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Abstract

In this paper, subspaces of LP(Ry 1) are defined using g-translations Tj . operator and g-
differences operator, called g-Besov spaces. We provide characterization of these spaces by
using the g-convolution product.
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1 Introduction

Much recent research activity has focused on the theory and application of Quantum Calculus. This
branch of mathematics continues to find new and useful applications. For example the so-called
g-analogs of special functions and hypergeometric series, called g-series have many applications in
arithmetic theory, combinatorics, quantum physic, group theory [2], and others areas of science and
mathematics. Applications of this mathematics include population biology [5], geometric analysis
[6], intelligent robotic control [9], approximation theory [22], and financial engineering [21], among
others. Our interest in this paper is to characterize some weighted Besov spaces in Quantum Cal-
culus, called weighted g-Besov spaces. In the classical case there are many ways to define Besov
spaces see ([4], [20], [24], [25]).

In this paper we express g-Besov spaces in term of convolution f *, ¢, with different kinds of
smooth functions . These spaces can be described by means of difference differential operator (see
[14], [15], [18], [23).

Throughout the paper weight w : R, — R, will be a g-measurable function, w > 0 a.e., and we
will give a characterization of weighted g-Besov spaces.
Our objective is to find weights where we can get such a characterization of weighted g-Besov spaces

o ppm . . :
ALY, =By, ((with equivalent seminorms )

where AL, the space of even function f: R, — C such that

TN Voo gy dgzy
= { [ e < Gsm<o)
0

11

and

I

ppes = inf {c > 0;|| Voof llgp< Cw(z) ae. z€ RM}, (m = +00)
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where we have put V,.f(y) = T,.f(y) — f(y), and BY', . the space of the even function

/R, — C belonging to L'(R, 4, (1_:733)3) satisfying

1
I 7] }7 <400, (1< m < +o0)

Bpm

w,p.q”

» /+°° g 1T dyt
w(t)™ t

and

I

where ¢(z) ==t ot 'z), t € Ry rand z € Ry.

pgroo = inf {C >0; || w1 g £ llgp< Cw(z) ae te Rq7+}, (m = 400)

*w,p,q

The contents of the paper are as follows. In Section 2, we collect some basic definitions and

results about g-harmonic analysis. In Section 3, we give condition about weight and prove the

connection between the spaces AL, and B o 4.

2 Preliminaries

In all the sequel, we assume ¢ € (0,1) and we adapt the same notations as in [8].

e A ¢-shifted factorial is defined by

(a;q)o := 1, (a;9)n = H(l—aqk); n=1,2,---,00,
and more generally

(a1, ar;@n = [ [ (ar; @)

k=1

e The basic hypergeometric series or g-hypergeometric series are given for r, s integers by

oo n(n=1)
[(=D)"q = " "(a1,- - ,ar;q)n 2"
CL,"',(Z;b,"',b(;q,l' = .
el i) =) (br. - bai ) (4 )

e The g-derivative D, ., f of a function f on an open interval is given by

f(z) = flgz)
(1-qz ~

and the g-derivative at zero [17] is defined by

Dyf (@) = T #0

Y

Dyuf(0) = tim &€ =JO)

n——+00 xq™

where the limit exists and independent of x.
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e We also denote

e The ¢-shift operators are
(Agaf)(@) = flaz),  (Agnf)(z) = Ag-1 . f ().
e We consider the g-difference operator
Ay i= A;;Dg’w.
e The g-analogue of (a + b)" is a non commutative term (a + b); given by

a"(=2;q)n, a#0
(a+b)g =
qn(nfl)/2bn’ a=0.

It is clear that (a + )y and (b+ a)y are not always the same. For future use, this definition
can be generalized in a way similar to its ordinary counterpart by

(1+a)F

(1+a)y = 7(1 )
q

for any number «.

