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Introduction. The present author [6] has shown that an orientable
hypersurface in an almost complex manifold can be given an induced almost
contact structure, and studied conditions for the induced structure to be normal.

On the other hand, K.Yano and S.Kobayashi [8] and K.Yano and S.Ishihara
[9] have introduced the notions of vertical, complete and horizontal lifts of
tensor fields and connections to tangent bundles. Above all, if the base manifold
is almost complex, then the complete or horizontal lift of the structure defines
an almost complex structure in the tangent bundle. It is also known, cf. [5],
that the tangent bundle of a Riemannian manifold is given an almost Kihlerian
structure.?

Basing on these two kinds of results, we shall be able to induce various
kinds of almost contact structures into tangent sphere bundles. In this paper,
we shall consider a class of hypersurfaces with some property in tangent
bundles; the class contains the tangent sphere bundle of a manifold.

In §81 to 3, we shall introduce a tensor field for the study of hypersurfaces
in almost complex manifolds and state some theorems on normality of induced
almost contact structures in the language of the tensor field. In §§4 to 8,
various kinds of almost contact structures will be induced to hypersurfaces in
tangent bundles and the normality of the structures will be discussed. In §8,
we shall show that, given the almost Kihlerien structure in the tangent bundle
of a Riemannian manifold, the induced almost contact structure of the tangent
unit-sphere bundule is K-contact if and only if the base manifold is of positive
constant curvature.

1. Almost complex and almost contact structures.”? Let M be an
almost complex manifold of even dimension 27 Denote by (x4)® a local
coordinate system and by F=(Fz4) the tensor field of the almost complex
structure, which satisfies the equation

(1. 1) FoBFBA=—85,

1) As to differeerential geometry of tangent bundles, we refer K. Yano [10].
2) Refer [7] as to almost complex structures and [1,2,3,4] as to almost contact structures.
3) In §§1 to 3, indices A,B,C,D,E run from 1 to 2, and «,8,7,3,¢ from 1 to 2n—1.
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E=(8%) being the unit tensor field in M. The (1,2)-tensor field N=(N;z4)
defined by

(1. 2) NCBA - FgE(aEFBA - 3BFEA) - FBE(GEFCA - 90FEA)

is called the Nijenhuis tensor of the almost complex structure F. As is well
known, the structure F' or the manifold M is complex if and only if N
vanishes.

If '=(I'#) is a symmetric affine connection of M and we denote by V¥
covariant differentiation with respect to the connection, then the Nijenhuis
tensor N is written as

(1. 3) NCBA = FCE(VEFBA - VBFEA) - FBE(VEFCA - VOFEA) .

A necessary and sufficient condition for F to be complex is that there exists
a symmetric affine connection in M such as

(1. 4) VoFzt=0.

In an almost complex manifold M, there is a Riemannian metric g=(gz4)
satisfying the relation

(1. 5) gBAzFBDFACgDc.

Such a structure (F, g) or an almost complex manifold M with metric g is
said to be almost Hermitian. The covariant tensor field (Fz,) given by

(1.6) Fpa=F5°gca

is skew symmetric. We put

1.7 0 = (1/2)Fg.dx® N\Ndx*

and call it the fundamental form of M. If the form ® is closed, that is,

(1 8) acFBA+aBFA0+aAFC’B=O’

then the metric structure (F,g) or the manifold M is said to be almost
Kahlerian. The left hand side of (1.8) is put and rewritten as

F cBA = acF B4t aBF ac + aAF CB
= VGFBA + VBFAC + VAFCB,
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where ¥ indicates covariant differentiation with respect to the Riemannian
connection of g. If F is complex, then an almost Hermitian or almost Kéhlerian
manifold turns to the so-called Hermitian or Kéhlerian manifold, respectively.
A necessary and sufficient condition for an almost Hermitian manifold to be
Kishlerian is that the Riemannian connection satisfies VoFz4=0.

Next let M be an almost contact manifold of odd dimension 27— 1. Denote
by (u®) a local coordinate system and by (f, £, ) the almost contact structure,
where f=(f.?) is a (1,1)-tensor field of rank 2n—2, £=(£*) a contravariant
vector field and n=(n) a covariant vector field, and they satisfy the relations

Sf e — neE* = — 33,

(1.9)
fsﬂa___o’ f;f»)h_—_—o’ faﬂa—_- 1.

