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1. Notations and Summary of Results. J.Tate [7] has proved duality
theorems concerning Galois cohomology groups of finite modules. We generalize
some of these theorems to the case of finitely generated modules (See also [6]).
Tate has also stated about strict cohomological dimension. Our first aim was
to prove this statement which seems to have important meanings in the number
theory. But we have not succeeded yet.

Let G be a profinite group. We call A a G-module only when it is equal
to the union of the submodules Aσ, where H runs over the open subgroups
of G and H operates trivially on AH. Cohomology groups of such modules in
positive dimensions are well known. Cohomology groups in negative and zero
dimensions are introduced by Poitou°. By definition

H\G, A) - lim H\G/H, A*), i ^ 0,
H

projective limit being taken with respect to deflations when H runs over the
open normal subgroups of G. We note that they may not be cohomological
functors. Hι(G, A), i ^ 1, denote ordinary cohomology groups. Ordinary
cohomology group in dimension zero is denoted as AG.

By a global field we mean an algebraic number field of finite degree or
an algebraic function field of one variable over a finite constant field. Let k
always denote a global field and let kP denote the completion of k with
respect to a prime P. In the following G always denotes the Galois group of
the extension H/k. Where Ω, is the maximal algebraic extension of k unramified
outside, S, and S is a non-empty set of primes of k including all the
archimedean ones. Then H\A) abbreviates H%G,A). In the local case, let
H\kP, A)=H%G(kP/kP), A), and HXoΓyA) = H\G,A\ when A is a G-module,
where G is the Galois group of the maximal unramified extension of kP. We
also use following notations.

1) After preparing most part of this paper, we knew by [3] that Potiou had adopted this
same definition. We do not know his results [5] in detail.
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NG/H : Norm map from AH into Aσ when H is an open subgroup of G
NGA= ΠffNG/HAH: The universal norms of A
Ks: The iS-integers in K which is a finite extension of k contained in Ω
Ωs : The A^-integers in Ω
Ks*,Ωsx - Unit groups of KS,ΩS respectively
Jκ: Idele group of K
Cκ: Idele class group of K
Js,κ Projection of Jκ to ^-components
Ls,κ — Js,κ/Ks
Uκ: Subgroup of Jκ consisting of the ideles whose components are equal

to 1 in S and are units outside S
J, C, Js, Cs, U: Idele group of Ω, i.e., the union of Jκ when K runs over

the finite subextension of Ω, idele class group of Ω,
A = Hom(A, Ω?x) (in the local case, the same notation for Hom(A, kP*))
A* = Hom(A, R/Z): Pontrjagin dual group of A

We prove following theorems.

THEOREM 1. If M is a finitely generated^ G-module, then it holds
itopologicaΐ) isomorphisms

As M is finitely generated, there exists an exact sequence

( 1) 0 > Fx > Fo > M > 0

with finitely generated torsion-free2} G-modules F o, i<\. We can construct an
exact sequence

( 2) > ̂ ^(HomCFo, Cs)) -—> ^ ( H o m ^ , C ^ -

iF,, Cs)), i^O.

Duality theorem for torsion-free modules in the cohomology theory of finite
groups says

( 3 )

if g is a finite group, F is a torsion-free ^-module and C satisfies the certain

2) "Finitely generated" and "torsion-free" are as additive groups, i. e., as Z-modules,
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cohomological condition. We can take the limits and we have (topological)
isomorphisms

( 4 )

The theorem concludes combining these and applying five lemma.

REMARK. AS Hom( , Cs) is not an exact functor, we can not prove
duality in other dimensions. Compare with the local case ([6]. Section 2).

Now we consider natural homomorphisms

(5) / : H\M) > Π fr(kr> M),

(6) g:H\M)

PeS

We denote the kernels of them by Ker*(M') and Ker2(M) respectively.

THEOREM 2. If the order of the torsion part of M is a unit in ks, there
exists duality between Ker^M') and Ker2(M) and they are finite modules.