Proposition 2.1. For n,k € N

n(n—1)

(i) (a—2)g =" = (x—qg " a)y

(i) DF (z+a)? = [n]g.[n —1g..[n — k + 1g(z + a)p "
(i) ijx 1 _ [n q.[n—|—1]q...[n—:k—1]q

= (-0

Proposition 2.2. For any number «, 3

(i) (1+2)g.(1+q¢%2)] = (1+ )5+’

(i) Dge(1+ I)g = [a](1 + qz)ffl
(iii) Fora >0 and z =a + b,

2(1+[a+0b)2 < ¢ D21+ a)2 + (1+b)2]
o R,:={+¢" ke Z}; Ry, :={+¢" keZ}; Ry, :={+¢" keZz}u{o}.

e The ¢g-Jackson integral [16] from 0 to a ( respectively from a to 4+o00 ) is defined by

a +oo o) —1
f@)dgz == (1= q)a ¥ flag")q", / f@)dgz == (1= q)ay_ flag")q".
0 n=0 a —00
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Remark 2.1. Observe that the g-Jackson integral is a Riemann-Stieltjes integral [1] with
respect to a step function having infinitely many points of increase at the points ¢*, with the
jump at the point ¢* being ¢*. If we call this step function W, (¢) then d¥,(t) = d,t.

Note that for n € Z and a € R, 4, we have

/f d:cf/f dx+/f Ydgx = (1 —q) Zf

n=—oo

[r@)ae= [ ot [Q)E-[ % ey

Moreover, if f > 0 then
qs s [eS) [
d oz, dyx < d, 2.2
f(@)dg < / f(@)dga / f@)dge < / f(@)dye (2.2)

The following definition of the g-cosine [10] is given by

and

0

oo

cos(z;¢%) = 1¢1(0,¢,¢% (1 — 9)%2%) = > (=1)"bn(;6°),

n=0
where, we have put

1— 2n
bu(@:¢%) = by(1;¢%)a?" = q”("‘l)((q. q(Q 2",

The g-cosine Fourier transform F, and the g-convolution product are defined for suitable
functions f, g as follows

1

_1 1
F () = Hq / F(t) cos(\: 2)d,

_ <1+q*1>% *
Fra00) = S [ Tt @y

Here T;,  , * € R, 4 are the g-even translation operators defined by

Tyyf(x Zb i q®) Ay f(x) (2.3)

Remark that when ¢ — 17, the g-translation tends to the classical even translation o, given by

1[f(ﬂchy) + flx—y)l, y€[0,+o0).

o)) = 5

which has the following properties.
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Proposition 2.3. For all f,g € L'(R, ;) :
(i) Tyaf(y) =Toyf(2)
(i) AqaTyaf(y) = DgyTyyf(@)

i) [ Ty F ) gy = / " gy
(iv) /OOO Tyaf(y qy—/ fW)Tq29(y)dey

(v) T, cos(ty; ) = cos(tx; ¢?) cos(ty; ¢), @, y,t € Ry 4.
In [7] the g-cosine Fourier transform satisfies the following:
Theorem 2.1. For f € LY (R, +), Fy(f) € Cuq0(R,) and
I Fa(F) £lq.1-

= (g )b o)

Theorem 2.2. (Inversion formula)
(i) Let f € LY(R, +) such that F,(f) € L'(R,.+), then for all z € R, 4, we have

—1 % 0o
o) = L [T F ) ) costays ) (2.4

(ii) Fy is an isomorphism of S, 4(R,) and ]-"q2 = Id.
They proved that F, can be extended to L*(R, 1) and we have

Theorem 2.3. (g-Plancherel theorem type)
F, is an isomorphism of L?(R, ), we have ||F,(f)|lq2 = ||fllg.2, for f € L>(R,4) and F,7' =
Fq-

In [13], the authors proved that

Proposition 2.4. For f,g € L*(R, +) we have
(i) Fo(f *q9) = Fq(f)Fql9)

W) [ RD©0©E = [ HOF O

(itt) Fo(Ty0f)(E) = cos(Ex; ¢°) Fy(£)(€))
(iv) For f € LP(Ry4), g € Ll(Rqu) then f x, g € LP(Ry 4 ) and ||f x4 gllqp < |[fllg.pllgllq.1-