There are defined the following tensor fields in M :

Ny = [ (0cfi™ — 0fs®) — [ (@ey* — 20 fe%)
+ 7,065" — nOvE",

(1.10) 1 Ny =— £, Qs — dans) + fu(Qeny — Oyme)s

Na* = EQ@ufs* — 9ufe) — [ 5°uk",

N, = £(0ens — Ome) -

If T=3) is a symmetric affine connection in i/ and we denote by ¥
covariant differentiation with respect to the connection, the above tensor fields
are written as

N = f (Voo = Vo f) = [(Vefs* = VoS
+ 0,V % — 15V

(1.11) {1 Nyo=— £ Tens— Vone) + fo(Veny—vme) »

Np= = E(V e fs — Vafe) — [EV &2,

Ny = E(Veng— Vene) -

If we denote by _(¢) Lie differentiation with respect to § in A7 and take
account of (1.9), then the third and fourth tensor fields of (1.10) can be

written as

Ni = E0.fo + (0sf) & — (O f* = L (E) fo*,
(1.12) {

Ni = £0umg + (0)me = L(E)np.
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The first tensor field N=(N,:®) is called the Nijenhuis tensor of the almost
contact structure. If N does vanish, then so do the other three and the almost
contact structure is said to be normal.

In an almost contact manifold, there is a Riemannian metric g=(gsa)
satisfying the relations

9 e — MeNa = f Baf « o>
(1.13) {

78 = pab".
The structure (f, &, 7, 9) of an almost contact structure associated with metric

g is called an almost contact metric structure of M. The covariant tensor field
(fse) given by

(1.14) Joa= f6'Jva

is skew symmetric, and we put

(1.15) 0, = n.du®, 0, = (1/2) feadu® \ du*.
If d6,=0,, or

(1.16) Joa = Ogtia — Dutg = 63% - §a’ls ’

where ¥ indicates covariant differentiation with respect to the Riemannian

connection of g, then the structure ( f; €, ,J) or the manifold M is said to be
contact metric. If, in addition, the vector field £ is a Killing vector field with

respect to the metric g, that is,
(1.17) LEFpa= Vena+ Vansg =0,

then the structure or the manifold is said to be K-contact metric, and we have
the equation

(1.18) Soa= 2V 0.

If a contact metric structure is normal, then the structure (f;&,7,7) is
said to be Sasakian and it is characterized by the equations

263’7“ = f;ﬁa >

(1.19) _ _ —
2v7f3a = n8Y ya — NaJya-
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The first equation means that a Sasakian structure is a special one of K-contact
structures.

2. Almost contact structure of a hypersurface in an almost complex
manifold. Now we consider an almost complex manifold M with structure
tensor F' and an orientable hypersurface M in M. Assume that M is locally
represented by parametric equations

2.1 x4 =zx4u").
We put
2.2) B,4=72,x4,

which span the tangent hyperplane of M at each point. Further we choose a
vector field C=(C4) complementary to the tangent hyperplane of N at each

A
point, and call it a pseudo-normal to M. The matrix (g;) is regular and the

inverse matrix will be denoted by (B%,Cs). Then we have the equations

BgBr,= 8, C*B", =0,
2. 3) {

B;4C,=0, C4C,=1
and
(2. 4) B,XAB“B + CACB = 85.

For an arbitrary (1,1)-tensor field F=(F3*) in M, we put

fBa — B,BBFBABA“, fwdx — CBFBABaA R

(2.5)
f/aoo = BﬁBFBACA, fmm = C?F3*C,.

If, in particular, F is an almost complex structure in M, then the pseudo-
normal vector field C=(C*) can be chosen such as

(2 6) fmw - CBFBACA - O.

Indeed, since there is an almost Hermitian metric g associated with F, we
may take C as the unit normal vector field to the hypersurface M with respect
to g. If we once choose such a pseudo-normal vector C and put
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§* = f."=CPFp*B",
2.7) {
N8 = —fﬁw = BBBFBACA’
then we see that (f, £, n) defines an almost contact structure in the hypersurface
M, which will be said to be induced in M from an almost complex structure

F in M, [6].
Given a symmetric affine connection I'=(I'¢%) in M, the induced connection

I'=(T,3) in the hypersurface M is defined by

2.8) 5 = (0yBs* + I'¢sB°Bs*)B*4,
and the tensor fields A=(h,), /=(/,*) and m=(m,) in M by

hye = (avBﬁA -+ Fc‘l‘iB"/GBBB)CA ’
2.9) 1, = (3,CA + TéBSCP)B",
my = (3yC4 + TABLCHCy

respectively. Then the so-called van der Waerden-Bortolloti covariant derivatives
of Bg* and C“4 are expressed by

VYBBA = a’/BBA + BYCB/SBFC% - F’yz ot = hVBCA’
(2.10) {

V4C4 = 3,C* + BCPT'#s = [,“B,* + m,C*,

and those of B*; and C; by

vaaB = l’raCB ’
(2.11) 1

V,Cs =— hyzB’s — m,Cs.

For any (1, 1)-tensor field F in M, the covariant derivatives of the four

tensor fields defined by (2.5) with respect to the induced connection I' are
written in the forms

Vafs* = BSBsPB* sV cF5* — L° fo= + hypfu5,

Vofe™ = BPBPCaV oFs* — hyuf3® — My fa™ + hopfo
VoSt = BPCPB* ;N oFs* + I,* 2% + myfu — LA fu™,
VoS = BECEC,V oF5t + LE 5 — By f .

