Notes on Fourier Analysis (XVI).®

By

Shin-ichi Izumi

This paper consists of four independent parts. The first is devoted to
the study of the Cesaro summability of Fourier series, the second to the
divergence character of Fourier series, the third to a new definition of the
Stieltjes integral, and the last to a certain series of functions.

Part I.
§ 1. It is well known that, if

t
1 e f[‘P.«,(u)ldu:o(t),
0

then the Fourier series of f(#) is summable (C, k) (k> 0) at x.
The condition (1) may be replaced by the more general condition

) fq/m(u)du:o(t),

0
3) flqzw(lt)ldzt=0(t).

But these conditions does not depends on the order £ of summability. On
the other hand, the Hardy-Littlewood condition is that for (C, k+¢&) summa-
bility, but not for (C, k) summability. It will be interesting to find the
(C, k) summability condition depending on %, which becomes as weaker as
% increases. In this case, it must be remarked that (1) holds almost every-
where, so that the seeked condition must also be so for k.

§ 2. Theorem 1. If

@) ft,m(u)du:o(t)

and

*) Received Sept.1,1949.
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“@ f |2 =Lult=7 (W] gy oy
tz )

n
then the Fourier series of f(t) is summable (C, 1) at x.
Proof. We have

. _ — 1 sin*(n41)¢/2
I=f(x)—0u(x) ity f q)x(t)w dt

sm nt
27m f OE dt-+o (D).

As usual we divide the last integral into two parts, that is,

xin .
""“‘f X sm nt Zin (f . f >¢x(” s1; nt dt=J+7e,

say. By integration by parts we have

wn
_ 1 sm nt
=g f 20 dt
0
1 nt o nt
s {[(I)m(t) sin? n } 72[ B () SNt sm n dt+2f <I)L(t) sin? mdt}

i n
=o(1)+o(fn dt)+ 0(71‘[%2 dt)=o ¢))
0 D)

by (1), where @, (1) =f% (u) du.

1 sm nt
J.= ’z”ﬁf‘/% @)

an

dt

. COS 2nt

/N w/n

=1 (g
- 47[ (Kl KZ);
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say. Now, by (1), we have

1 dt
1= q’m(t)‘iz—
n
1 ([ @D T f D)
=% szm @}
o(n)+o(f t) =0 (1).
n

On the other hand

_%f Pty oS 2nt cos2nt

T+ 7|2

cos 2nt
== W(’ Zn) G—njzny” %
3m/2n
3m)om 7|20
1 CoS 2 t 1 %4 cos 2nt
2Uu= - | p) I ap f t“_ G—n/2ny
zn
1 (" @) Pult—ni2n)
+~ﬂ‘\/; {_7___ G2y Y}Cos 2nt dt
sm/2n
= Ll_L2+L3;
say. We have easily L,=0 (1) and L.=0 (1).
_1 [Ty #lt—m/2m) )
Ls_——n—f{ = G—m /25" | 08 2nt dt
3m[2n
_1 f PP [20) o ot gt
n t
3mjin
= [ ‘ 2t—m/2n
+ g fﬁ”w(t“‘”/zn)m dt
3w [2n
EMI+M£7

say. By integration by parts and (1), we have M,=o0 (1), and

MwO( f |2 — %(t 7)2n) | dt)~o(1)

n

by (4).
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We remark that (4) is derived from (1). For
f PO =altmm/mL gy < 2f E2GIRp

nn

Z[qmt) +f <I>r(t) dt —olm,

wn  wn
where @} ()= f |#-(u)|du. Hence (2) and (4) holds almost everywhere.
But (4) and (3) are mutually exclusive.

§ 3. Theorem 2. If

13
2) f%(u) du=o0 (1)
0
and
win

then the Fourier series of f(t) is summable (C, k) at x, k being>—1".
We prove the case —1 < k <0, since the contrary case is similarly and
more easily proved.