Specially, we choose ¢ € [0, go] where ¢qq is the first zero of the function [11]: ¢ — 1¢1(0,q,¢;q)
under the condition % e Z.
Let us now introduce some g-functional spaces which one will need in this work.
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» C.q40(R,) the space of even functions f defined on R, continuous at 0, and satisfying

lim f(z) =0 and || f|

T—00

Cugo= SUP |f(2)| < +o0.
T€R,

» CI",(R,) the space of even functions m times g-differentiable on R,, continuous at 0. We
equip this space with the topology of the uniform convergence of the functions and their
g-derivatives.

» S.4(Ry) the g-analogue of Schwartz space formed by the functions f € €2, 5(R,) such that

Vk,n €N, Nyni(f) = sup (142" | DF, f(z) < +oo.
r€R,

» LP(R, +), p € [1,400], the space of functions f such that || f ||,4< +00, where
> 1
7 o= (| 1@ Pdya)} < oc, for p < oo,
0

and

I'f llgo0=ess sup | f(z) |< +o0.
T€ERy +

+o0
> S. 40 the space of even functions f € S, 4 such that / f(x)dqx = 0.
0

2 dqt
t

+o0
» A, 4 the space of even function ¢ € S, 4,0 such that / (Fap(t8)) =1
0

for § € Ry 4.
» A. 1,4, the space of even function ¢ € A, 4, suppp C [0, 1], such that
+oo
/ zo(x)dyz = 0.
0

To establish the results of the paper, let us first the following notions.
» A weight w is said to satisfy ¢-Dini condition if there exists C' > 0 such that

/( @dqt < Cw(s); ae. seR, .
0

> A weight w is said to be a (b 4)-weight if there exists C' > 0 such that

+o0 t
/ %dqt < ngs); ae. s€Ry .
q

S

We also put Wy 1,4 the space of (b1 4)-weight satisfy ¢g-Dini condition.
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Definition 2.1. Let € > 0, § > 0 and w be a weight.
w is said to be a (dg,q)-weight if there exists C' > 0 such that

5 dgt
/ taw(t)% < Cs*w(s); ae. s>0
0
w is said to be (bs,y) weight if there exist C' > 0

+oo
[ <t e 0
[ S

S

q

We write Wk 5. = (de.q) N (bsyq)-

Proposition 2.5. Let ¢ > 0, § > 0 and w be a weight, we have
(i) If w € (de;q) then w € (d_,,) for any € >e

(ii) If w € (bs,q), then w € (by ) for any § >0
(iii) Ifw(t) = w(t™'); then w € (be, ), if and only if, W € (d.;,)
(iv) If w € We 4.4; then w(t) > C min(t~%,2%); C' > 0.

Proof. The assertions (i) and (ii) follows after minor computations. Let prove (iii),
(=) Let w € (be;q), from (2.1) we have

/‘ t%(t)@ = / tew(l)ﬂ :/ w(u) dgu
0 t 0 t t qs—l u u
)

< Cs"w(s)

IN
Q

(<) Let now @ € (d., ), again from (2.1)

-1

< w(t) dgt s Ly g s d
/ “’(é)i _ / w(lw)ﬁ :/ s
qs t t 0 X 0 X

A
Q
»
a
gl
D

IN
Q

then w € (be,q)-
To prove (iv) we use the fact that w is a wight then there exist s1,s2 > 0,C1, Cy such that

w(s) > 035_/ #% cs? A(s) > ¢s°. A(s1) > C1s°
[T gt . .
w(s) > cs 5./ w(t)t ET:cs ©.B(s) > cs . B(s2) > Cas™ ¢
0
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then w(s) > C'min(s¢,s%), where C' = max(Cy, Cy).