2.12)
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If F is an almost complex structure in M, then the covariant derivatives
of the induced almost contact structure (f,£,7) in M are given by
Vafs® = B’Bs®B* sV cF5* + L,*ng + hyst®,
(2.13) 6777,3 =— B,°BgC,~V o Fs* + hyafﬂa — MyMg,
V€% = BPCPB*, oF5* + LA fo* + m,£%,
and we have
(2.14) BSCPCaN o Fp* = 1,Png + hya£*.
Substituting these into (1.11), we obtain the equations

(

Ny;a“ — BY GBﬁBBaAMBA + ﬂyCEBﬁBB“AVEFBA _ ﬂBCEB'yCBaAVEFOA
(L = L i = myEma— (fole® — L £ — maE

Ny = B,°Bs®C Nys* + 0,C*BPCaV 5F5* — 7eC*B,’CaV eF c*

(2.15) + (1 na + fma)ne — (Ua®na + fo*mayny

Nﬁa == CCBBBB“ANCBA —fﬁsCCBeBBaAVGFBA
— (Us® + [l s + fomeE® — nefle),

If we put
(2.16) L = 1g* — el + [ fi* + mek™ + COB2B* 4,V o F5*),
then we see the tensor field L=(L;) satisfies the equations

( f°Le" = f°le™ — LA fo™ — myg* — C°Bs"B* 4,V o Fp*
+ v EXI f5* + meE® + C°BsPB* 4V oF5*),
(2.17) Lg™ne = lg*na + f*ma — C°BgPCyV o Fp*
— na(El*na — C°CPFpPCyN o Fp?),
§Lg*=0,
SPLe*na = f1¥lg ma — my + nyE*m.— fFCOBPCuV o Fp*,

\ Nﬁ= — CCBBBCANC.BA +stCCBsBCAVoFBA— (_]“,es sana + ﬂpf“ma ol m/a) .



124 Y. TASHIRO

and the expressions (2.15) are written as

j\—fy,a“ = B,°B®B* ;Nog* — ny fs"Le* + nef Ls",

N”g = BYCBBBCAMBA - nyLBanw + 77,3L7a77a ’
Ny = C°BsB* ;Nys* — Lg*,

Np=— C°BgPCyNep* — f&° L a.

(2.18)

Now we can obtain the following

THEOREM 1.9 Let M be a complex manifold and M an orientable
hypersurface in M. Then the conditions in each of the following triples are
equivalent to one another and the first implies the second:

(1) The induced almost contact structure in M is normal, i.e.,

Nyg*=06& Ny =06 L= =0.

(2) Nye=06= N, =0 & Lg%, =0.

PROOF. It is known [2] that N,z*=0 implies N;*=0, Nyz;=0 and N,=0
and that N,,=0 implies N;=0. By the assumption, the Nijenhuis tensor N of
M vanishes. Hence N;*=0 implies Lg*=0, then N,*=0. On the other hand,
N,=0 implies f;*L.*p,=0, from which and the third equation of (2.17) follows

Ln,=0, then N,z=0. Q.ED.

3. Almost contact metric structure of a hypersurface in an almost
Hermitian manifold. Suppose now that M is an almost Hermitian manifold
and M an orientable hypersurface in M. We take C=(C*) as the unit normal

vector field to M. Then the induced metric §=(7,,) is defined by

(3- 1) gﬁa = gBABBBBa 4

and it is associated with the induced almost contact structure (f,&,7) in M,

4) Cf.Y.Tashiro [6, Theorem 2].
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see [6]. If the contravariant components of the metric tensor g are denoted by
g**, then we have

(3 2) BaB = ?aBgBABBA, CB = gBACA:

and the tensor fields %,/ and m have the properties

(8.3) L*=—9"h,g, m,=0.

The covariant components of the tensor field L defined by (2.16) are equal to
(3.9) Lo = — hga + 06Ehea + fo'(hes fo° + COBP BV 0F )

and satisfy the equation

(3~ 5) f VBLBa = "‘f 1Bhﬁa _f thﬁ*/ - CcByBBaAVCF B4
+ 7]7";:5(f ashss + CchBBwAVCF BA)-

In this case, the second equation of (2.13) is written in the form

3. 6) —677713 = B'rCBBBCAvc‘FBA + Rya f6™

Substituting (3.6) into the equation (1.16), which characterizes for M to
be contact metric, and using (3.5), we have the equation

@.7 Sro=— B BPCHV cFpa— VsFca)+ hya fo* — houfr"
=— C°BBs*(Fopa— VcFpa) + hyafs* — hoafs
=— CB,’Bs*Fopa— f1*Las—2f,"has

+ 1 fhes + C°BPB*V o Fpa).

