0 for each differential
operator Δ of D with the Bergman metric, invariant under the holomorphic
automorphisms of D.
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LEMMA 2. If f is plurisubharmonic in D, then we have for every 0 < r < l

V-1 f P(w, z)f (rτv) ds (w) >fr(z) =f(rz).

PROOF OF THEOREM 1. The necessity is well-known [ 1 ], and we shall
show only the sufficiency. Since log+ |/(£)| is plurisubharmonic in D, we have by
Lemma 2

f P(w,z) \og+\f(tw)\ds{w)(zz D,O<K1).

As {\og+\f(tw)\} is a uniformly integrable family by the assumption, there is a
sequence ^—>1 such that log+ |/(^w)| tends to an integrable function in the weak
topology. The limiting function is clearly log+|/*(«;) |. As P(w9z) is continuous
in w if zz D is fixed, we have, letting ίj—>1 in ( 1),

log+1 f(rw) \<y~ι\ Piu>™) log+1 f*(u) \ds{u) ( 0 < r < 1, w € b).

Consequently, since ept is a convex function, we have

max (1, \f{rw)\p)<V-1 J P{u,rw) max (1, \f*(u)\p) ds[u).

Therefore we have

(2) \f{rw)\p<l + V-1 JP{u,rw)\f*(u)\* ds(u).

Thus using P{u, rw) — P(w, ru) [u, w £ £), we have, after integrating ( 2 ) with
respect to w,

sup f |/(ru;)|* Λ(u ) < V + f | /^MI P ώ(w).

This completes the proof.

PROOF OF THEOREM 2. By Theorem 1, we have 1/f z Hι{D). Hence the
assumption implies that h(z) = g(z)/f(z) € Hι/2{D) and A*(w) = g*{w)/f*{w)
Ξ̂ O a. e. on έ. Since s(te ) is a measure invariant under multiplication by e*', we
have

(2πV)~1 f k{ei9w) dθ ds{w) = V"1 f k(w) ds{w)

for every nonnegative or integrable function k on b. We have thus for almost all
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hZ[eiθ) = h*{ei9w) > 0, a. e. θ z [0, 2τr].

We have also for almost all we b hw(z)=h(zw) e Hι/2(U). Hence hw(z) is constant
in virtue of Neuwirth-Newman's theorem, which asserts that every H1/2(U)
function with nonnegative boundary values a. e. is constant. Now since discs {zw;
zzU}W€b intersect at 0, we obtain that h{zw) = hw(z) = λ(0) for amost all wzb.
Since b/2 = {w/2; we b] is the Bergman-Shilov boundary of D/2 = {z/2; ze D]
and h(z) is holomorphic on the closure of D/2, we have h(z) = h(0) in D. Hence

we have g{z) =/{z) in D, because λ(0) = g(0)/f(0) and g{0) = V~ι ί g*[w) ds[w)

= V~ιjf*(w) ds(w) =/(0). This completes the proof.

REMARK. We have shown in the above proof implicitely that if fe H1/2(D)
a. e. on b, t h e n / is constant.

3. Necessary conditions for Theorem A are the the followings,

(1 ) //ll/lli is an extreme point of the unit ball of Hλ{Un),

(2) f/{l-u)2£Hι(U) for every ueH'iU71) with \u*\ = 1 a.e.

In Hι{U), (1) is equivalent to that f is an outer function and in particular has
no zero in U. We have in [13] that there is an fz Hι(Un) (w>2) such that it
satisfies (1) but it is not an outer function. This suggests that to be outer (and in
particular to be zero-free) is not necessary for the validity of Theorem A (n^2).
We shall check it really in the following Theorem 5.

Next we suppose t h a t / is outer. We have seen in [12] that 1/fz Lι(Tn) is
not superfluous in a sense, that is, for every 0<p<l, there exists snfeHl(Un)
such that / is outer and 1//* e 1/(7^) but it breaks the validity of Theorem A.
We shall see in the following Theorem 3 that l/f*€ Lι{T) is not necessary for
Theorem A even in the case HιiJJ).

Now we begin with an easy lemma.

LEMMA 3. If f(z) is a holomorphic function on the complex plane except
1 and it has at most a pole at 1, and if f(eίθ) is real for all real θ, then

f(z) has the following form

for some nonnegative integer k and real a5 (j = 0, •••,£). In particular, if

f(ei9)~^0> then f(z) has the following from
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where k is a nonnegative integer and ao,a2k^O and a5 (j = 1, •••, 2k—1)
suitable reals.

l+ei9

PROOF. It is an easy matter to check that i .. __ iθ is real for every real θ.

Since -z. = 14-— , f(z) can be written as follows,
l—z l—z

for some nonnegative integer &. Since U .. __ £g j , j = 0, * *, ̂ , are real valued

functions are linearly independent, all coefficients d̂  must be real. The second
assertion is then easily verified.

Combining this lemma and an analytic continuation theorem for H\ we have

THEOREM 3. If f(z)zHι{U) and if arg / V # ) = a r g (l-eιθ) a.e. on T
(mod. 7τ), then it follows that

f(z) = Λ ( 1 - Z ) + Λ ( 1 + S )

for some real numbers a and b. In particular if arg f*(eiθ) =arg (1— eiθ) a.e.
on T (mod. 2τr),

f(z) = a(l — z) for some a > 0 .