Lemma 2.1. Every function f € S, 4, can be written as

Feo dgt
flz) = /0 [ *q 0t %4 <pt(x)%; for all ¢ e A, ,.
Feo dgt
Proof. Let g(x) = / [ *q 01 %4 @t(x)Tq, then
0
+oo “+oo
]:qg(/\) = / / I *q ¢t *q ‘Pt(I)t71 cos(Az; q2)dqxdqt
0 0
+oo

Fo(f #q 0 g 01) (V) dgt

+oo
Fa(HN(Folo)(N)*t dgt

2 ot

+oo
= fq(f)(k)/o (Fa(@)(tN)" == = Fa(H)(A).

From the fact that ¢ € A, ; and the use of the inversion formula we obtain the result.

Proposition 2.6. Let ¢ € A, , and ¢ € S, 4, then for all £ € R, +

Hoo dgt
qu(g) = 0 ‘Fq(@t *q Pt *q 1/’)(5)7
Indeed, since ¢ € A, 4, 50
Heo dgt
L= [ Gl
0
Foo dgt
=/ Faler rq p0)(€) =

then from Lemma 2.1, and the first relation in Proposition 2.4, we can see easily that

Foe d,t

qu(f) = o ]:q(@t *q Sot)(f)fq'l/}(f)%
too dyt
= o Fapt *q 1 *q w)(g)T

Remark 2.2. The last proposition shows that

s
dgt
e 5iq = ¢ %q Op *g W—— converges to 1 in S, , as € — 0 and § = oco.
859 Pt *q Pt *q ¢ ,q
€

O
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On the same way we recall the ¢g-Calderén’s formula studied and given in [19]

Theorem 2.4. Let f € LY(R, 4, (ﬁﬁify) and ¢ € A, 4. For 0 < ¢ < ¢ define

’ d
fesiq(@) = / (1 *q 1 *q f)(x)%t

. ’
Then f; 5,4 converge to fin S, , o ase— 0and § — oo.

To finish this preliminary section let us state the chief tool in our investigation, that is the Schur
lemma [3] that will be useful for our purposes.

1 1
Lemma 2.2. (Schur lemma [3]) Let 1 < p < oo and — + — = 1. Let (1,%1, u1) and (Qg, Xo, o)

be two o-finite measure spaces and let K : ; x Q5 — R, be a measurable function and write
Tk (f) for

Tr(f)(w2) = ; K(wy,ws) f(wi)dp (wr).

If there exist C' > 0 and measurable function h; : Q; — Ry (i = 1,2) such that

’ ’

K(wy,wa)h} (w1)dpi(w1) < CBE (we);  p2 —ae, (2.5)
Q

K (w1, wo)hb(wa)dus(we) < ChY(w1); p1 — ae. (2.6)
Q2

Then Tk defines a bounded operator from LP (€, py1) into LP (2, p2).

3 Characterization of ¢g-Besov spaces

We begin first by establish some general technical results that can be used to relate properties
about g-difference V. f and g-convolutions ¢, *4 f.

Lemma 3.1. For all y € [0,1] and ¢ € A, 4., we have

“+oo
IVeu@llig <v / 1Dy (T 00) (0)dya.

Proof. Let y € [0,1] and ¢ € A, 4, from Proposition 2.3 we have

e = / | T, y0(@) — o(2) | dgz

_ /OO y ’Tq,y@(x) - Tq,OSD(‘r)
0 Yy
_ y/°° ‘TQ,xQD(y) —Tq,x@(O)’dqx
0 Yy

IVgyel

dgx

IN

i / | Dyoy(Tyo0)(0) | dye

which leads to the result. O
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Proposition 3.1. Let p € [1,00], ( > 0 and ¢ € A, 4. Then there exist Cy; > 0 such that if