If, in particular, the manifold M is almost Kihlerian, Fz,=0, then we contract
(3.7) with £ and see that

3.8 E(f'hes + C°BPB,*V oFp4) =0
and consequently, from (3.5),

f:la(—g—aﬂ + LaB + 2ha,g) =0 .
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Hence we can put

:(7“5 + La/g + Zha,s = NaVs

or

3.9 Lug=— 2hag —Gap + 7avs.-

Contracting this expression with &%, and using the third equation of (2.17), we
obtain

Vo= Na + 26N,
Thus we have the following
THEOREM 2. Let M be an almost Kihlerian manifold and M an

orientable hypersurface in M. If the induced almost contact metric structure
in M is contact metric, then the tensor field Lg, has the form

(3' 10) Lﬁd = zhﬂl-! - -g_Bu + 77)3(774 + Zfehsa) .

Now we can state the following

THEOREM 3. Let M be a Kahlerian manifold and M an orientable
hypersurface in M. If the induced almost contact metric structure in M is
K-contact, then the structure is normal, that is, Sasakian. A necessary and

sufficient condition for the case is that the second fundamental tensor hg,
has the form

(3 11) 2hsa=—Gpa + ANpNa
a being a scalar field in M>

PROOF. Since we have VF=0 in a Kéihlerian manifold M, the equation
(3.6) reduces to

57’% = hva.fﬁa >

5) Cf. Y. Tashiro [6, Theorem 8]. The difference of the coefficients of (3.11) from those
of the theorem is not essential.
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hence it follows from the Killing equation (1.17) that
h'raf i hﬁaf:/a =0,

and from (3.5)

S Lo = my&* f"hes

which is equal to zero as is seen by contraction with £. By means of this
equation and the third of (2.17), we see that the tensor field L vanishes. By
virtue of Theorem 1, the induced structure is normal.

Then it follows from (3.10) that

Zhﬁa = - gﬂa + "lB("la + zé:ehea) .

Since both %4, and gg, are symmetric, we may put
Na + Zfsherx = an,,

where a is a scalar field in M given by
at=2h3u§’3“+n— 1.

Conversely, if hg, has the form (3.11), it follows from (3.4) that the tensor

field L vanishes.
Q.ED.

4. Hypersurfaces in a tangent bundle. Let M be an n-dimensional
manifold and 7,(M) the tangent space of M at a point x and T(M) the
tangent bundle of M. If (z") is a local coordinate system in M and (y"*) the
cartesian coordinate in the tangent space T,(M) at each point x with respect
to the natural base 9,=09/0x", then (z*, y*) form a local coordinate system in
the tangent bundle T(M), called the induced coordinate system from (z").

We write often (x") for (y*) and (z*) for (z*, y*).9

6) We refer [10] as to differential geometry of tangent bundles. From now on, various
kinds of indices run respectively on the following ranges:
A, B, C,eee=1,2,0ee, nn+1,ee0, 2n;
h, i, j’ ...—_—1,2,..., n;
j = n+l, e, 2n;
a, B, V,°0°=1,2, 000, n,n+1,¢00, 2n—1;
= n+1,eee, 2n—1.
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A regular hypersurface in the tangent space T,(M) at a point x is
represented by parametric equations y"=y"u') with matrix (2:y") of rank
n—1. Differentiable functions y*=y"(x!, 4*) of local coordinates (x*) and n—1
parameters («') give locally a hypersurface in the tangent space T,(M) at
each point x with coordinates (z'), and consequently a field of hypersurfaces
in the tangent bundle 7(M). Such a field will be denoted by S(M). If the
local coordinates (x") themselves are regarded as parameters, the field S(M)
is a hypersurface represented by

xh = x*
4.1 x* = xA(xt, ut) or {

Y = yh(xt, ud)

in the tangent bundle T(M). We write («*) for parameters (!, u").
Now we consider S(M) as a hypersurface M treated in the preceeding
paragraphs. The tangent vectors B,4=0x*/ou® of S(M) in T(M) are given by

(4.2) pa| B0 v =0
' “ | BF=2,y,, Bi=oy".

We suppose that the square matrix (B,*, y*) is regular at each point of S(M).
This means that S(M) is a regular hypersurface in 7(M) and the tangent
hyperplane to S(M) at each point does not pass through the origin of T,(M).
Then we can take the vector field C with components

(4.3) (WF(;)

as a pseudo-normal vector field of S(M) in T(M). The vectors B%z and Cp
have the components

B =8, B':=0,
4.4) By _

Bxi = BthBKIT7 BK?’
and
(4.5) C,: C,=—B/C;, GCs,

respectively, among which Byt and C; are determined by the non-trivial
relations
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BAEBKE = Sf, yh ICIT = 09
Bi*C; =0, »Ci=1,

and satisfy the relation

4.7)

B"B'; + y"C; = 8

following from (2.3) and (2.4).
In the next paragraphs, we shall induce almost contact structures in
S(M) from lifted almost complex structures in T(M), and research their

properties.

5. The case of complete lifts. Let I'=(I"%) be a symmetric affine
connection in M. The complete lift of I' to the tangent bundle T(M) is
denoted by I°. Its components (I'4) with respect to an induced coordinate
system are given by

(5.1)

™ _1h T _Tvh__ DA __
[th_l—‘ji’ Pji‘_ ji — if_07

r n T R__DE_ 1w TR
Iy=0or%, I'i=li=1%, TIjH=0,

where we have put

° =ykak .

