ON A CERTAIN GROUP CONCERNING THE p-ADIC NUMBER FIELD-

By
Hideo Kuniyoshi.®

In the local class field theory, we consider the norm group of a finite
extension field of a p-adic number field ..  An abelian extension K of & is
uniquely determined by this subgroup of £*, where k* is the multiplicative
group of all non zero elements of 2. We denote this norm group of K by
Nkw. Then the galois group of K/k is isomorphic to the factor group
F¥/N .

We may consider, in some sense dually to the above fact, a subgroup
G(k/K) of K* which consists of all the elements Qf K* whose norms to
k are unity. It is likely that G(k/K) has close connections with the
subfield K. When K/k is cyclic, the structure of G(k/K) was determined
by Hilbert. When K/k is abelian, a certain property of G(k/K) was given
by Prof. T.Tannaka,® who gave also another theorem which is analogous to
the ordering theorem of local class field theory. The former property was
extended to non-abelian cases, by Mr.T.Nakayama and Mr. Y.Matsushima.?

In this paper, restricting to the abelian case, I shall give a detailed
structure of G(k/K), and add a certain remark to a particular non-abelian
case.

1. The structure of G (k/Q).

Let & be a p-adic number field, and K be a finite extension of 2 We
denote the multiplicaitve groups of their non zero elements by k¥ K¥,
respectively, and norm group of K/k by N¥i. The elements of K whose
norm to k are unity, form a subgroup of K* and we denote this by G(k/K).
When K is a normal extension of k2 with its galois group G, we mean by a
factor set of K/k a system of elements a,,, (o,7 € G) of K satisfying

(1) aﬁ’,, 7 Aoty p = Qgy7p Az, p-
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Further, we shall denote by K.i* the group generated by 6'77, § € K,
o <G.

One of Tannaka’s results runs as follows:

Theorem 1.2 Let Q be a finite abelian extension field of k with its galois
group A, and (as,.) be a factor set of QJ/k whose exponent is equal to the
degree of extension Q1 Jk. Then G(k/Q) is generated by Q\* and as,:/@: q-
where o, T run over A:

(2 G(k/m_(am Q- A>
Let )
3 (Mg, vy W) Niwr|

be an invariant system of A, then A decomposes directly in cyclic groups
Z; of order #;:

@ A=21X2Z; X oo X Zy.
This decomposition is up to isomorphism unique. Let o; be a generator
of Z;, and we shall fix it throughout this section.

In the Theorem 1, it is not necessary to take all the elements of A4,
but sufficient to do with o; of (4). We show this fact in next

Lemma 1.

(5) G(k/Q) — (acrpo’j Q‘I )\>
o4 0g N
We prove this by induction. Let N=2Z, X -+---. X Zr_, and M be the

corresponding intermediate field. @ We assume the lemma for the extension
/M. Then we take an element g of G(k/Q),

Nowph=1.
As NJ/k is cyclic, it follows from Hilbert’s lemma that
(6) Naw 6 = n-*, n € M.

Furthermore, as /M is abelian extension with its galois group N, there

exists? an element ¢ of N such that

n=Aoyn mod N§, »
where o = Ilio:®.
Then
) n =1La}y mod N§»%

3) We refer this theorem to [8J.

4) T.Nakayama (6] and Y. Akizuki (1).

5) We denote a product Ilas, ; by @s v, and in a similar way HaT,pbY ay, .
TeN
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Next, we calculate a7, using the relation (1),

(8) atl,:ox._ — Qo v — Aoy v Aoy, o,
- ' azr.y Qa;, No, an, o,
. Gopy a{'\’ o; Qopoyy ¥ Qo) ¥ Qays oy
= — 7 5 x4t - — Nﬂ/ﬂl‘—
Aoy op N Qg o aa‘ ,Op Qoiopy N Qo5 0"

It follows from (6), (7) and (8) that
Noix6 = (1L; az, - Noprw)t=-or

=TI, (ay5% Nagw (@ -7) = Napu{ I (222 oier ).
therefore o

Nmm[ 6/11; (a,,,, X wl"’r} =1

a"'i’ Tp S
From the assumption of the induction, we obtain
Gh/Q) = (“ , O A) qe.d.

T4 O

Let K be an abelian extension field of k&, whose galois group H has

invariant system
(ny,n,) .| 1.

Then
€] H=H x H, H; = {r.}
where K; are the cyclic groups of order #;, and +; their fixed generaters,
Let (b) ke a factor set of K/k whose exponent is equal to the degree of
K/k. From the lemma 1

GekIE) = (5, k).

1‘2) ‘T‘l
Concerning the order of b,y 7./b:, n moed K, we obtain next
Lemma 2. If (b:z 1/br, )" belongs to Kii*, then
MER
proof. Let K be the intermediate field which corresponds to H:. From
the assumption of the lemma and (9), we have

(10) (bn’ 12) 0\ T 01 1-» eleK.
Taking the norm with respect to K., the left-hand side of the equation
(10) becomes
NK//Q(bm ﬁ)x = (B )=, w) = (B, m Nijx 07)' 7™,

I
b12 1 ™

and the right-hand side
ArK'/Kz 011—‘";
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therefore,
b = (Nrjre )1 6K

In this relation, bz, m and N, 0 belong to the field K. and as the galois
group H, of K./k is generated by r,, it follows that
(1D by s = O Ngixz 6
where « belongs to the field k.

On the other hand we have
(12) a & Nie?
where if we regard a as an element of K, for

Npa = a®, = (a )n2 & Ny

implies (12), owing to the “verschiebungsatz’ of the local class field theory.
From (11) and (12) follows
» by 10 € N ot
and from this using the Nakayama’s theorem® we get
=1,
hence 7| x. q.e.d.