PROOF. Let £ be an arbitrary positive number and let [/.= [zz U;\z—1| > £ } .

Since j _ _ is in HX{U^ clearly and \. __ %l is real for almost all θ e {\eiθ —1|^£},

Λ __ can be continued analytically across the open arc {\eιθ — 1 | > £ } in the

same way as in [ 7 ] p.59. Since £ is arbitrary, we can assert that Λ is
l—z

continued analytically on the extended complex plane except 1, so that f(z) —f{l/z).
l—z . f(z)

Next, since i-τ—,— n a s real values on T,i-~~L-has also real values a.e. on T. It
1+z 1+z
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f(z)
follows therefore that Λ is holomorphic on the extended complex plane except

/ \Z)

— 1. These two facts show that ::__ has at most a pole of order one at 1.

f(z)
Applying the above lemma to this Λ > we have the desired conclusion.

JL Z

REMARK. That the hypothesis of f(z) £ Hι is not superfluous is shown by

the function

f ( z ) = l - z -
l-z

which has the same arguments as 1—z on \z\ = 1, except z = l, while f{z)ζ

Hp ( )

With a slight modification of the proof of the above theorem, we have

THEOREM 4. Suppose that f(z) is in HY{U). Let | α | = l and cί> - 1 .
Assume further that

arg/*(**') =arg [a-eiθ)a a.e. on T (mod. π),

where we take la = 1. Then f(z) has the following form,

(3

where k = [ά] + 1 if d^ integer, =a if a —integer and as = real (;=0, , k).
In particular if

argf*{ei9) = arg (a-eiθ)a a.e. on T (mod.2τr),

then in (3) k = 2m, where m is the largest integer such that 2m^a if a is

an integer and 2m^a-\-l if a is not an integer, a0, a2m^0 and aά (j = l, ,2m — l)

are some suitable real numbers.

Using Theorem 3 we have its n-dimensional form.

THEOREM 5. Let f{z)zHι{Un) (/i>2) and let
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( 4 ) arg f*(eι\ , eί9ή = arg (et9> + eι9ή a. e. on Tn (mod.2 π).

Then it follows that

/ ( )

PROOF. We have f(zl9 ei9\ , e' ) cH ι(U) for almost \all (ei9*, , eί9ή z

Ύn-χ ( [14] p . 3 2 6 ) . T h u s b y T h e o r e m 3 , t h e a s s u m p t i o n ( 4 ) i m p l i e s t h a t

' f(zι,e"u-">ei ή=a(e»*r",e»*)(z1+ei9') a.e. on Tn~\ where α(έ?*V..,eι#-)>0.

Consequently we have

( 5 ) /*(*t#l> ^t#-, , eι9 ) = a(eiθ\ , ei5«) (e* + eί9ή

a.e. on Tn. We can hence continue a{eiθ\ ,e ί&n) analytically into Un~ι by

^ i 9S «„••., zn) € Hι{Un~ι) for some fixed fix € [0, 2τr) ([14] p.326). Since βt#» + « f

is an outer function in Un~ι

9 it follows that a(z29 * ,z n ) € Nχ(Un~ι). Now we

have, integrating 5 ) , ί ^ - f a(et§; - ,et§ή dθ2. .dθn =-1-11/11! < <χ>.

Hence by Theorem 1, a(z29 9zn) is in Hι{^Jn~ι). Since every Hi(Un'1) function

can be represented by the Poisson integral of its boundary function and since

a[ei9*9 , eι9ή is nonnegative, it follows that a(z2> > zn) is a real-valued holomorphic

function on ί/71"1. Consequently α(2;2, , zn) must be a constant function. Then

it follows immediately that a = - ^ H | / | | i , which completes the proof.

4. Similar results for tube domains over cones corresponding to those of

section 2 will be given elsewhere.

5. Appendix. Recently R.P.Feinerman has shown the following fact in [15].

2
THEOREM B. Let X be a real number, p^l9 and β = arc tan λ

it

{principal values). If f(z) is in HP(U), is real on ( — 1,1) and satisfies

λ Re f[eie) = - Im f{eiθ) a. e. in (0, n),
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then

( 1—z \β

—7— J

as lβ = 1.

W e notice that we can prove this theorem easily by using our theorem 4 as

follows. N o t e first that the null function satisfies the hypotheses of the above

theorem. W e may thus assume/(z) ^ 0. W e assume further β^O. By assumption

1 > £ > - 1 . Now if g is in HQ (q>0) and g is real on ( - 1 , 1 ) , then R e g(e")

= R e g[e~ιθ) and Im g{eίθ) = — Im g{e"ιθ) a. e. on (0, π). This follows immediately

from the fact g(z) = g(z), gained by Schwarz reflection principle. Therefore, since

( \—z \β

~ J satisfies the hypotheses except that of Hp, we have that

/ \^ei Y
arg f{eie) = arg iθ a. e. on T (mod. n),

or equivalently

arg (l+eι9)βf(et9)=aig (l-eίθ)β a. e. on T (mod.*).

As f(z) is in Hp, (l + z)β f{z) is in H1. Hence by Theorem 4 we have

(1 + * ) * / ( * ) = α(l -z)β+ib{l -z)

or

for some real numbers α, έ. Since /(z) is real on ( — 1,1), the second term must

vanish. As f(z) is in Hp, pβ must be smaller than 1. The same is true in case

— Kβ<0. This proves Theorem B.
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