By computations using (2.8), (5.1) and the results in §4, the induced connection
I°=('%) in S(M) from I'° has components

(5.2)

=T Th=ThL=Th=0,

T% = B%(9,B,* + oI}, + I'sB;' + B, — B/T'})
1 =B LT,

Tj = B(2,0:5" + T}B,’) = B%2.V. o,

T = B%9,01y",

where the operators_(y) and V indicate formal Lie and covariant derivatives:

«C(y)ra"'i = ajaiyh + y"akf‘?i + F?zaiyl + Ffia;yl - I‘ﬁiazy",

V" =0y + Iy’
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The tensor fields A,/, and m in S(M) defined dy (2.9) have components

h“ = (ajB}E + aI“’;; + Pth'Btl"}' lwili'BjT)CTz
= (L(Y)T7)C,

(6.3) hys
hu = 0,V y"Cs,
hur = (0,025")C5,
ljh = 0, llh = 0,
(5.4) L®
ij = (szh)Bxﬁy l/\" = 8/11:,
(5 5) my . m,»=(v,-yh)cﬁ, mu.:O:
respectively.

Given a (1,s)-tensor field P=(P;,...;,*) in M, the complete lift P°=(Py
of P to the tangent bundle T(M) has components

D h_ 3
Pt=P,.t

s

(5.6) P....F=0P,. .
P,

all the others being zero, with respect to the induced coordinate system.
complete lift I'° of an affine connection I' has the property

(5.7 VOP¢ =(VPY

A
RY: N

The

for any tensor field P in M. In particular, the complete lift F¢ to T(M) of

a (1, 1)-tensor field F=(F*) in M has components

5.9) g | TO=FS P =0,
' ? F‘iﬁ:aFih, Ni_'—l=Fth"

and the covariant derivative VOF° of the lift F¢ with respect to 1'° has

components
I D
VB =0V, ,F", V,Fi" = ViF*=V,F" ViFi*=0
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Suppose now that M is an almost complex manifold and F is the structure.
Then it is known that the complete lift ¢ of F defines an almost complex
structure in T(M) and the Nijenhuis tensor N of F° coincides with the
complete lift N¢ to T(M) of the Nijenhuis tensor N of F. Therefore the
complete lift F¢ is complex if and only if F is complex.

For the pseudo-normal vector field C=(0,y*), the equation (2.6) becomes

(5.10) CEF3*Cy = y'F*Cy =

with respect to the complete lift F°. If an almost Hermitian metric g=(g,;)
in M is associated with the almost complex structure F' and we consider the
unit spheres defined by

guy'yr=1

in the tangent spaces T,(M), then the vectors (y*) and (C;)=(g;,y") satisfy
(5.10). Hence the tangent unit-sphere bundle possesses the property. We
shall confine ourselves with fields of hypersurfaces in T(M) such that the
vector field C=(0, y") satisfies the equation (5.10), and call them S-hyper-
surfaces.

The tensor fields f=(f3%), E=(£%) and n=(n,) of the induced almost contact
structure in an S-hypersurface S(M) from the complete lift F¢ to T(M) have

components
ﬂh — Fth R
flh = O,
fi=[F* + B/F* — B/"F/1B%=[L(y)F/"1B%,
ﬁx = B/\.t—Fth KIT’

(6.11) fs®

=0,
5.12 “
( ) £ { g = y'F,"BY,

and

n, = [aFih + Bi?th - BjﬁFij]CE': - [_C(y)Fth]Cﬁ,

(5.13) 78
m'=— Bi'F,*C;,
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respectively. Substituting these components and (5.3), (5.4), (5.5) and (5.9) into
the four types of the components, L,*, L,*, L, L¥ of the tensor field L
defined by (2.16), we see that all the components vanish.

THEOREM 4. For the induced almost contact structure of an S-hyper-
surface S(M) from the complete lift F° in T(M) of an almost complex
structure F of M, the tensor field L defined by (2.16) vanishes identically.

Hence the Nijenhuis tensor N and the others given by (2.17) of the
induced almost contact structure in S(J) have the components

Eth = Mt’% Mtn = Mhh = —,,Ah =0,
1—\7,-1" — [_MizBlﬁ + alvjin + BjTMih + BiTNNh]BKIT

N,
= [-£<y)Nith]ka79
-_;L’{ = anlvjihB.E: J\—I;MK = 0’
N { N;i=(-£'(y)Mih]Cﬁa
B — - —_—
! ut =B,,"N”"C,z ’ MM =0,
— Mh = 0, ]vhh = 0’
N { _ ’
N =y'N;;"B%, Ny =0,

N: N=-yNG, M=o,
Therefore we have the following

THEOREM 5. Let F be an almost complex structure in a manifold M,
FC the complete lift of F to the tangent bundle T(M) and F°=(f, &, 1)° the
induced almost contact structure in an S-hypersurface S(M). The structure
F° is normal if and only if F is compler.

