ON HARMONIC TENSORS IN COMPACT SASAKIAN SPACES
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A Riemannian space with a contact form 7 = mdx" is called Sasakian
if the contact structure satisfies certain conditions (Cf. §3). In §4 and §5
of this paper we shall discuss harmonic vectors in compact Sasakian spaces
and obtain some analogous results to compact Kihlerian spaces (Cf. Theorem
4.2, 4.3, 5.1). In §7 we shall prove that any harmonic p-form in » dimensional
compact Sasakian spaces is orthogonal to #*= gy, if p<(1/2)(n+1). In §8,
we shall introduce an operator ® and prove that ®z is harmonic for a
harmonic p-form u if p <(1/2)(n+1). Preliminary facts and lemmas are given
in the other sections.

1. Preliminaries.” Consider an 7 dimensional Riemannian space M
whose positive definite metric tensor is given by gi.. We denote by Ry’ the
Riemannian curvature tensor

sh-adabe bl gl ol o-ome.

and by R,,=R,,' the Ricci tensor, where {;fy} are the Christoffel’s symbols.

Ry =9, "

The operator of covariant derivation with respect to { ;‘;}} is denoted by V.

It is easy to have
1.1) Ry u =0

for any skew-symmetric tensor #'*’, by virtue of the first Bianchi’s identity.
If a vector field " satisfies

) pu=Vam + Vun =0, (m= g,

then it is called a Killing vector, where #(n) is the operator of Lie derivation
with respect to 7. It is well known that the equations

1) As to the notations we follow Yano, K., [5].
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ViVaem + R, =0, V'p=0

are valid for any Killing vector 7"
We shall recall various operators on differential forms. A skew-symmetric
tensor ..., may be regarded as the coefficients of a differential p-form

u= -131,—%,...1, dx" N\ -+« A\ dx.

We represent this fact by
U Uy, -
If p=0, then a p-form = is nothing but a scalar function which we shall

usually denote by f.
The exterior differential du and the codifferential 8« of u are given by

p
v#ull"'lp - Z vltuh"']t—l [ZYESTILY SO PZ 1 ’

du: i=1

vuf, b= 0 >

YV Uargeer,, P=1,
u :

0, p=0.

The Laplacian operator A is given by A = d8+3d. For a p-form u we
have explicitly '

p
(Au)h,...l,, = V” va Uper, — Z R,\fux,...,‘..x,

i=1

— Y R U, P2,

Jj<i

where the subscripts o appears at the i-th position and p at the j-th position,
and

(Au), = VVatr — Rfus, p=1,
Af:“vuvuf, sz'

A p-form u is called to be harmonic if du=0 and Su=0 are satisfied.
Thus if « is harmonic, then we have Au=0.
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Let % =mds* be a 1-form, then we shall naturally identify 5 with the
contravariant vector field 7' = g,¢*. Hence, for instance, if 7 is closed or
7" is a Killing vector, then we shall say that 2 is closed or the 1-form
7 = mdx* is a Killing form, respectively.

For a Killing form 5 we have

1.2) (Agh = —2R&ne, 89=0.
For a 1-form 7 the operator i(5) is defined by
(1.'(77)7,{);‘,...7% = n“um...l, s i(?])fz 0

for any p-form « and any scalar function f.
The Lie derivation with respect to 7 satisfies

1.3) b(mu = (di(n) + i(n)d)u

for any p-form u, (p=0). For a p-form u, 6(n)u is given explicitly by

p
¢ (n)u),\‘...;., =" Vallr,on, + Z Upyeeeaenn, V117

6f=n"Vafs, p=0.