There exists an exact sequence

(7) Hom^M, Js) > Hom^M, Cs)-^> H\M) - A Π H\kF, M)
PS

induced from

(8 ) 0 > M > Hom(M, Js) > Hom(M, Cs) > 0.

The map 8 is continuous and the universal norms of Hom(M, Cs) maps to
zero. So we have a commutative diagram

( 9 )
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Then the theorem follows from the exact sequence

(10) Π H\kP, Mf —U H\M)* -^->H\M)-^ Π
PeS

where Π means the restricted direct product consisting of the elements whose

components vanish the images of H2(oP,M) for almost all P.

REMARK. If scd,G=2 for some prime /, H°(Uom(M, Cs)) -> H°(Hom(F0, Cs))
is injective at /-primary part by Theorem 1 and the sequence (2). Especially
in the case

Ύtl

0 > Z > Z > Z/mZ > 0, m = l\

this means (in number field case) that

If M is finite and its order is a unit in ks, surjectivity of NGJrίom(M, Js) —>
NGHom(M,Cs) follows from the fact that JV^Hom(M, Cs) = NG/HNHUoτn(M, C8)
and Hom^M, Js)—>HomG(M, Cs) has finite kernel. As C8—C/U (see the last
part of section 2), NGCs=DkUk/Uk holds, where Dk is the set of the usual
universal norms of the idele classes. Then the above equation means that the
/-primary torsion part of DkUJUk comes from the universal norms of Js,m,
or from the archimedean parts. If S=all the primes in k, this is the case
({7̂  = 1) and scd G=2. But is it true in general ?

2. Proof of Theorem 1. Let A be a G-module such that every AΉ has
compact topology and G operates continuously on AH for any open normal
subgroup H. Then H\G, A), i fg 0, has compact topology because each
H\G/H, A11) has compact topology. (When i > 0 we consider as Hι(G, A) has
discrete topology for any G-module A.) As lim is an exact functor for compact

modules, it holds

H\G,A)=lim Z\G/H,AH)/\im B\G/H,AH\ i^O,

where Zι, Bι are cocycles and coboundaries respectively. As the cohomological

deflation H\G/H\AW)-^H\G/H,AH) maps Z\G/H9A*) into Z\G/H,
NH/H>AH') for i < 0, every element of lim Z\G/H, AH) has an //-component

contained in NHA. Therefore lim Z\GjH,AΉ)=lim Zι(G/H,EH) for any closed
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submodule Eπ of AH containing NHA and satisfying NH/H>EH> c EH. The same

is true for Bι because coboundary maps commute with lim, so

(11) H\G, A)- lim H\G/H, EH\ i < 0 .

Especially

H~KG, A) = (lim KeτNG/H)/( lim IA*)

hold. In the above IAH is generated by (σ—ΐ)a, <rzG, azAπ. Let C be a G-
module satisfying the above conditions, and M be a finitely generated G-

module. Then Hom(M, CH) (which is equal to Hom^(M, C) if H is sufficiently

small) has a topology induced from that of CH and we can apply the above

remark to Hom(ikf, C). When NHC is divisible for any H, we can construct an

exact sequence (2) replaced Cs by C. First we consider the case i — 0. Homomor-

phism ^ 0 : ^"1(Hom(F1,C))-^//°(Hom(M,C)) is given as follows. Let (aB)

€ //^(Hom^Fx, C)). Then we may assume aH € Λ ^ H o m ^ , C). If H operates trivi-

ally on F o , Fl9 then NHtiom(F1, C)=Hom(F1 ? NJJ). As NHC is divisible, aH is an

image of βH z Hom(F0, A
τ^C)=iV^Hom(F0, C). Then we define φo((ocH)) = (NG/H(βH))

^ H%Hom(M9 C)). Other homomorphisms are natural ones, and the proof of

exactness is easy. When z*<0, we take Hom(M, NHC) for EH in (11). (We only

consider open subgroups H such that MΠ=M. This restriction does not affect

to projective limits). As NHC is divisible,

0 -> Hom(M, NHC) -> Hom(F0, NHC) -> Hom(F1? Njj) -> 0

is exact. So we have an exact sequence

-> Hι-ι{G/H, Hom(F0, NHC)) -> Hι

H\G/H, Hom(M, Njϊ))-+ίr(G/H, Hom(F0,

Every term has compact topology and every map is continuous. So projective
limits keep the exactness and we have (2) by considering (11).

