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1. Introduction. To investigate the relations among geodesies, curvature
and manifold structures is very interesting and important. The following
theorem is well known (cf. Klingenberg [5]).

THEOREM. Let M be a 2-dimensional co?nplete simply connected
Riemannian manifold τvith Gaussian curvature K, 0 <. k ^ K^l, zvhere k
is a constant. Let G be a simple closed geodesic on M and L(G) be its
length. Then the following inequalities are satisfied

2τr rg L{G) ^ 27Γ/VT .

In particular, if there exists a closed geodesic of length 2TΓ on M, then
M is isometric to the sphere with constant curvature 1.

And if there exists a simple closed geodesic of length 27r/^/ k on M,
then M is isometric to the sphere with constant curvature k.

In this paper we shall prove similar results in the higher dimensional
case. By a geodesic triangle, we always mean a geodesic triangle composed
of three shortest geodesic arcs.

THEOREM A. Let M be an n-dimensional complete simply connected
Riemannian manifold with sectional curvature K, 0 < k^K^l, where k
is a constant. Let G be a closed geodesic which can be decomposed into a
geodesic triangle and L(G) be its length.

Then the following inequalities are satisfied

2τr g L(G) ^ 2τr/VT .

In particular, if there exists a closed geodesic of length 2π/^/ k on M
which can be decomposed into a geodesic triangle, then M is isometric to the
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sphere with constant curvature k.

REMARK 1. The latter half of Theorem A holds good without the assump-
tion of simply connectedness.

THEOREM B. Let M be an n-dimensίonal complete simply connected

Riemannian manifold with sectional curvature K, —p :g k ^ K rg 1, where k

is a constant. If there exists a simple closed geodesic of length 2τr//s/Jk~,
then M is isometric to the sphere with constant curvature k.

REMARK 2. Let M be an ^-dimensional complete simply connected

Riemannian manifold with sectional curvature K, —/-< k^K^l, where k is

a constant. If there exists a closed geodesic of length 2τr/A>/~k'9 it is a simple
closed geodesic, because we have two inequalities 2π/*J~k < 47r and d(p,C(p))
g: 7Γ for all p€ M, (cf. §3 Theorem 1). Then M is isometric to the sphere
with constant curvature k.

THEOREM C. Let M be an n-dimensional complete simply connected

Riemannian manifold with sectional curvature K, —j-^K^ 1. If there

exists a closed geodesic of length 2π on M, then M is isometric to one of
the compact symmetric spaces of rank 1 with usual metric.

THEOREM D. Let M be an n-dimensional complete simply connected

Riemannian manifold with sectional curvature K, -j- <K^1. If there exists

a closed geodesic of length 2τr on M, then M is isometric to the sphere with
constant curvature 1.

2. Notations and definitions. Let M be a Riemannian manifold of
dimension n ( n ^ 2 ). We denote by < , > (resp. || || ) the scalar product
(resp. norm) which defines the Riemannian structure of M. All the geodesies
considered on M are parametrized by the' arc-length measured from their
origin.

If Λ = {λ(s)} ( 0 ^ 5 ^ / ) is such a geodesic, then λ'(s) denotes its tangent
vector at λ(s) and we have || λ'(s) || = 1 for all s. We denote by d{p, q) the
distance between two points p and q of M, with respect to the structure of
metric space associated canonically to its Riemannian structure. If the manifold
M is compact, we denote by d{M) its diameter, that is the upper bound of
d(p,q) when p and q vary on M.
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We denote by G(p, q) the set of geodesies on M each of which joins p to
q and whose length is equal to d(p,q). We denote by C(p) the cutlocus of a
point p on M.

3. Review of the known results

THEOREM 1. (Klingenberg [4], [6], Toponogov [12]) Let M be a compact
simply connected Riemannian manifold -with sectional curvature K, 0 < K
^ 1. Then the inequality d(p, C(p)) ̂  ΊT is satisfied for all points p of M.