The exterior product of a 1-form 5 or a 2-form @ with a p-form u,
(p=2), is given respectively by
Y4
7 /\ u: Na Uneeid, — Z My Udyeveanidy s

J=1

PAUT Poplin, — z Par, Unj-fo00n, — Z PrpUn.-ea--,
i j

+ Z Pap UneeeaeeBenid, >

Jj<i
where the subscripts a appears at the j-th position and B at the ¢-th position.
2. Harmonic tensors in a compact orientable Riemannian space. In

this section we shall always consider a compact orientable Riemannian space
M. For any p-forms « and v the global inner product («,v) is defined by
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(u,v) = —l—fu oMt do
U, - P‘ - Ayeeedp >

where do means the volume element of M.
For any p-form u and (p+1)-form v the following integral formulae are

well known

@.1) (Au,v) + (u,8v) =0,

2.2) (Au,u) + (du, du) + (du,du) = 0.

If a p-form = satisfies (Aw, ) =0, then # is harmonic, by virtue of (2.2).

The following lemma is also well known.

LEMMA 2.1. In a compact orientable Riemannian space
Gmu=0
is valid for any Killing vector o and any harmonic p-form u.
From this lemma and (1.3) we have easily the following

LEMMA 22. In a compact orientable Riemannian space,
i(p)u is closed
for any Killing vector n* and any harmonic p-form u.
Now let  be a Killing form and « be a harmonic p-form, then we have
@B A wWhyea, = V(9 A thar,een,
= Ve @athayer, — 2 MUy,

= "7“ Vu Uppoer, — Z Upyeveaesed, vaﬂl‘

= (e(ﬂ) u)ll"'lp .
Thus taking account of Lemma 2.1 we get

LEMMA 23. In a compact orientable Riemannian space,
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nA\u is coclosed
for any Killing form n and any harmonic p-form u.

By Lemma 2.2 and Lemma 2.3 we can obtain

LEMMA 24. In a compact orientable Riemannian space, if
i(pu is coclosed
JSor a Killing form n and a harmonic p-form u, then the p-form

p Ni(p)u  is coclosed .

3. Identities in a Sasakian space.”? An 7 dimensional Sasakian space
(or normal contact metric space) is a Riemannian space which admits a unit
Killing vector field 7" satisfying

(3. 1) Va Vy”lv = Nuw — MG
It is well known that a Sasakian space is orientable and odd dimensional.

In this section we prepare identities in an 7 dimensional Sasakian space.
Now if we define @, by

?p = V',
then we have
papl=—8 + ', @iyt =0,
Pw == Pu> (Pw= P guw).
(3.1) is then written as
(3.2) VAP = Mugav = M Gu
and we have easily

(3 3) vl¢hv = —(ﬂ—l)ﬂ,, s

2) Okumura, M., [1], Sasaki, S and Y. Hatakeyama, [2]. Examples of Sasakian space have
been given in [2] and [4].
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(3.4) VAVAPw = —2@,,.

Applying the Ricci’s identity to 7, we have

VoVum — VuVim = —Rya®ne,

from which we can get
(3.5) Ry ne = 00w — M G »
(3.6) Rfne = (n—1)n, .—

Next, applying the Ricci’s identity to @* we have

VoVe@i® — Vo V@l = Rpwd i — Rpi¥ .

Substituting (3.2) into the left hand member of the last equation we get
(3.7 Ros P — Rool @* = 98" — P gor — Pon 8™ + @, g,
from which it follows that
3.8) P2 Rewpe = — Roore @i + Por Jou — Poa Jor — Por Joa + Poa Jor -
Contracting (3.7) with respect to p and @ we can get
(3.9 —é— PP Ragr = Ruepi® + (n—2) @,
(8.10) Ripr = —Rup’, Ripd=R'epS.

From (3.9) we have
(3.11) PP VaVpthy = —[Rupt® + (n=2)pual

for any vector wu,.

4. Harmonic vectors in a compact Sasakian space.” Let u be a
harmonic 1-form in a compact Sasakian space, then we have df = 0 for the
scalar f defined by f = i(y)u, by virtue of Lemma 2.2.

3) Throughout the paper we assume that n=dim M > 1.
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Hence f is constant. If we define 8 by
(4.1) u=fgn+28,

then B is a 1-form orthogonal to 7, i.e., ()8 = 0. Operating A to (4.1) we
get AB=—fAn and as 5 is Killing we have

(AR = —f(Agh = 2fRin. = 2(n—1) frmm

by virtue of (1.2) and (3.6). Hence B is harmonic, because we have (AR, 8)=0.
Thus we have f=0 and obtain the following

THEOREM 4.1. Any harmonic 1-form u in a compact Sasakian space
is orthogonal to 7, i.e., i(n)u=0.