Cup product gives a natural map

HKG/H, Hom^M, Q)
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We consider the case that C is a class formation and i-\-j=2. Then we have

H\G/H, Hom^M, C)) -+ H2~\G/Hy M*)*.

If i ^ 0 or i gr 2, we can take the limits, and we have a continuous map

H\G, Hom(M, C)) -* ίf2-£(G, Af)*, t =£ 1.

LEMMA [4. Chap. 4, Theorem 14]. If F is a finitely generated torsion-free
G-module and C is a class formation,

H%G, Hom(F, C)) -• H2-\Gf F)*

is an isomorphism for any integer i.

As H^iG^F) is finite, Lemma is valid also for z = l. Now we can prove

Theorem 1 replaced Cs by C.

PROPOSITION. Let M be a finitely generated G-module. Let C be a

class formation such that every Cπ is compact and every NSC is divisible.
Then

Hι(Hom(M, C)) -> H*-\M)*, i ^ 0,

are isomorphisms.

PROOF. We have a commutative diagram

, C)) > ff-KHomCFi, C)) > #(Hσm(M, C))

o, C)) > ή\nom{Fu Cj)

with exact rows. All the vertical arrows except the middle one are isomor-
phisms by the lemma. Therefore Proposition follows from Five Lemma.
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Now we prove Theorem 1. We first prove that Cs is a class formation. In

fact Cs is isomorphic to C/U which is a class formation because U is

cohomologically trivial. There exists a natural monomorphism Cs,κ-^CK/Uκ

considering Js,κ as a subgroup of Jκ. Cokernel of this monomorphism is finite

by finiteness of class number, and Cκ/Uκ is contained in the image of some

CS,L For we take L as a class field corresponding to JSιKUκK/K, then the

group theoretical Principal Ideal Theorem [l.Chap.13,4] shows that

CKGJS,LULL/L. Therefore Cs is isomorphic to C/U, so we can replace Cs by

C/U in Theorem 1. In the number field case, we replace C/U by Co/U where

Co is a subgroup of C consisting of the elements of volume 1. As CH/C§Ή is

uniquely divisible, this replacament causes no change to cohomology groups.

C0

H is compact and the universal norms of Co are D0U where Do is the usual

universal norms in Co. So Co/U satisfies the conditions of Proposition. In the

function field case, we replace Cπ by Cπ, where CH is such that CH/UΠ~Z is

a compactification of Z by the ideal topology. This replacement also causes no

change to cohomology. As C/U has trivial universal norms, it satisfies the

conditions of Proposition. This completes the proof of Theorem 1.

3. Proof of Theorem 2. Exact sequence

0 >Ω/ >JS >CS >0

induces

( 8 ) 0 >M >Hom(M,Js) >Hαm(Af,C*) >0

which is exact by the assumption for the torsion part of M. Then

HomG(M, Js) >RomG(M, Ca)

is exact. As there is a natural injection iϊ1(Hom(M, Jsj)-> Π Hι(kP, M'), we have

the exact sequence (7). We first prove finiteness of Ker^M'). This is equivalent

to finiteness of cokernel of HomG(M, Js) -> Hom^(M, Cs). We have seen in

section 2 that Cs

π is contained in some CStK. So we have Hom<?(M, Js) = Hom^

(M,Js,κ)> HomG(M,C&) = ΐlomG(M,Cs,κ) for some finite extension K. Then

replacing H by smaller one if necessary, we have a commutative diagram

with exact rows

, Js) >Hom^(M, Cs) >Hι(M)

i i ••- i i
HomG/H(M9Js>κ)—
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As Hγ(M') is of torsion and Ext^/^M, Kg) is finitely generated, cokernel we
now concern is finite.