For the proof we need a lemma due to Szegd :
Lemma. The n-th Casaro mean of order k(0>k>—1) of the series

1/2 +cos x+Cos 2x+ ... +COS X+ ----
becomes

B+1Y k1
COS[(%‘!’ 2 x 2 } n zp sin px/2 \*
AF (2 sinx/2) T 2(n+1) F\ sin x/2

where (p,.) is a posilive sequence such that

Z Dun=1, 2 & Py =0(n).
=1 “=1

We will now prove Theorem 2.
k4
Sok ()—f (x)=;1r—f¢m(t)Kg'~'> (t)dt
[

T |n
:71_ ( f + f )«p,b(z)ng)dt I+],

71

say. For positive ,|K{(t)|<2n and then I=0(1). For 0>k >—1 we
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will use the expression in Lemma of the kernel K> (¢). Then

COS[ n-+ k-_‘z.l )t_‘ k+1 T ]dt
A=l/§0¢(t) Ak (2 sin t/2)’"“

k3 : sinut/2\* _
+ mzﬁmn[% (%G ) =K+ L
p=1

say. Since

_lf‘w’x(t)——%(t~7r/n)[ dt<__1_fnl%(t)——%(t——7z/n)| dt
n % = n* )

tH-lc

w/n

We get

bl sin ut/2
[ P> (G ) at = o,

by Theorem 1, and then

0= oAt ) =002

Thus we have
n+k—2f- 1) k—zi—l -
f¢z(t) AF (2sin7/2)57 dt+o0(1)
nn
COS[(n+k_;1)t~k§1 n]
=P A5 (2 sin 1/2) |,
N sin[(n_*_k;l)t_k-;l”]
+ ( +—5 + > O () A (2sin £]2)+7 dt
0
cof (n+ £31) - k4L,
0
=0 (D).

Thus we have I = o0 (1).

Now

A=K+ o0(1)



NOTES ON FOURIER ANALYSIS (YVI) 149

" cos[(n + ; 1)1 _k ‘2"}_ ”]
= Py (1) AF (Zsin 1/2) dt + o (D).

e

In the estimation of the last integral, we can follow the line of calculation
of K, in the proof of Theorem 1.

The case % = 0 is the Lebesgue’s convergence criterion of the Fourier
series and the case k=1 is Theorem 1. (1) implies (5) for £ > 0, but not
for £ <0. In fact (4) is not the local property for % < 0, which, combined
with (6), is consistent with the fact that the Cesaro summability of Fourier
series of negative order is not the local property.

Incidentally we have proved that

Theorem 3. If (2) and (4) holds, then the necessary and sufficient
condition that the Fourier series of f(t)is (C, k) summable (0 >k > — 1), is that

1 i cos <n+k;1>t—— k_2i'1 ”]
Hm 27 | @, () — 7 @singzye T dt=0.
0
Part 1L

§ 1. Partial sum of Fourier series. It is well known that the
Fourier series of f(¢) is summable (C,8) (8§ > 0) at a point x, provided that

t
¢ fl%(u)ldu =0(t), Pu (@) =flx+ 1)+ flx—1) —2A%).
0
Then the condition (1) may be replaced by the following more general
one :
t t
) fsbw(u) du = o (1), fl?’x(u)ldu = 0 (D).
0 0

The generalization of this kind was done in analogous problems by many
writers. Importance of such generalization lies in that, if the latter of the
condition (2) is supposed, then the first becomes necessary in such theorems.
We will show that such generalizations are sometimes impossible. Let
5.(x) be the n—th partial sum of Fourier series of f(x). It is well known
that
3) $a (x) = 0 (log »)
under the condition (1). But (3) does not hold under the condition (2)?.
For the proof®, let (m) and () be the increasing sequences of odd



150 SHIN-ICHI IZUMI

integers and they will be determined later. Let us put
Ne=myn,----mx, My= Npwu
and I be the interval (x/Ny, =/Ni_:). Finally, let f(¢) be an even function

such that
F(2t)/2 =sin Myt (tely).

Let ﬂ/Nk <t é 7Z/N]¢_]. Then

- N1 1 npm
sin Myudu = | sin M, u du= N sinpy,udu = 0,
- »
Ip ql\p n
t M.t
sin Myudu| <— flskinudu <7 1
|3 = sSqrs
= M = Mi=
| Ny, HET

Since p, — o0, we have
t
ff(u) du = O (1).
On the other hand, the boundedness of f(x) implies
t
flf(u)!du = 0 (2).
v

We will now show that s, (0) is not o (log #). Putting s, (0)=s,, we
have

_ sin (n + 1/2)u f sin 2n+1u
- —ff( )"3smn 2sinu/2 du = fCw—gmy sin u

 Sin Cn + 1Du du.