THEOREM 2. (Myers [8]) Let M be a complete Riemannian manifold
with sectional curvature K, K ^ k > 0, where k is a constant.

Then M is compact and we have the inequality d(M) ^ TΓ/'

THEOREM 3. (Rauch [9], Klingenberg [4], [6], [7], Berger [3], Toponogov
[11], Tsukamoto [13]) Le* M be a complete simply connected Riemannian

manifold with sectional curvature K, —r- < K 5g 1. TΛerc Mis homeomorphic

to a sphere.

THEOREM 4. {Berger [2]) L^ί M be a complete simply connected

Riemannian manifold with sectional curvature K, —j- ̂  K 5i 1.

And let d(M) = TΓ be satisfied. Then M is isometric to one of the compact
symmetric spaces of rank one with usual metric.

THEOREM 5. (Berger [1]) Let M be a complete Riemannian manifold

with sectional curvature K, —r- ̂  K ^ 1. Let G be a closed geodesic on M,

of length fg 27Γ. Then for any points p on M and q on G, we have d(p, q)

THEOREM 6. (Toponogov s comparison theorem, cf [7], [10]) Let M be
a complete Riemannian manifold with sectional curvature K, K ^ k > 0,
where k is a constant. Let p, q, r be three points on M and Γ ={7(5)}, Λ
= {λ(s)} be two geodesies on Msuch that Γ £ G(p, q\ Λ € G(p, r), 7(0) = λ(0) = p.

We denote by S2(k) the 2-dίmensional sphere with constant curvature k
and denote by Δ(pqr) the triangle on S2(k) such that d(p,q) = d(p,q), d(fi,r)
= d(p,r) and that the angle d at p verifies cos cί = < 7'(0), λ'(0)>.

If d(q,r) denote the length of third side of the triangle Δ($qr) of S2(k)9

then we have the inequality d(q,r) ^

THEOREM 7. (Toponogov, cf. [7], [10]) Let M be a complete Riemannian
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manifold with sectional curvature K9 K ^ k > 0.

And let d(M) = π/f*/~Y be satisfied. Then M is isometric to the sphere

with constant curvature k.

4. Proof of Theorem A. By using Theorem 1, we have easily L(G) Ξg 2τr.

Since G can be decomposed into a geodesic triangle, we can obtain the inequal-

ity L{G) ĝ 27Γ/Λ/~F by using Theorem 6. (cf. [7]) So we have the inequalities

2τr ^L{G) g 2τr/VT.

We assume that there exists a closed geodesic G of length 2irj*J~Ίz on M

which can be decomposed into a geodesic triangle Δ(pqr). Then we prove

d(M) = 7Γ/Λ/~F. By the assumption of Theorem A we have d(M) ^ tπ /~k~.

Now we assume d(M) < TΓ/^/Ύ and lead a contradiction. By this assumption

we have at least two geodesic arcs of length > TΓ/2Λ/ k among three geodesic

arcs pq, qr, rp which compose the closed geodesic G. Let them be pq and

pr. And we divide G into two parts of same length by the two points p and

p' on G. Then we can find that the point p' lies on G between q and r.

Since we have d{M) < TΓ/VΊΓ, we have a shortest geodesic arc Θ = {β(v)}

( 0 ^ ϊ / S ' m , w = d(p,p'), 0(0) =p', θ(m) = p). And Θ can not be the subarc

of G. Let the geodesic subarc p'qp of G be I\ = {Ίγ(v)} (O^v^.l, I ='τr/Λ/J^,

γx(0) = ρ\ 7,(1) = p). And let the geodesic subarc p'rp of G be Γ2 = {J2(v)}

(0 ^ v ^ Z, Z = T Γ / V T , ^(0) = />', Ύ2(Z) = />). Then we have either

< 7ί(0), β'(0) > ^ 0 or < 7ί(0), β'(0) > ^ 0.