feLY(R,+, (ﬁ%)?)’ then we have that
*ox e dyz
| 0t *q f llp,g< Cy mln((?), () Vaaf llpg —— (3.1)
o x x
and
o dgt
| Vaof llpa< Cq ) mln((?), 1)1l et#q f llpg I (3.2)
“+oo
Proof. Since / p(x)dgz = 0, it follows that
0
400
prxq f(y) = / ¢e(2) Vg f(y)dgz,
0
from ¢g-Minkowski’s inequality one get
+oo +oo 1
loesaflna = ([ 1 el@)Van )P dg)
—+oo —+oo 1
< [ @I IVt wlPdp)?da
“+o0
x x dqx
< had z al’ind
< [ DIl
1 “+ o0
x T dgx T x dqx
< d NV Za il Vg z 24
< [ TP+ [ F eI as e
Hence, the relation (3.1) follows from the trivial estimates, for y = /¢
v ley) < O if yell00),
) < G i ye[0,1].
To prove (3.2) we recall that for 0 < e < 6,
0 dyt
vq,zfs,é(y) = (vq,z@t) *q Pt *q f(y)T (33)
€

Hence ¢-Minkowski’s inequality and ¢-Young’s inequality give

dgt

&
VawSesllna < [ 190mrlvallor sy flog™s
g
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Since ||Vqy¢ll1.q < 2|¢ll1,4» ¥ > 1, from Proposition 2.3, for a = 1/t and Lemma 3.1 one has

[ 1 Vawo) g = [ Tois) = ) | day
Ooo 0

|17 o] - e 1

— /Oool | Ty,= (w(%)) - 90(%) | dqy

-/ T Tys (0lw) — () | dyu

||vq,z/t90||1,q
< C,min(1, %).

IVgetllig

Therefore, using the previous estimate relation (3.3), we get

Faateolva < [ Faadnalios v o e

dgt

|p,q

< C/mlnl—)”got*qf

Now using the g-Calderon’s formula in Theorem 2.4 we obtain Vg . fc s —0> Vyof in LP, and
e—

d—00

then

o dgt
IVaafllpg < / IV g.z@tll1,qllt *q f”p,q ;

IN

dgt
Co [~ mint, Dl tq Sl "L

|
Although for the purposes of this paper only a particular case of the following proposition will be
used, we shall state a general version of it that we find interesting in its own right.

Proposition 3.2. Given ¢, § € [0,00], p € (1,00) and w a weight, let us consider

w(s) . s, 1t
e min(D)", ().

@575(5, t) =

1 1
If w(s) = A" (s)u~ 7 (s7!) for some pair of weights A\, u € W, 5,4, then there exist C;, > 0 and
g : Ry + — R g-measurable such that

/ 0.5(s,1)g ()d < Cug” (8), (3.4)

and

/ 0. 45,097 (1) 1 < g (9) (3.5)
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Proof. Let us take g(t) = AL/Pr (t)ul/m’/ (¢71). Then gp/(S)

Therefore from (2.2),

dys
s

+o0 ,
/ O.5(s,t)g" (s)
0

On the other hand, same from (2.2),

+oo

d,t
Oc,s(s, t)gp(t)T
0

IN

IN

A. Nemri, B. Selmi

A(s)/w(s) and gP(t) = w(t)u(t™").

- L o $)min((-)° ty9ydas

= o Aemind G

B 1 b dgs 0 [T X(s) dys

- tfw(t)/o SAls) = W/t s
L et [0 s

= tfw(t)/o s°A(s) S w(t) /qt s9 s

S

w(s)

g9

00
le

/MMM

ot
—1

:u(t) dqt + st(s) /Os ts,u(t)i

6

Cp(s™w(s) = Cg?(s).

We need the following Lemma that we will use after in several of the remaining proofs.