e sin %

=1 P=k+1
For p >k
p= fSinM1t S]:irjl‘gkt dt
Ip
cos(M,, - Mt f cos (M, + M)t 1
f 7 di +o N,,>

Ip Ip
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A = My )N, 2y M|V
? -1 cost v

P-tcost 1
¢ dt — t—— dt+o (Vp)
(X = M Ny M+ 1[Ny,

M M, 5
B fﬂftrr”:ﬁﬂ%) cost f" (o ﬁu’i—)mst s o(—1—>
IR t oy gy Ny
N Np-q Np—1 T Np Np
_( Np-1 Mx;) <M) M) < 1
=0 (—*Mp Not + 0 +

M, Ny) T w;)="(‘%-ﬁl>+"(71v;)'

151

Thus we have

o] =p=§:}+1i,, - O(Mh S j—lvg)Jro(i 1 )

P=k+1 P=k+1 Nl'

o) +0( k)= 0{ ) 0Lt

- ———)=o0).
a1 Bt Nk+1> o( )

Let us estimate I.

13 k
_ . sin Mt N ;
I—pzlfsm_Mkl Sint dt—%zp.
et A -

D

For p < k we have

. a [ dt
L] éfsint —fmt’JrO(ﬁ

1 1
’1;:1) = logn,+0O <N1,:>

7 »

We have also

I

_ sin* M).t _ _1__ dt _ 1 CoS 2M1‘;t
’k~f*§;1t—di—zf7' Tf—z—d““o(l)
Ix Ix

= -%— log ne — O(1).

1 k-1
Thus we have 1= Tlog N — 2 log n, — O(1),
i=1
and then
k-1
T Smpy = ;vlog Wi — Z log np, — O (D).
i=1

I ome>nha k=12, ..0),

then 7z sww = (1/8)logmi;. This shows that
sy+0(log n), which is the required.

§ 2. The Hardy-Lettlewood problem. Hardy and Lettlewood proved
that, if f(x) satisfies the condition
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b
“) [I‘Pw (w)|du = o <t//log—:;—>

and the Fourier coefficients of f(¢) are O (1/#%) (8 > 0), then the Fourier
series of f(f) converges at ¢ = x. They proposed whether (4) may be
replaced by

(5) [;x (w)du = o <t/logit~>, [} Py (u)|du=0 (t/log%).

We can answer this problem negatively.
For the proof we take (#:), (uv), (M;) and (N,) as in the begining of
§ 1, and put ¢; =1/log Ni. Let f(#) be an even function such that

f@2Y)2 = csin Mt (t € L).
Then f(2) is continuous at ¢t =0. For ¢ in Iy = (z/Ny, z/Ni-1),

ff(u)du—ckfsmM udu=o (Wkl)g—NI)

| Ny

“0<“Z//1°g )= (t/ lou ).

and also

11
flf(u)[du—chf [smMLuldu+2 cpflsmMpuldu

7| Ny, P=k+1 Ip

oo o 1
=at+x = =o<t/log—~>.
‘ p=zk+1 Ny t

Thus the above defined function satisfies the condition (5).

Let us estimate sy, as in § 1. Dividing sy, into I and J, we can see

easily /= 0(1). We will now estimate I. For p <k

. . sin My ¢
zp:2fsm Myt “sini dt
Ip

| cos(Mx — M) ___fCOS (M, + Mp) 1 1
_f 7 dt 7 dt+o<N>

p Iy
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lfk L .y e, My Mp
f Mp-1"Np-1 COStdt ‘1\1} 1L Np-— 1) CO dt_l_ ( 1 >
My _ Mp ¢ of M 3 NI’
Np Ny Ny M))

-0 )+ o5 ) +o (a) =0 (3

)+0(M>

Thus

k-1 k-1

. 1 M 1 2

S =o(eZ )o@ ) o)+ h =3

»=3 »= D=3
Hence if we take #; such as »; = #}_,, we have

> S logn, — 2 >1 logm _ 2
7w S = 5 logne 5-l~0(1)=2 TogN., 5 o(l)_20 + o).