First we assume < 7ί(0), Θ'(G) > ^ 0. We use the cosine rule of spherical

trigonometry and Theorem 6. We construct a geodesic triangle Δ(ρ'ρq) on

S2(k) such that d(p\p) = d(p',p), d(ρ\q) = d(p',q) and the angles ^(pp'q)

= ^tipp q). Then we have by using Theorem 6

( 1 ) d(p, q) ^ d(p9 q) = τr/VT - rf(/>', ̂ ) .

On the other hand we have by using the cosine rule of spherical

trigonometry

( 2 ) d{$, q) < TΓ/VT ~ d(f, q) = τr/VT - d(j>\ q).

From (1) and (2) we lead a contradiction. In the case < 7̂ (0), θ'(0) > ^

0, we can lead a contradiction by using the same argument as above.

Hence we have d(M) = 7Γ/VX- By using Theorem 7, we find that M is
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isometric to the sphere with constant curvature k. Q. E. D.

5. Proof of Theorem B. Let G be a closed geodesic of length

on M. Now we divide G into four subarcs pq, qr, ?~s and sp of same length

7Γ/2VT.
Then they are all shortest arcs because of τr/2Λ/'k~ ̂  7r. Now we prove

d(M) — 7Γ/Λ/"F. We assume d(M) < 7r/V~IT and lead a contradiction. Then

we have a shortest geodesic arc Θ= {θ(v)} (0 g i; ^ m, m = d(p, r), θ(0)=p, θ(m)

= r) and Θ can not be the subarc of G. Let the geodesic subarc pqr of G

be I\ = {Ίx{v)\ (O^v^lJ ^ T Γ / V T , 7X0) = p, ΊX{1) = r) and let the geodesic

subarc psq of G be Γ2 = {72(τ;)} (O^v^lJ = T Γ / V T , ^(0) = A 72(Z) = r).

Then we have either

< 7ί(0), fi'(0) > ^ 0 or < 7^0), θ'(0) > ^ 0.

First we assume < 7ί(0), (9'(0) > ^ 0. We use the cosine rule of spherical

trigonometry and Theorem 6. We construct a geodesic triangle A(ρqf) on

S2(k) such that d(ρ,q) = d(p,q), d(p,r) = d(p,r) and the angles <£(qpr) =

Then we have by using Theorem 6

( 1 ) d(q, 9) ^ d(g, r) = τr/2VT .

On the other hand we have by using the cosine rule of spherical

trigonometry

(2) d(q9r)<τr/2^ k .

From (1) and (2) we lead a contradiction. In the case < 7 (̂0), 0'(O) > §: 0,

we can lead a contradiction by the same argument. Hence we have d{M)

=π//S/~k~. By using Theorem 7, we find that M is isometric to the sphere

with constant curvature k. Q. E. D.

6. Proof of Theorem C. Let G be a closed geodesic of length 2τr on M.

And let p be a point on G. By using Theorem 5, we have d(p, q)^τr for all

points q on M. Hence we have d(p, r)^τr for all points r of C(p).

On the other hand we have d(p, C(p)) §: 7Γ, by Theorem 1. So we have

J(̂ >, r) = 7r for all points r of C(/>). By using the same argument as in Berger

[2], we find that all the geodesies which start at p are closed and of length

2τr. Then for any point q on M, there exists a closed geodesic of length 2τr

which passes through two points p and q. Then we have d(q, r) = π for all

points r of C(q). Hence we have d(M) = π. By using Theorem 4, M is
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isometric to one of the compact symmetric spaces of rank one with usual
metric. Q. E. D.

7. Proof of Theorem D. Under the assumption of Theorem D9 M is
homeomorphic to a sphere by using Theorem 3. On the other hand M is
isometric to one of the compact symmetric spaces of rank one with usual
metric, by using Theorem C. Hence M is isometric to the sphere with constant
curvature 1. Q.E. D.
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