Lemma 3.2. For all (z,y) € (¢%,¢"), y # ¢ we have

1 1

%”Q

1
< . .
x—!—l)g) T 1l-q (x+1);

Proof. Let z,y € Ry, from (2.3) a simple recurrence on n € N leads
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Tqy (

from the fact that for z € R,

1
)2n+1

(x+q~

we can deduce that for y = ¢* k # 1

1 1
— ) = b ( —
<x+1>3) 2 ) (( +1>)
b 1 _ q) y2n
= nn—1) —20,[-3]g...[-1—2
> e 2B 1 = 20l s
2n
_ n(n—1) 2n +n Yy
= q 2n+1);———5—
ngo gra+1)"
© 2n
= n(n=1) 2n’+nrg, L 1] o—n@nt2) Y
Z:Oq | log EE
_ 1 1 1
@ttt (@) @+ 12 (24 )+ ¢P). (4 g )
1 n(ntl) —n(nt3)
< — g 2z g 2z
= @rnz 1
q—TL
(x+41)2
RNCET =0 NCERSOri
1 > _ B y2n
(1-4q) ;) (z+1);
1 1 >
< : D" ()"
(1—q) @+ 102 Z
> 1 1 1
T (1-q) (x+1)271— g 2y?
< 1 1
T (1-¢q) (z+1Z

the result follow.

Proposition 3.3. Let p € [1,00] and let f be a g-measurable function.

If || Voo llpqg€ L' (Rg 4,

_dg
(x+1)2

) then f S L (Rq,_;,_,

(x4 l)q

dgx
q 2).

41
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Proof. Let ¥ € LP (R, 4+,dqx) such that ¥ > 0 a.e. Then g-Hélder’s inequality and ¢-Fubini’s

theorem give
[ Bl WO g <
0 0 (z+1)2 1 !

Therefore,

—+o0 _
/ |Tq’m(f(y) f<y)|dqx <oo for ae. yeR,;.
0

r+1)2
Now we have to prove that f € L}(R, 4, (xciqﬁ)g)' From Proposition 2.3 and Lemma 3.2
[ [ e [
< [T e [ 01 (g
[ [
¢ [t OIP [Tl I i 20 [ L) e

Since z — ﬁ € L'(R, +,d,z), then using (3.6), we obtain
q

1 @) oo 1, f () — f(o)| =),
q—l/o (1 127" S/0 @rnp T +/o CESIEA

q
< oo for ae. yeRy ¢

which leads to the result. (]
» Now we start the main result of this paper with the case m = oo which easily follows from
Proposition 3.1.

Theorem 3.1. Let p € [1,00], ¢ € A, 4, and w € Wy 1,4. Then
AP2° = BDo° with equivalent seminorms.

*,W,q *,W,0,q

Proof. Let f € AW, then one has

e ||vq,mf|‘p7q > w(z)
/0 7@ n 1)3 dgx < Cq/o @+ 1)gdqx
! d,x i d,x
< Cq[/ w( )LJr/ w(z)—1-]
0 € 1 T
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f(z)
+

oo
what combined with Proposition 3.3 gives / (| dgx < 0.
0

|
)

1
Let us prove that ||¢; *q fllp,q < Cqw(t). From (2.2) and (3.1) for ¢ =1 one has

1 t [e’e]
ot sa g < Calg [ I¥qallpadez+t [ 1940t

<l Fuw™ vt [ uw )

[N
S
o\“

RS
&
&

‘@

=
+
_——
8
£
<
I_‘H

< Cquw(t).

Conversely if f € By, ¢, then from (2.2) and (3.2) one has

‘ dyt oo
IVacflog < Cil / o ea Slpa 2 40 |
< ol [ “ager [T 50
o t .t
= Cq[/ @dqtﬂ% K;)dqt}
o t g 1
< Cow(x).

» We prove now the main Theorem in the case m = 1.

Theorem 3.2. Let p € [1,00], ¢ € A, 4 and w € Wy 1,4 such that p(t)
Af’w q= = pr! w0 with equivalent seminorms.

Proof. Assume f € A* ‘w,q- Let us first prove that

@,
/0 (x+1)3dq < 0.