Again we return to the extension Q/k, and use the same notations as in
the Theorem 1 and the Lemma 1.
Lemma 3.
Qoir o n,
(13) <— 1) ‘e Q™
sy oy
Preof. Let L,be an intermediate field which correspends to the subgroup
Z, of A, then O/L, is a cyclic extension with its galois group Z,. From this
and (8) we get
NQ/L ( kAL U’) I = (d"f )1 7= (dc,j Ty NQ/L_,,(D')”'” = Nn/zjw"'“‘ .
aa"/ L7 4
Hence, .
adj) o;
Now, we point out a relation ketween the galois gloup A of Q/k
and the group G(k/Q).
Theorem 2.
GRIW/Qr= Ay x A3 x -+ X A

7) This preoof is given by prof. T. Tannaka. Our original proof was much
longer and considerably complicated.
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where Ai=Zi X Zisa X - X 2y
and Z; are the cyclic groups of (4).
Proof. We assume a relation between %°”% and QM e,

aajy o

(14) H(a__’ e i

Qo o
We choose Z, Z,, i < j arbitrary, and let N' be a direct factor excluding
Z,x Z,and Z be the corresponding intermediate field, then Z/k is a normal
extension with its galois group Z, x Z,, We take norm of (14) with respect
to Z, then a simple calculation will show that

Ao, o t=+1 ]
Nojz 2% = 1 ( 2
! aou og s =® Z:] ?
N aVn ot -0y s
QIZK = a,hN (t ES l,]),
) Ty
hence (14) changes to the form
aN L]
(15) (Greoe)™e z3,.
a”j:"i

From Chevalley’s lemma," (a] o) is also a factor set of Z/k whose
exponent is equal to (Z:k). Thus we can regard (a;}’i oy) and Z as (bs, ),
and K respectively in the lemma 2, hence

(16) n,|x0s.

This shows that in the relation (14) no 2719 can really appear, and there
exists essentially only relations of the for;ﬂq‘(IS) with (16). It follows that
Qs 0,/ Aoy o, mod Q7 forms a cyclic subgroup Z;,; of degree n;, and
GRIDIQN =20y X Zsy1 X Zayg X oo X Zpy1 X wvvo X Zpyp-1e
Then putting
Ai = Zigy,i X Ziggyi X -+ X Ly

we obtain the desired theorem. q.e.d.

From this, as an immediate consejuence, we obtain the Matsushima’s
result, namely:

Theorem 3. Let % be a p'-aflz'c number field and ) be a finite abelian
extension field. If

G R/ = Q7

then Ok is a cyclic extension.

This theorem is not true for a nonabelian extension K/k. For example,
let K/k be a nonabzlian extension with galois group G. And we assume

8) C. Chevalley (3] or E. Witt [9].
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that G/G’ and G’ are both cyclic groups, G’ being the commutator subgroup
of G. Then after a slight calculation we get
G (k/K) = K7,

2. Conneetions with the class field theory.

Let O and % denote the local fields as in the section 1. There exists
the maximum abelian extension field () of %, and obiously O > Q. Let A
be an infinite abelian extension field of £ and we put
(16) H(AR) = /} Nip
where A is any intermediate field of A/k of finite degree over k. For the
infinite abelian extension A of k, we are able to constitute similar theory
with finite abelian extension fields by using H(A/k) instead of N*.
Now, we shall show that G (k/Q) is closely connected with ths maximum
abelian extension field ) of .
Lemma 4.
an HQ/R = 1.
Proof. Let a € H(Q/F), and we put « in the from
a=Pc.e
where P is a fixed prime element of %, and ¢ an unit element. If &= 0, we
denote the group of all the units by E, and construct a subgroup H of &*
generated by E and P23, |B] =0 (2 |€]). Then H; has finite index in &%
(¥ Hy) < oo, ‘
hence from the existence theorem of the local class field theory, there
exists a finite abelian extension A; of % such that

H, = Nip.

Furthermore from (16)

(18 ac H(Q/k) < Niy = H.

On the other hand, from the construction of H,, it is obvious that
a <€ H,

and this contradicts with (18). Therefore € =0, a is a unit.
If a = 1, there exists a natural number # such that
19 a*1 mod p,
and we denote by E, the group of ?11 the element ¢, of E* congruent with
unity modulus p":
en=1 mod p".
From E, and P, we construct a subgroup of k* which has a finite group

index in k%,
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20) H, = (P, Eu.
Analogcusly -to the akove discussicn, we get an alkelian extensicn A. of &
such that
H, = Nji-nll\:.
And similarly
[¢10) a € H(Q/k) < Nix=H.
From (19) ard (20) obviously
ac€ H.
Thus we lead to a contradicticn, ard the lemma is proved.
Theorem 4.
Let K[k be any finite extension, then
(22) G (k/K) = H(KQ/K).
Proof. Obviously
G (k/K) < H(KQ/K).
Ccuversely, we take an element & frcm H(KQ/K) and put
6 = Nkj ©. )
We assume £ #= 1 and lead to a contradiction. If # =1 there exists an
abelian extension A of %k such that
23 6 € Nin.
From (16) follows
® € Nigx
Therefore, using the Verschiebungssatz we get
Nk, ® =0 € Nij.
This contradicts with (23), hence we have
Ngp® =0=1, 0 € G (k/K). q.e.d.
As an immediate consequence of this theorem, using thLe orcering theorem
of the local class field theory, we get one of Chevalley's results (2] :
Corollary. Let k be a p-adic number field and K be its finite
extension field. When we take a finite abelian extension A of K, then Alk
is abelian, if and only if
' G (k/K) < Nix.
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