Next we introduce an operator J : p-form u — tensor of type (0, p)
% =Ju by

> 2
Urpeedy = Pr, Uady..odp
and we shall compute Az for a harmonic 1-form # in a compact Sasakian

space.
Taking account of Z(n)u=0, Au=0, (3.4) and (3.10) we can get

vu v,ﬂ’a = —ZVA("]uup) + ¢Aa v” v”ua
= ¢7La \Vis V,,ua = ¢/\,aR:us = Rla?[a .
Thus we have A% = 0 and hence we get

THEOREM 4.2. In a compact Sasakian space, # = Ju is a harmonic
1-form for amy harmonic 1-form u.

As a corollary to this theorem we have

THEOREM 4.3. The first Betti number of a compact Sasakian space is
zero or even.

5. C-analytic 1-form. It is known that in a compact Kéhlerian space
a harmonic 1-form is holomorphic (i.e., covariant analytic) and vice versa.
In this section we shall consider an analogous fact.
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Now, in a Sasakian space, let # be a 1-form satisfying
(5.1) Jdu —dJu =0,
which is written explicitly as follows
(5.2) . P (Vathy — Vyutte) — [Vil@lua) — Vu(éu“ua)] = 0 
It is easy to see that (5.2) is equivalent to the following equation
5. 3) P ally — PV alhe + mthy — muthy = 0.
If we transvect 5" to (5.2), we have
(5.4) U = Uan®)m + P Velke
and transvecting (5.2) with g™ we obtain
(5.5) PPV aus=0.

Now we define a C-analytic 1-form® as a 1-form u satisfying (5.1) and
i(p)u=0. Then we have

THEOREM b5.1. A necessary and sufficient condition for a 1-form in a
compact Sasakian space to be harmonic is that it is C-analytic.

PROOF. For a harmonic 1-form «, we have du=0, dJu=0 and i(n)u=0
by virtue of Theorem 4.1 and Theorem 4.2. Hence it is C-analytic.

Conversely let # be C-analytic, then we have i(p)u = *u, = 0. Taking
account of (3.3) and (5.5) we can get

(5. 6) W“VAVau., =0.
Next, transvecting (5.3) with @, we have
vhuv + ¢UB¢Aa Vuup - ”]una vlua + ﬂl¢v“uw = 0 .

Operating V* = ¢* ¥, to the last equation we get Au = 0, by virtue of (5.6)
and (3.11). Thus % is harmonic. Q.E.D.

4) For an almost complex space, see Tachibana, S., [3].
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6. A lemma. Consider a harmonic p-form «, (p= 2), in an n dimensional
Sasakian space and define a (p—2)-form v by

. A
v Uhgeeed, = PP U2 000, -

In the following we shall compute Av and obtain a lemma.
First as we have

VEVeUipa, = VEVe@"Muya, + 2V@"™ Voura, + @MV Vethyoon, 5
if we take account of (3.2) and (3.4) we can get
6.1) VEVsUreed, = — 2Unpa, + q)l'l’ Ve Vetbr,ur, -

As u satisfies Au = 0, the last term becomes as follows:

»
(6 2) ¢1’A’ vs Vsu;h..% = ¢A’A’ (Z Rhful,...e...% + ZRA,AfauAl...p...a.../\,)

i=1 J<i

A A4,
+ 2¢ ‘A’R;.fum;‘,...lp + @™ “R;L‘;\f”up,;\,...lp

+ 2¢A‘M Z RypP trpeegear, -

2<i.