From Proposition 2.5, we have

Hence

F N Vaaf(@)llp.q “ I Vaafllp.g dg
/0 (x+1)2 ot <C/ w(x) T - <o

and we apply Proposition 3.3 again.

dyz

p,q l’

dqt

gl

7

=w (t

D). Then

43
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We will prove that ”fHBf,‘fu,w,q

S Oq”f”Aszlu‘q'

Using (2.2) and (3.1) with ¢ =1 we have

et *q fllp,a dgt
w(t)

IN

r

IN

IN

IN

IN

Let f € BYa ., from (2.2

P

q

T

Theorem 3.3. Let p € [1,00], m € (1, 00),

IN

IN

x t

i 7)||qupr
t'x w(t)

D,q / mln

[ my

4
P.q [5

([
Cy [ ¥t
Cy [ IVt
Cy [ IVt

c, / 100 f]
0
C /00 ||vq,

+L

p.q |:

- .

), (3.2) and ¢-Fubini’s theorem we get

¢, [ ot g fllal / " ey min(l,
Co [ et sa Syl [ ntopming,

o [ lewsa flnal [

[e%¢) =1
Cq/ ot *q f”p,q[/
0 0

C(q/o ot *q f”p;q/‘(t_l)i

¢, [
0

o *q fllp,g dgt
w(t)

for some pair of weights A, 1 € Wy, 1,4. Then for ¢ € A, 4,

AP

*,W,q

= B>m

Ca0.p.q with equivalent seminorms.

and w be a weight such that w(t) =

A. Nemri, B. Selmi

O

1

AR (B ()
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Proof. Assume that f € AV .. We will first show that
/ qux < 00.
0 (.’1? + l)q

We denote

®(@) = @

under the assumptions A, 4 € Wy 1,4 one has ® € L
o0 , d t oo ’
[ e o< [T e
0 t 0 (t + 1)3m t

Using Proposition 2.5 we have u(s) > Cymin(1, s). Therefore

’

tm dgt

/@m'(t)@ < / A(t) max(1, e ~H—
0 (t+1)2m t

t
Cq[/o A(t)%+/l Ai)dtt]

< 0o0.

IN

Then using g-Holder’s inequality one has
[ Wastlha gy [~ Wanllbagdar
o (z+1)3 0 w(x) x
and we apply Proposition 3.3.

Now we prove that

< Cyll fllapm -

p,m
B*“’V’qf

/]

From (3.1) in Proposition 3.1 and taking p = 1, it follows that
et *q fllp,g < /OO K(z,1) [Vaafllpa d‘li
w(t) - w(x) x

where

If we take



46 A. Nemri, B. Selmi

and

dgx
(Q2, p2) = (Rg+, %)-
Since K (z,t) = ©¢,1(z,t), we can apply Proposition 3.2 with e = 0 and 6 = 1 to get a g-measurable
function g satisfying (3.4) and (3.5).

Now write hq(z) = g(x) and ha(t) = g(t). Obviously, using (3.4) and (3.5) give (2.5) and (2.6)
in Lemma 2.2, what shows Tk is bounded from L™ (R, 4, d;’g—w) into L™ (Rq,+, %) Therefore,
Vg flp.ag
Bf:$,¢,q S CqHTK(W)||L7n(Rq’+’M)

t

171

A
Cll i

< Collfllazz,-

IN

||Lm<Rq,+,quZ>

Conversely, let f € AL 4. From (3.2) in Proposition 3.1 we obtain

Vg, fllp,q < q /OO o(t,z) ot *q fllpa dqt
0

w(zx) - w(t) t
where
w(t)
t 1, —
O(t, ) w(a:)mm(7t)
Now take
dqx
(thu'l) = (Rq,—h %)
and
dgx
(Qa, p12) = Ry 4, —=).
d
Combine now again Proposition 3.2 and Lemma 2.2 to get the boundedness of Tk from L™ (R, ., ﬁ)
x

dgt
into L™ (Rq,+, %) Therefore,

et *#q fllp.
Coll Tre (F— 571

,m < x
Hf|A€,w,q = w(t) )HLm(Rq’%dg )
[t *q fllp,a
< ¥t %q J lIp,g
= Cq” w(t) ”Lm(Rq’Jr’%)
< Cyllfllszm,.