6. The case of horizontal lifts. Let I'=(I'3) be a symmetric affine
connection in M. The horizontal lift of I" to the tangent bundle T(M) will
be denoted by I'%. The components (I'¢h) of I'# are given by

Jis

®.1) {F’h‘zrh M=Ti=1%=0,

~_ . ~% = ~i
Fj’; - aI‘;li "‘K.jth, ]. 7i= I }i - l‘?,;, I‘j{, - 0



ON CONTACT STRUCTURES 133

with respect to an induced local coordinate system in T(M), where K, ;" are
the components of the curvature tensor field K of the affine connection I' and
we put K.;;"=y*K, "

The induced connection, denoted by I'"=(T'%,), in S(M) from the horizontal
lift T'Z has the components

[h=T% Ih=TL=Tu=0,

) L5 = [ L)% — K.;"1B% = (V,V,y")B%,
IS CAED): i

i = (3,219 B

(6.2)

The components of the tensor fields A,/ and m in S(M) defined by (2.9) are
given by

hji = (vj Vi yh)cﬁ,

(6.3) hye { hu= 0,V y"Cs,

hu = (0,09")C,

Ir=0, L'=0,
6.4) L 4

Ly =(V;y")B%, Lr=38;,
(6 5) my: mM;= (ij”)cﬁ» m, = 0 »
respectively.

On the other hand, the components (T’B,...B,A) of the horizontal lift P¥ to
T(M) of a (1,s)-tensor field P=(F,....,") in M are given by

~

Pi ...,;h - Pi...ih',
(6 6) ?i‘...i,'L‘: - I‘?Pi,...ill + Z F%;LPi'...l...i,h,
t

~

R:.'"'L'_‘-'-ilﬁ = Pi '-'Z';"'if’ (t = 1’ 2’ PRP 5),

the others being zero, with respect to the induced coordinate system in
T(M), where we have put I'} = I'}y’. The components of the horizontal lift
FZ of a (1,1)-tensor field F=(F;") in M are given by
~ Fih:‘Fih’ F{hzo’
6.7 Fe* { ~ -
{ Fr=-TDF'+TiFY, Fi'=Fp,
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and those of the covariant derivative V7F” of F” with respect to I'” by

{

j 1h=VjFih7 %jﬁi‘h:‘vl—Fih:.%j‘th:O,
FF =T, F + TV Y,

~ ~
it

AT :ijth, %jF_'L:O, %ffiij,

(6.8)

<t <

Suppose now that M is an almost complex manifold and F is the
structure. Then it is seen [9] that the horizontal lift FZ defines an almost

complex structure in 7(M), and the components of the Nijenhuis tensor N of
FZ are given by

~

j\/fjih = Mzha l\]fih = Tvﬁ” = R“ih =0,
N,#=—TIN;! + T{F "V o F* + F "7 ,F)
(6- 9) '{ - Pﬁ(Fimvazh’FFLmVith)

Y ‘Nﬁﬁ =szvlFih. + Filijlh,
- N =0.

Similarly to §5, we consider an S-hypersurface S(M) and denote by

FE=(f, £, 7)” the induced almost contact structure in S(M) from the horizontal
lift F¥ to T(M). The components of the tensor fields f, € and 5 of the

structure FZ are given by
ft=Fp Fr=0,
fie=(~TiF! + T4F} + BF} — BB
= (= F!'Vy" + F"V,y")B%,
fi*= Bl'F,"Bs,

‘ =0,
(6.11) £= {
£ =yiF"BY,

(6.10) Ja"

M= (— F'7y" + thVt)’l)Ci»
(6.12) N8

m=— BlrFthCﬁ: s

respectively.



ON CONTACT STRUCTURES 135

Substituting (6.4), (6.5), (6.8), (6.10), (6.11) and (6.12) into the four kinds of
the components, L,*, Li*, L%, Ly*, of the tensor field L defined by (2.16), we
see that

THEOREM 6. For the induced almost contact structure F' of an S-

hy persurface from the horizontal lift F¥ to T(M) of an almost complex
structure F in M, the tensor field L defined by (2.16) vanishes identically.

Hence the Nijenhuis tensor N and the others given by (2.17) of the
induced almost contact structure F" in S(M) have components

N'thih’ Nn Nﬂt = —uxh=0,
Ny =[— Ni'Vy" + (Vi yNF" Vo + F 5 FR)
Nys® ~ (Vo NE"V oF i+ F"  Fn)B%,
Ny* = B{(F}V F,"+F,'V ,F")B%,
Nac=0

Ny =[— N'V.y" + (Vo y ) F "V o F it + F 7 ;F o)
— (V) E" o B+ FMN FuMG,

N'xﬁ 'J —
jA B(FlVFh"‘FivFL)Ch,
_nl—_‘oy
'/]\_,i_h.:_Mhzo,
N;* { Nf=—yi(F!V ,F* + F/,F"B,
M":O,
- Nzyj(szFh FZVF)C/“
; {:=o

Now we have the following

THEOREM 7. Let M be an almost complex manifold with structure
F and symmetric affine connection I'. In order that the induced almost

contact structure Fo=(Ff, & 5)" in an S-hy persurface S(M) from the horizontal
lift F" to T(M) of F is normal, it is necessary and sufficient that the
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structure F is complex and the affine connection T' satisfies the equation
(6.13) Fi7 Fr+ F'V;Fr»=0.