Next we prove the existence of an exact sequence (10) in the special
cases M=Z or μm (the ra-th roots of unity). When M=Z, H2(Z)*^Hι(Q/Z)*
=G/G'. So we have a natural epimorphism

8':

where Cls is a factor group of the ideal (or divisor) class group in k by the
subgroup generated by primes in S [2, Proposition 2.3]. The image of JJ H2(kP, Z)*
—>H\jtγ is generated by the decomposition groups GF, Pe S, so it is
dense in the kernel of δ. It is closed if *S is finite and then it is open as it is
of finite index. So the image is always open and (10) is exact. When M = μm,
we have

m
0 >μm >ΩS* >ΩS* >0 (exact).

So

is exact. As lSP(Ωβ

x)=α*,

H\μm)* > Hom(C4, Z/mZ)

follows. By the natural epimorphism G->CS, we have

0 > Hom(C/ , Z/mZ) > Homcont(G, Z/mZ) = H\Z/mZ).

Combining two homomorphisms, we have

The kernel of θr is open by definition, and exactness of (10) follows from the

relation between ή*(Ω8*) and H%kP,IP

x) [2, Corollary 2.9]. There is a natural

map Hom^M, J5)-> Π H%M)* by the local duality [6, Theorem 1]. Then we

have in cases M—Z or μm

Homβ(M, J8)—> Homβ(M, Cs) >Hι(M') > Π &ι(kp, M)

I 1 ε' f
H\M')
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Square in the above diagram is commutative, so there exists a homomorphism

Im 8—>Im 8'. This is an epimorphism, as the image of Hom^(M, Cs) in H°(Hom

(M,C$))=ii2(M)* is dense and the kernel of £' is open. As Im δ = Im £' and

they are finite, Im δ—>Im £' must be an isomorphism. Then the continuity of δ

follows from that of £' and NG/HHom(M, Cs5) goes to zero for some open

subgroup H.

Now we consider the general case. Let H be an open normal subgroup

which operates trivially on M. As the diagram

Homfl(M, Js) >Hom^(M, Cs) >H\H, M)

\ N G I H jiNU g JGor
Hom^M, Js) >HomG(M, Cs) >ήι{G, M)

is commutative, δ maps NG/H> Hom(M, Cs

H')=NG/HNff/H>llom(M, CS

H') to zero for

sufficiently small H\ So δ is continuous and maps the universal norms iN^Hom

(M, Cs) to zero. This is equivalent to the existence of a commutative diagram

(9) with continuous map £, because the image of HomG(M,Cs) is dense in

H2(M)*. Then we have a commutative diagram

δ /
Hom^(M, J8) >HomG(M, Cs) >Hι(M') > Π Hι(kPi M') (exact)

η f
Π_#2(£P, M)*—>ti\M)* — > H\Mf)—> Π Hι(kP, M').

Hom^(M, JQ) is dense in ^H2(kP, M)* by the local duality, and the image

of η is open. So the bottom row is also exact. By

0 >Ker2(M) >tl\M) > Π ti\kP,M) (exact)

and by the closedness of Im^, the cokernel of η (^Ker^M')) is dual to Ker2(Λί).

This completes the proof of Theorem 2.

REFERENCES

[ 1 ] E. ARTIN AND J. TATE, Class Field Theory.
[ 2 ] A. BRUMER, Galois groups of extenisons of algebraic number fields with given ramifi-

cation, Michigan Math. J., 13(1966).
[ 3 ] K. HOECHSMANN, Zum Einbettungsproblem, J. fiir Math., 229 (1968).



ON TATE'S DUALItΫ 101

[ 4 ] S. LANG, Rapport sur la cohomologie des groupes.
[ 5 ] G. POITOU, Remarques sur Γhomologie des groupes profinis, Colloques CNRS, 143(1966).
[ 6 ] T. TAKAHASHI, Galois cohomoloy of finitely generated modules, ibid.
[ 7 ] J. TATE, Duality theorems in Galois cohomology over number fields, Proc. Int. Congr.

Stockholm, 1962.

MATHEMATICAL INSTITUTE

TOHOKU UNIVERSITY

SENDAI, JAPAN