Thus s, does not converge.
Concerning Fourier coefficients of f(¢) we have

T A = ff(l) cos nt dt = 2 ¢y | sin Myt cos nt di.
=3 I
»

If Niv1 > My > Ni, Niw1 > n = Ny, then we put

T Ay = ckfsiant cos ntdt + 7,

Ty

where the integral term is

c,cfsin M. t cos ntdl=0< Mo = 7}) Tog N, > =O<le_]> =01 /n'?)

I
for | My — n| > Ny, and for | My — n| < Ni-: the left hand side is
w| Mp-n||N,

o] ~o ()=o)

Since 7, is of lower order, we have completed the proof.

§ 3. Jump of functions. Lukacs proved that, if
t
6) fl‘l"w @) — 1 x|du =0 @), Y= (u) =f(x+ u) —f(x— u),
0

then
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lim s, (x)/logn = — 1 (%) /=,
n->c0

where s, (x) denotes the n-th partial sum of conjugate Fourier series of
f(x). Mr. Matsuyama proposed whether (6) may be replaced by

13 13
f%((@ — 1) du=o0(), f"\lf'w(u) —1(®|du=0 @)
0 0
or not®. This can be answered negatively. For this proof it is sufficient

to take fF(t) as odd function and ¢, = ( — 1)* in the example in § 2.

§ 4. 'The Riesz snmmability of the derived Fourier series. It is
known that if®

2
0

@ It — 251
‘[ft—dt=0(t),

then the derived Fourier series of f(¢) is summable (C, 1+ &) (&> 0), but
not summable (C, 1). Therefore it arises the problem whether it is
summable by the Riesz logarithmic mean of order 1, or not under the
condition (7)7.

But this can also be answered negatively.

Part IIIL
§1. Let f(x) and g(x) be integrable functions with period 27 such that

(€H) JA€)) dx:-f‘g(x) dx=0
0 0

and their Fourier series be

©o
SO~ (@ cos nx + b, sin nx),
rn=1

g ()~ D (An cos nx + By sin nx).

n=1
If f(x) is continuous in (0, 27) and g (x) is of bounded variation, then we
have

@ ff(x) dg (W =m 2 n(a:B.—batn) (C, 1),
0 n=1
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which means that the right-hand side series is summable (C, 1) to the left
hand side integral. This relation holds for Young-Stieltjes integral®, that
is, if feVy, g¢V, (1/p + 1/q > 1), then (2) holds. Therefore we can adopt
(2) as the definition of the Stieltjes integral®.

In general, let f(x) be an integrable function defined in (0,27) and g(x)
be continuous there, and

f(x)~ “gi + > (@qcos nx + by sin nx),

n=1

« -
g% ~7“ + 2 (a, cos nx -+ B, sin nx).

w=1

The Stieltjes integral of f(x) with respect to g(x) is defined by
2

@ | fdg® =2i7, {g@m) —¢ (0)}ff(x) dx
0 0

-+ 7[21’! (aan, — b, an) (C) 1)-

§ 2. In the following we will consider the case when (1) is satisfied.
The general case can be treated quite similarly.
Let K, (x) be the Fejér Kernel, that is,

_ 1 sin? (n + 1)x/2
B = 557D sifx /2 "

Then (2) becomes

2

f f(x) dg (0 =lm iﬂ f fx)dx f g K (x— ) dy.
0 0 0

Thus (4) may be used as definition. Since K/(x) has singularity at x=0,
the integral is a sort of singular integral. Singular integrals are used as
representation of functions, but it is rare to use them as the definition of
the integral. Definition of the fractional integral are on this line.l®

§ 3. Let us consider the existence condition of our integral. If f(x) is
bounded almost everywhere and g (x) is differentiable almost everywhere,
with integrable differential coefficient, then the Stieltjes integral exists.
For, the right hand side of (2) may be written as )

2

im | on (%, f) &) dx,

n-yeo

where o, (x, /) denotes the n-th arithmetic mean of the Fourier series of
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f(x). Since o, (x, f) is essentially bounded, above limit exists.

Since the definition of the integral is symmetric with respect to f(x)
and g(x), it is desirable to find the symmetric existence condition. For
this purpose we prove the following theorem.

Theorem 1. If

fﬂ ’,lf(x)g(y) - g»|
(x—)*

dxdy < oo,
- -n

then the Stieltjes inlegral of f(x) with respect to g(x) exisis and is equal to

zero.
Proof. It is sufficient to prove that

IElim%ff(x)dxf g K,/ (x—y)dy =0.