PROOF. It is known that Nz*=0 implies N,=N;*=N;=0. It follows
from the first components N,»=0 of N that the Nijenhuis tensor N vanishes
and F is complex. Moreover, it follows from N;*=0 and N;,=0 that

B\(F F!*+ F!' ,F)=0
and from Nf=0 and N,=0 that

Y(F}'V F*+ F';F*)=0.

By use of these equations, we obtain the equation (6.13). Q.E.D.

If I" is the symmetric affine connection which leaves F invariant, VF=0
and which exists in a complex manifold, then the equation (6.13) is satisfied.

7. Tangent sphere bundle of a Riemannian manifold. Let M be a
Riemannian manifold with metric tensor g=(g,,) and T'=(I"};) the Riemannian
connection of g. Putting

(7.1) Syt = dy" + T, I =Ty,

many authors consider the Riemannian metric g=(gys) in the tangent bundle
T(M) defined by
(7.2) gosdx’dx® = gdxidxt + g,,8y'8yt

with respect to an induced coordinate system. The components of the metric
tensor g are '

(7.3) gon

~

~ { gﬂ:gﬂ_‘—gtsrgl‘z, é:.?:]:‘”,
g5 =Ty, 951= 9

and its contravariant components are

~

u 1m0 T
9

(7.4) _ _
i gth _ I‘{Lg“«, gih — gih + gtspglwf’
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where we have put
Ly =T}gu.

The components of the Riemannian connection, denoted by I'*=(I'4;), of
the metric g in T(M) are given by

= 1
;Zi = ﬁ + T(K.sjhr,g + K.””P’j),

(7.5) P |

In this and the next paragraphs, we consider the tangent sphere bundle
S(M), which consists of the unit spheres defined by

(7.6) gun(X)y'y' =1

with respect to the metric g(x) in the tangent space T,(M) at each point z.
The sphere bundle S(M) is represented by parametric equations

(7.7 zt =z "=y =yNz' u")

satisfying the equation (7.6). Differentiating (7.6) covariantly in x’ and partially
in #* we have

(7.8) 9in(V 530" = gin(B,* + Ty"= g By'y" + Ty =0
and

(7.9) gunBify* =0,

respectively.

By means of (7.8) and (7.9), the vector field C, having the components
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g;)'__(g") , on S(M) satisfies the equations
(7.10) 924B,"C* = (gaB/ +guB)y" =+ gunB/)y" =0,

954B.°C* = gii B y* = g Biiy* =0
and
(7.11) 954C°C* = giry'y" = g y'y* = 1.

Therefore the vector field C:(g)”) is the unit normal to the tangent sphere

bundle S(M) with respect to the metric g. The covariant components of C are
equal to

(7- 12) Cp: C, =Ty, Cr = gmy" =Y.

The induced metric §=(g,s) in the tangent sphere bundle S(M) from the
metric g is given by

[ =Zos ngBBB
and have covariant components
9i=9n-+ gtsrgl‘:l + F}hBiTL + PtthE"‘ gthjTBiE
= g5 + &V ;5 V.5,

Ju= P,,Bf + g;,Bfo= B;FViyj = 910,y V%),
O = g,uB;FBAr: gjt(anyj)(alyt) s

(7.13)

and contravariant components

( gt = g',
(7.14) g =— g"(V.y)B's,
g =[g"+ ¢ (V. y' )V, y")]B*+ B%.
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Since the Riemannian connection T"=(T'%) of the induced metric g are

related to the Riemannian connection I'* in T(M) by the equation (2.8), we
obtain by straightforward computations

4

A——?i = ].-‘Z + _;——(K.,jhviys + K.sihVJys),

—fﬁz = —%—K-sith;,

I—‘-ﬁl = 0,

e — h 1 h 1 h
(7.15) 5=V, Viy"+ TK-.H - 7K'”

1
- —Z—(K'sjlvtys + K-nlvjys)vzyh]Bkﬁa
= 1
i = CAY TK-si’Bn‘sz”)B‘fr,

L Ila= (a#alyh>BKﬁ'

The second fundamental tensor A in S(M) has components
hy =y V3V 9" == (V9:)(V "),
(7.16) hoe | B =920V Y* =— (QuyaXVid"),
hia = y20,00y" = — (Quya)Cr").