On the other hand we have

6.3) ¢A‘A’R;L,;\faup¢;\,‘..x,, = AIA’RM\,P,, Ut
= 2[Rpa@s” + (1= 2) Ppo] %00,
= — 2¢A’l’ Rifurg.oa, + 2(n—2) Vg,

by virtue of (3.9) and (3.10) and taking account of (3.8) and (1.1) we have

2.1 2 A
(6.4) P Raa P trpeoea, = P17 Rappe .50,
= - Rpflla ¢7L,a ur,.o.. A»

+ (@pr, Jor, — Ppr, Gor, — Por, Gor, + Por, Gor,) .0,

= - 2“0;\,...1, .
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Substituting (6.3) and (6.4) into (6.2) we have

P
@MV eth,n, = Z Rifvreeen, + Z Rip Uryeperiger, + 2n—2p +2) ..,

i=3 2<j<i

and from (6.1) we get
Av =2n+1-2p)v.
Hence if our space is compact, we have an integral formula
2(n+1—-2p)(v,v) + (dv, dv) + (8v,8v) = 0.

Thus we have v=0 if 2p<n+1 and v is harmonic if 2p=n+1. Now if we
define w by

w=1i(pu: 9 U,

then we have 8w = 8i(gp)u=—v. Hence when 2p=n+1, v being harmonic,
we have v=0, too. Consequently we obtain

LEMMA 6.1. Let u be a harmonic p-form,(p=2), in an n-dimensional
compact Sasakian space. If p=(1/2)(n+1), then

i(nu is coclosed.

7. Harmonic tensors in a compact Sasakian space. In this section we
shall prove the following

THEOREM 7.1. In an n dimensional compact Sasakian space, any
harmonic p-form wu 1is orthogonal to n, ie., i(p)u =0, provided that
p<(1/2)n+1).

If p =1, this is nothing but Theorem 4.1, so we shall assume p=2. To
prove this theorem we introduce w, @ and 8 by

w = z(n)u D Wrer, = 1}"1&,;7\,...;\, s
»

a=ngAw: dy.a, =2 (—1)""m wr. i,
i=1

B=u—a: Up.er, = e, + B}L,...Av s



ON HARMONIC TENSORS IN COMPACT SASAKIAN SPACES 281

where /7\,\1 means that A; is omitted.

We can easily see that B is orthogonal to , () 83=0, and a being coclosed
by Lemma 2.4 and Lemma 6.1 8 is coclosed, too.

We shall need the following

LEMMA 7.2. In an n dimensional compact Sasakian space, p-form
a=yNi(n)u and B=u—a are harmonic for any harmonic p-form u, provided
that p = (1/2)(n+1).

PROOF. As we have AB=—Aq, it holds that

B (AB..a, = — BN (A, -

On the other hand we have, taking account of (3.5), (3.6) and ()8 =0,

B Ry @y = B R [ T (=D a0t + (— 1 108

Lk

= (=18 R e wn et = 0,

Ay Apeeed -
B RaaP Oty = B RyaP” [ Z (—1)F L Qe Reeepeeecee iy

ki, g

+ (=1 ey, + (= 1)1"1naax,...p...i,...;t,} =0.
Thus we can get

(7.1) BY (AR, .a, = — BN TV

P

= 2RM Z (— 1)“1(]71,5 Vetwn,...d,.- 1, -

i=1

As w is closed by Lemma 2.2, we have for a fixed ¢,

ixi

where the subscript & appears at the j-th position if j <7 and at the (j—1)-th
position if j > 7. Hence if, for fixed ¢ and j(i #j), we define Al by

Ay o Aeeed c
A = B 1w Ry

then it follows that
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Apeed, PIRY
B P f Ve wiyendoon, = B ”¢A,sz Vi, Wieeee Riedy

Jx=i

= Z [VA,A%{) - /31""1’ Whyeeserdponnt, V4,017

gt

= Z VA,A%E') .

=i

Substituting the last equation into (7.1) we get (AB,8) =0, from which it
follows that 8 and hence « are harmonic. Q.E.D.

PROOF OF THEOREM 7.1. As a=9Aw is harmonic, we have dyAw=0.
Hence it follows that
P+1 P+1
Pty Wirgeeedp,, — Z¢A,A,W}L,...12...A,n — Z(]M,}\zwh...h...hﬂ + Z(px,;\, T geeepeeodgeesdrpy — 0.