A characterization of weighted Besov spaces in quantum calculus 47

References

(1]

2]

L. D. Abreu, Functions q-orthogonal with respect to their own zeros, Proc. Amer. Math. Soc.
134(2006), 2695-2701.

G. E. Andrews, g-Series: their development in analysis number theory, combinatorics, physics
and computer algebra, CBMS Series, Amer. Math. Soc. Providence, RI, 66(1986), 223-241.

J. L. Ansorna and O. Blasco, Characterization of weighted Besov spaces, Math. Nachr.,
171(1995), 5-17

0.V. Besov, On a family of function spaces in connection with embeddings and extentions, Trudy
Math. Inst. Steklov, 60 (1966), 42-81.

M. Bohner, M. Fan and J. Zhang, Periodicity of scalar dynamic equaton and application to
population models, J. Math. Anal. appl. 330 (2007), 1-9 .

M. Bohner, T. Hudson, Fuler-type boundary value problems in quantum calculus , International
Journal of Applied Mathematics and Statistics, 9(2007), 19-23.

L. Dhaouadi, J. El Kamel and A. Fitouhi, Positivity of q-even translation and Inequality in
q-Fourier analysis, JIPAM. J. Inequal. Pure Appl. Math 171(2006), 1-14.

G. Gasper and M. Rahman, Basic hypergeometric series, Encyclopedia of mathematics and its
applications 35, Cambridge university press, 1990.

I. Gravagne, J. Davis and R. Marks II, How deterministic must a real time controller be, Proceed-
ings of 2005, IEEE/RSI International Conference on intelligent Robots and Systems, Alberta,
Aug. 2-6, (2005), 3856—3861.

[10] A. Fitouhi and F. Bouzeffour, g-cosine Fourier transform and q-heat equation, Ramanjuan J.

in press.

[11] A. Fitouhi, L. Dhaouadi and J. El Kamel, Inequalities in q-Fourier analysis , J. Inequal. Pure

Appl. Math. 171(2006), 1-14.

[12] A. Fitouhi, M. Hamza and F. Bouzeffour, The ¢-J, Bessel function, J. Approx. Theory

115(2002), 114-116.

[13] A. Fitouhi and A. Nemri, Distribution and convolution product in quantum calculus, Afr.

Diaspora. J. Math, 7(2008), 39-58.

[14] T.M. Flett, Lipschitz spaces of functions on the circle and the disc, J. Math. Anal. and appl,

39(1972), 125-158.

[15] T. M. Flett, Temperatures, Bessel potentials and Lipschitz spaces, Proc. London Math. Soc,

20(1970), 749-768.

[16] F.H. Jackson, On g-definite integrals, Quart. J. Pure. Appl. Math, 41(1910), 193—203.



48 A. Nemri, B. Selmi

[17] V.G. Kac and P. Cheeung, Quantum calculus, Universitext, Springer-Verlag, New York, (2002).

[18] A. Nemri and B. Selmi, Sobolev type spaces in quantum calculus, J. Math. Anal. Appl,
359(2009), 588-601.

[19] A. Nemri and B. Selmi, On a Calderdn’s formula in quantum calculus, Indagationes Mathe-
maticae, 24(2013), 491-504.

[20] J. Peetre, New thoughts on Besov spaces, Duke Univ. Math. Series, NC,(1976).

[21] S. Sanyal, Stochastic dynamic equation, PhD Dissertation, , Missouri University of Science and
Technology (2008).

[22] Q. Sheng, M. Fadag, J. Henderson and J. Davis, An exploiration of combined dynamic deriva-
tives on time scales and their applications, Nonlinear Analysis: Real World Applications,
7(2006), 395-413.

[23] M. Taibleson, On the theory of Lipschitz spaces of distributions on euclidean n-space, I, ILIIL.
[24] A. Torchinsky, Real-variable Methods in Harmonics Analysis, Academic Press , (1986).

[25] H. Triebel, Theory of functon spaces, Monographs in Math., vol. 78, Birkuser, Verlag, Basel,
(1983).