-z
If weput x—y=2u, x+y=20 then x=u+ v,y =v —u, and

TN T V2 +V

I =1lim ,%_ dv f(u+v)g(v—u) Ky Cu) du,
e 2 VT4
where
’ _ 1 sin(n +1) u
BiCw = 551~ sifu
_ cos u . sin2(n + Du
T T Tn + 1) sintu sin*(n + Du + —5 gy,
= — Ln (u) + Mn (u),
say. Now
L 2 -0
I = dvf fo+u)yg(w—u)L, (w)du
—nVE -2+
= f dvf — F(u, v) Lo(u) du,
- 0
where

Fu, ) =fo+wegw—u) —fw—u g+ un.

Dividing the inner integral of I,

[ wf(n+1) AVa ]
I; Zf dv(f +‘f )duEP:1+Q:z,
0

0 7)1y

say. Then we have™



NOTES ON FOURIER ANALYSIS (XVI) 157

LA n/(n+1) 1 ain
Ipnlgf f II"(M U)l n+ u_,(n_}_l)f G;M)du
]

wi(n+1) z/(n+1)
=(n+1)f —sz.—f‘)—udugf G;f)du
0 0

where we put
/2
G (u) Ef | F (u, v)|dv.
-2

By the hypothesis

f G(u)d <ff lf(x)g((;:c) SIOLICTEPN,

-t -7

Thus Pn = 0 (1).
We have

LA T2 =0
du
lQlll<f dvf IF(u v)lm

-3 [(n+1)

LV LRI
= n+1f f | F (u, v)|dv = o(1).

1t,(n+l)

Thus we have proved I,/ = Pn. 4+ Q, = o (1).
On the other hand

NS Y3 =0
I = f f(u+v)g(v—u)Mn(u.>du

LAV Vg -
= f f F(u, 'U) Mn (u) du
—-aV'E
Ly g~V
_ sin2 (s + Du f
—f —eimfu du F(u, v)dv.

-2+
We see I,/ = 0 (1) by the Riemann-Lebesgue theorem. Thus we have
I=1lm (L + L) =0,
n->o0

which is the required.
Theorem 2. If there is an s such that

(MDD —f ) gx) —25(x— )|

- -7
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then 1he Stielies integral of f(x) with respect to g(x) exists.
Proof. If we consider

I,E—%f f (x—y) Ky, (x—yd>dxdy
instead of 1,=1,+ I,”, then we can proceed as the proof of Theorem 1.
§ 4. If f(x) and g(x) satisfy the condition of Theorem 2, then (3) and
the proof of Theorem 1 imply

T —

r+h o+ R
1 —_ —_
S f fwdgm =L@t R —gG h)ff(t) dt+ o0 (D)
n w—h

as h— 0. If f(x) is continuous,

L+l

o] Fdg) =f EETW LGl 4 50,

x=Nh
This is the differential property of the Stieltjes integral gotten by Burkill
for Young-Stieltjes integral®.
§5. We will now extend the above method to the Hellinger integral.
Let

flx) ~ tzl" + D (ancos nx + by sin nx),

=1

ga) ~ %i + Z (ay cos nx + Basin nx).

n=1

df(x)dg (%)

Since the Hellinger integral Tx

of

is ordinarily defined as the limit

é [fCa) — FCaoDI[g () — g (xim)]

Xi — Xi-1

i=1
as the norm of division (x;) tends to zero,we can suppose that q, = oy, = 0.
If
1 ”Z 7% (@n An =+ b Bn)
n=1
converges in the (C,1) sense, then we say that f (x) and g(x) are integrable
in the Hellinger sense, and denote the integral by

@ ‘ df(xc)i;ig(x)n

-7
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We can easily see that, if g(x) is absolutely continuous, then the above
integral reduces to the Stieltjes integral, defined in §1. The (C, 1) mean

of (1) is given by

3) n? li;n S dxf g K (x — t)dt.
Corresponding to Theorem 1, we have
Theorem 3. If

f f fO g =7 g®
(x —y)3

dxdy < o,

-7 -7

ther the integral (2) exist and is equal to zero.

Proof. If is sufficient to prove that the limit (3) is equal to zero.

x—t=2u, x+t = 2v, the integral in (3) becomes as z — 0.