1=3 j=3 Jj<i

Transvecting the last equation with @' we can get (n+1—2p)w =0, so if
n+1>2p, we have w=0. Q.E.D.

In the case when 2p = n+1, we have from Lemma 2.2, 6.1 and 7.2 the
following

THEOREM 7.3. In an n dimensional compact Sasakian space, if u is
a harmonic (1/2)(n+1)-form, then i(n)u and n \i(p)u are harmonic.

8. An operator ®. In an n dimensional compact Sasakian space we shall
introduce an operator

O:u—>Pu=1u
which is defined by

»

%
. j— a
Dy : Uryeedy, = z Pry Urjeveaenidy s
i=1

where u is a p-form and the subscript @ appears at the i-th position.
The purpose of this section is to prove the following

THEOREM 81. In an n dimensional compact Sasakian space, if w is
a harmonic p-form and p < (1/2)(n+1), then ®u is harmonic too.
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PrROOF. If p =1, this is nothing but Theorem 4.2, so we shall assume
p=2. Let u be harmonic and assume that p < (1/2)(n+1), then we have
Au=0 and i(p)u=0.

We shall show in the following that (Aw),..a,2" »=0. At first on taking
account of @%= Vi, 7% (3.2), (34) and i(n)u=0 we can get easily

»
*
VEVetlaen, = 2 PAEVEVellaann,

i=1

and by virtue of Au =0 we have

*
VeEVetr oo, = Z P[RS ungeor, + ZR;\,"uA,...,,...a...A,
i

Jai

-
+ Z lea Pau)\,-np---an-l,, + Z,Ra;\‘:"u;\,...g...p...x,

k<i k>i

+ 3 Raaf Unpeperaennoenity) -

k<j
k,j=i

If we take account of (3.10), then the last equation is written as the following
form,

i=1

p »
* .
(8.1) VEVettrn, — 3 RaZthyogea, = S TE 0,
i=1
where we have put

[© — 3 @
To0, = — Z @2 Rergpa 0050, + Z(PA,“ R;\k,\fau;\,...p...a...a...x,, ,

ki k<j
k,Jx=i

where scripts p, @ and o of u are at the £-th, i-th and j-th positions respectively.

Next we shall compute T,z By virtue of the first Bianchi’s
identity, (3.8) and the skew-symmetric property of # and #, we have

KR eeed
¢xf Rslkp,uh,..." ...... AL,UTTT

o WRRSY |
= ¢la€(_REPwM - Rsalm) ull"'p‘"m"'lnu v
* wee
= —-2¢1fRgpahuxl...p..."...h,,u
S
= _2[—R0MAME¢P + Pari Prp — Pap Jruri — Pk Gap + Prip g"li]

*
X u;L,..."..."‘...;L, ut
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o YT
= 2Rakas¢>,fuA,..."...“...;L,,u e
— ooy oo
= Rasmk<p,fu;t,..."'..."‘...;\»u = RMM“G(pspuxl...p...,...l,u rete
Thus we can get
(1 * Ageedp ) ds
(8 2) Z T‘M)...,\,u v = — Z Z Rmf’eq)s”uA,...p...,...Mu !
i=1 i k=i
@ FApeeod
+ Z Z RA,(;\,W¢,1, Upyeepevatieeegeen, U777
i k<j
k, j=i

* *
—_ AqpeeeA
= E le;‘,""u;tl...,,...,...;\pu vt
k<j

Hence, from (8.1) and (8.2), we have (Au),...,%" =0 and this completes the
proof. Q.E.D.

Let # be a harmonic p-form, p <(1/2)(n+1), in an n dimensional compact
Sasakian space, then we know that ®u, ®%,--. are harmonic p-forms and
hence the following p p-forms

4
-
Z ¢lza ull"'a"'kﬂ > Z: Z ¢llﬂ¢l‘auh‘“ﬂ”‘a"‘ln > vt

i=1 i Jjx=i
ey, (]7.” Peee ¢Al ’u,,....,,

are harmonic.
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