8. Contact structure in a tangent sphere bundle. In the tangent bundle
T(M) of a Riemannian manifold M, there exists the 1-from

8.1 0=y dx' = g; y'dxt
and the derived form df is equal to
8.2) d0=[(0,9.,)y*dx’ + g,,dx’)\dx*
=[(Llegu + Thguly*dx’ + g,dy’| \dx’
= [Ty~ T )da Ada* + gudy’ Ndar' — gyudact Ndy').
Putting

(8.3) d6 = %chdxc Adz®,

we have the skew-symmetric tensor field



140 Y. TASHIRO

~ F;t =Ty —Ty, F‘ﬂ =Gj>
8.4 Fog {~ ~
Ef’l=_gji’ F}{:O,

and the (1,1)-tensor field F*=(F3*) defined by
F‘BA = F Bogd CA’
whose components are

(8.5) 7 [ Fr=T, Fr=g,
. B {FXT‘=—I‘£F¥— y P =—T%

The tensor field F" satisfies the equation

(8.6) FoP Fpt=— 8¢,

that is, it defines an almost Hermitian structure in 7(M) with the metric
5. Since the fundamental form df is closed, the structure (F”, 5) is almost
Kihlerian.

Furthermore, since (Fs,) is skew symmetric and we have
CBF‘BACA = FTBACBCA = O,

the tangent sphere bundle S(M) is an S-hypersurface in 7T(M) with respect to
the almost Kahlerian structure (F", g). Hence, to the tangent sphere bundle

S(M), the contact metric structure, denoted by (F, §)M=( L&, ?)M is induced,
from the almost Kihlerian structure in 7(M), and the tensor fields f,& and
n have components

fit =y, fit = B;%,
8.7 fo® 4 i == (Vi oy") + 81B%,
fo — BAT(Viyh)Bxﬁ,
fh =yh ’
8.8) & {
& =—y(Viy")Bs,

N =Yi»
@. 9 N8 {
m=0.
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The covariant components of f=(fz*) are

f,n =V — Vils»
(8 10) f)’ﬂ fM =—fw = Oulis
fM:O,

and we have

(8~ 11) frﬁ = Oy — gty -

Therefore the induced structure (F, ?)M in the tangent sphere bundle S(M) is a
contact metric structure.

Now we prove the following

THEOREM 8. Let M be a Riemannian manifold with metric g and
(F, 9" =(f,&n,9)" the induced contact metric structure defined above in

the tangent sphere bundle S(M). In order that the structure (F, ?)M is
K-contact, that is, the vector yeld & in S(M) is an infinitesimal isometry
with respect to the induced metric g, it is necessary and sufficient that the
manifold M is of positive constant curvature. Then the induced structure

(F,9)" is Sasakian.

PrROOF. The Killing equation of £ in S(M) is now written as
(8.12) f (&)= 57"7/3 + 637)7= Oya + gty — ngﬁﬂa =0,

where </ indicates covariant differentiation with respect to the metric g.
Substituting the expressions (7.15) and (8.9) of the components 7, and T'% into
(8.12), we have the equations

( f(f)?n =V + Viy;— (K. Viy' + K. V,;9°) =0,
(8. 13) .f(f)ﬁu = auyi - K-st-Bug. =0,
z\f)gul =0.

It follows from the second equation that
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Buj-(gn - K-ji'> =0

and, taking account of the symmetry of g, —K.;. in 7 and j, we may put
95— Koy = ay .

Contracting this expression with y!, we see that @=1 and hence we have the
equation

(8.14) gn— K =59
By means of (7.11), this equation is written as
Kisiny* " = g5 9unY*Y" — g5xginy*y".

Since this equation is valid for an arbitrary tangent vector y, we have the
equation

Kijin + Kaujie = 2951960 — 9ixGin — ginGix-

By interchanging the indices 2 and j, taking the difference and using Bianchi’s
identity, we obtain the equation

(8.15) Kysin = gings — 9inGs»

which means for M to be of positive constant curvature. We see that the first
equation of (8.13) is satisfied by (8.15). Thus the first half of the theorem has
been established.

When the curvature tensor of M has the form (8.15), by substituting
(7.15) and (8.10) into the components of the covariant derivative

67]“ Ba = ayf Ba — T‘-:Bfea - F'srrxf Be>

and comparing the results with (7.13) and (8.9), we obtain the equations

gjf‘ih = ';“ [yi(g;,. + (VN Vay)—n(g s +(V1yl)(szl))}
= %("hgjh - nhgji) ’

— 1
Vifie = “z—yt(ijl)(axyt)
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1 _
=3 7.9 ik >
51_][1,: = 0 ’

— 1 1 — -
Vufin = 5 [%(auyl)(Vnyz) - yn(auyl)(Vtyz)] = 7(’/19% — 0 Gus)

— 1 1 _
VMﬁx = —E_yt(auyl)(axyl) = 7’719#"9

Vufr=0.

These equations are combined up to the tensor equation

2§7fﬁa = 1789 ya — Na s>

which means that the induced structure (F,§)" is Sasakian. Q.ED.
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