Puttnig

L. LAVERED]
) —f f(u+v)gw—u K, Cu) du.
VY —uVIT+Y
Now,

K (2u) = sin* (n + Du _ cosu sin® (n + 1)u 3 cos*usin* (n + Du

" T (n+ 1)sin*u sind » sint »

2 2
Lo+ 1 cos!(n 4+ 1u _ cosusin*(n + 1Hu

2 sin? ¢ sind »
=L, (u) + L. (u) + Ls (u) + Ly (u) + Ly (u),

say. Let I, be the integral (4), replaced K, (22) by L;(u).
Then, putting F(u,v) =f(v + u) G(v —u)—f(v—u)g(v+u),

I, = f / F(u v) Ls (u) du

-
LV €% 2] T2
:f du(f +f )d/t“P—l—(),
T 0 /()
say. Concerning P, we have
LV LA )] Y sy
1Pl = |5 1f dv|  Feup SusmmtDu g, [
-V

LAV z{(nt1)
<6 +1)f f IF(u,v)l—

N2 z/(n+1)
56?{] f ]F(u D g,
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which is 0 (1) as # — oo, by the hypothesis. We have also

T LR
d
lngf duf |Fcu,v>|—-——(n+”)u4
B 2y

-y

IA

2 /v d 2 -U
ES S —uiLf | F(u, v)|du = o (1)
Cw/(e+1) 0

Thus Iy = P+ Q = 0(1). Similarly we have I, + I, I, + I; = o(1). Hence
the theorem ie proved.
Theorem 4. If

I

-7 -7

fx)gy) —f)glx) — s(x — y)*”
x—y)

; dxdy < oo,

the Hellinger integral (3) exists and equal to s.
Part 1IV.

§1. M. Kac proved the following theorem®,
Theorem. Let ¢ (x) be a periodic funclion with period 27, belonging to
the class Lip a (0 < a < 1), such as

¢9) f‘l'(x)dx:O.
0

If ny is the integral multiple of 2n and Wy >q>1 (k=1,2, ....), and

D¢l < oo, then the series

k=1

2) PNPAC LD
k=1
converges almost everywhere to a function in (L*).
In this part we consider the series (2) with ¢(x) belonging to Lip («, 7).
The class Lip («a, ) (0<a <1, r>1) consists of functions ¥ (x) such
as

1/r

(f [P(x+ t) — sv(x)l’dx) = 0", (¢ > 0).
0

More generally we consider the class Lip (a, B, ) which consists of
function @ (x) such as
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2n 1/r
( |9 (x + 1) — ¢<x>|rdx) =0(zw logﬂ—}>, > 0.

0
Especially we concern the class Lip (0, 3, 7).
§ 2. Theorem 1. L2t @ (x) be a periodic function with period 2=, belonging
to the class Lip {a, 2) O0<a =<1, r>1). If
Mg/ > D> 1, Mparf/me>q>1 (=12, ....,)
and

2 Cu.2 < 00,
k=1

then the sequence
my

2%7’ (e %)
k=1

converges almost everywhere to a function in (L*).
Lemma 1. For @ (x) satisfying the condition of Theorem 1,

'f ‘P(ntx)¢(n;x)dx <A/q0‘l"1|

Proof. Let i <j. By the periodicity of ®(x), we have

I=|®n;x)Pn;x)dx = P n;x)P (nx+ 27kn;[ny) dx
‘ 0 )
for k=12, ..... Let N be the greatest integer such as Nu;/n; < 1.

Putting £ = 27er/n;, we have

I= f P(n;x) —27)(%1—{— 2”k”')]dx
0

L k=1 nj

=f(/1(njx)'
0

=f‘/’(njx)-
0

2|~
M =

¢(mx+ Z”k”’ fsv (mix+1) dt]

r
=
]

1

2|*"

N a(k+1)ng iy
2[ {¢<n¢x+2”:m)~—<P(mx+t)}dt
=1 Jj .

2akng/ny
2
+ P Mmijx+ 1) dt] dx.
A -
Now
21{(’64-])”"”! 27

<P(n,~x){ <mx+

2”"’"’ 2ZI) — g mx+ ) d

k ?.nh:nilnj 0
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2aCk+10my/n; 27 1/2 2 27tkn y 12
= f dt(fsvz(njx)dx) <f{¢'(mx+ ” ")—‘P(mx—kt)}dx)
2arkny/n 0 0 I
2a(k+1)n;/ny ®
< _"_> dt.
”n;
2akngn;

Since 27 — & < n;/n;, we have
1< A Cne/npy* < AJgro-D,
which was to be proved.
Lemma 2. Under the assumpticn of Thecrem 1 the series (2) converges
in the (L*)-mean.

Proof. Letl1=<m=<n.

f (2 o P x)) dx =
0

k=m

2 C7Ckf¢ (n; x) P (i x) dx

Jik=m

n—-m n

sa3 loflal <43 3 lellel.

J k=m r=0 S=m+7r

n=m

<A2 m/_.c Azquc — 0 (m,n— ).

= n =0

Poof of Theorem 1. We can suppose tnat

P () ~ 2 ae
v=1
and put
i3
Sn (x) = 2 a,,e""" .
v=1
Hence

g) (nk x) ~Z al'eivner_

v=1

By ¢ € Lip («, 2)
2 /2 2 12
( f L %) — Suy ()T dx)l g( f Co (x) —sm;Cm'ﬁdx)
0 0
< Afpp (B=1,2,--..).

If we take pp = k“+9%, then

f (Z lckilf(mx)l) dx<§c,j 2[‘1’(71Lx) dx<A26‘m
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where \lri (rex) = P (mpx) — sp, (mex).  Thus the series 2"’0 Y (m,x) con-
verges almost everywhere. By Lemma 2, the series

> o Sy (M %)
k=1

converges in the (L*)-mean. Let us take p such as
g1 > D pn, (B =1, 2,....),
and put
€= 0 Unp-1 <iSmy?), ¢, =c (my <i=<mp+1),
a=c+c'(1=12 ....)
then the series

3) 2 € Spy (1 %), Zc,;’-s,‘k (ne%)
k=1 k=1

converge in the (L*?)-mean. The m,i41-th partial sum of the first series
of (3) is the pme.,-th partial sum of Fourier of the function represented
by the series. Hence, by the Kolmogoroff theorem'®, the sequence

M1

> G S (7 1)
k=1

converges almost everywhere. Similarly, concerning the second series of

(3), the sequence
”%Z

Z G Sy (15 %)
k=1

converges almost everywhere. Hence

myg my .
D@m= 2 @) + e P (s x)
k=1 k=1 k=1
converges almost everywhere.
Theorem 2. In Thecrem 1,the cendition @ €Lip («a,2) may be replaced
by ¢ € Lip (0, 3, 2) (3> 1).
Theorem 3. In Theorem 1, we can replace the condition of (mi) and
(ne) by
O<p<m/br<qly<1l, k=123, ---.),
Miyy > mFAroy (6>0, k=1,2, ....).
§3. Theorem 4. If ¥ (x), (m:i) and (w;) satisfy the conditions in
Theorem 1 or 2, then

i n g 2 1/2 oo
(/ [sqp ch‘?’(n.ax)}dx)é c2a
0 k=1

k=1



164 SHIN-ICHI IZUMI

Proof is contained in that of Theorem 1.
Theorem 5. Under the condiiions of Theorem 1 or 2,

Mi+1

2 ¢ P (1 x)

kE=mg+1

2

< 0o

o

>

i=1

almost everywhere.
Proof. Theorem 1 holds good even if we replace cx by =+ ¢, (B = 1,2,
--). If {7x(u#)} denotes the Rademacher system, then, for almost all #,

1
lim supE( > e (n x))n(u) < oo

t-eo k=1 N=my+1
for almost all x. Hence, by Fubini’s Theorem, we have, for almost all z,

Mh4q

lim supZ( > e (n x))n (#) <

n->eo Jomga1
for almost all #, and then the series of the square of coeficients converges
for almost all x, which is the required.
§4. We will now prove some category theorems.

Theorem 6. If ny. /n,>q>1 and 2 ci<co, then there is a measurable

set L in (0,27) such that o

1) For all ®» € Lip (0,8,7) the series (2) convergzs almost everywhere
in L, and

2) For all ¢ € Lip (0,8,7), except a szt of the first category, we have

lim sup(zc,ﬂ)(mx) < o

n—>co f k=1
almost everywhere in CL.

Proof. If we put

un (P) = 2 0P (M %),

k=1
then u, (®) is linear in Lip (0, B, 7), norm being that of (L*. Since the
set of trigonometrical polynomials is a dease set in Lip (0, B, ), and the
series

o

2 CLCOS N X
k=1

converges almost everywhere, u, () converges in a dense set of Lip (0, 3,
7). By a theorem due to Saks, we get the theorem.
Theorem 7. If ﬂ¥!7l.b+1 (k=1,2, ---.) anch,“; < oo, then the following

k=1
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two cases are possible:
1) For all » € Lip (0,8,7) (2) converges almost everywhere.
2) For all ® € Lip (0,8,7), except a set of the first category,

ECIC P (nxt)

k=m

4 lim sup

m,n->c0

= 4 oo

almost everywhere.
Proof. Without loss of generality we can suppose » =2. Let us

suppose that there exists ¥, € Lip (0,8,2) such that 20k¢ (n:t) does not
converge almost everywhere. Since Moo M1, k=t

”n

2 Py (i t)

k=m

%) lim sup = + o0

", N->c0

almost everywhere. In order to prove the theorem, it is sufficient to prove
that the set H of ® such that (5) does not hold, is of the first category.
If we put

n

> cm(mt)'gM(m<n; mn=12 ..)) gn>,

k=m

Doy E(‘/); meas(t;

then H = V(D55 7,5=1,2, -...). Now &Py, are closed. For,

fl?’ — ]?dx < & implies
0

(2 e [P (nst) — ¥ (i t)]>2 dt < & const.,

0 k=m

which may be seen from the proof of Theorem 1 and 2. If we put
DlP (mit) — Y (1)1

Ez(t;
k=m

then we have |E| M} < & const. Thus C ®y, is open, and then Pu, is

zM])y

closed.

It remains to prove that ®.,. is non-dense. Otherwise ®ux,, contains a
sphere S. Since trigonometrical polynomials form a set D dense in Lip
(0,8,2), there are 'a we& D and » >0 such that

( Pp; f | —w|%dt < rz> =28.
0
Since {#:.} has the Hadamard gap, 3 c: w (n:t) converges almost everywhere.

27
f |®]% dt <7* and the hypotheses imply that v =@, +we S. On the
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otherhand, by (5) ¥ € ®uy,, which contradicts S S P,

1

2)
35
4)
5)
6)
[p)
8)
9)
10)

11)

12)
13)

14)

Foot-Notes.

Mr.G. Sunouchi kindly remarked me that analogue of Theorem 2 is
proved by J.J. Gergen in Qurterly Journal of Math., vol. 1(1930). Since
we can easily see, from the proof, that the condition may be replaced
by (C, ») mean of f(t) is 0(1) and difference in (5) may be replaced
by the difference of any order, Theorem 2 may be written in the Gergen
form.

This problem was proposed by Mr. G. Sunouchi, whom the author exp-
resses his hearty thanks.

Cf. Lebesgue, Séries trigonométriques, 1906, p. 85.

Matsuyama, Real Analysis Monthly, vol. 1, No. 6 (1946) (in Japanese).
cf.O. Szasz, Trans. Am. Math. Soc., 42 (1942) and S. Izumi, Journal of
Math. Soc., vol. 1,No. 2 (1948).

S. Izumi, Tohoku Math. Journ., 28 (1930).

Concenning this result the author owes much to Messrs N.Matsuyama, G.
Sunouchi and S.Yano. .

L.C. Young, Acta Math., 67 (1937); Burkill, Journ. London Math. Soc., 23
(1948).

Cf. S. Izumi and T. Kawata, Tchoku Math. Journ., 44 (1938)

Zygmund, Trigonometrical series.

M. Kac, Annals of Math., 43 (1942).

We can prove this lemma by the method of M. Kac, but our Method allows
us a generalization used in Theorem 4. :

For the general case we use the Littlewood-Paley Theorem.

This theorem contains a theorem due to T.Kawata and the author, Tohoku
Math. Journ., 1940.

After written up this paper, A. Zygmund sent me the paper dueto him, Kac
and Salem, Trans. Am. Math. Soc., 48 (1948), where is found a theorem
near Theorem 2 in this parts. Author expresses his hearty thanks to Prof.
A.Zygmund who gave him valuable remarks.





