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Abstract

We study a construction suggested by Lawvere to rationalize, within a generalization
of Axiomatic Cohesion, the classical construction of π0 as the image of a natural map
to a product of discrete spaces. A particular case of this construction produces, out
of a local and hyperconnected geometric morphism p : E → S, an idempotent monad
π0 : E → E such that, for every X in E , π0X = 1 if and only if (p∗Ω)! : (p∗Ω)1 → (p∗Ω)X

is an isomorphism. For instance, if E is the topological topos (over S = Set), the
π0-algebras coincide with the totally separated (sequential) spaces. To illustrate the
connection with classical topology we show that the π0-algebras in the category of
compactly generated Hausdorff spaces are exactly the totally separated ones. Also, in
order to relate the construction above with the axioms for Cohesion we prove that,
for a local and hyperconnected p : E → S, p is pre-cohesive if and only if p∗ : S → E
is cartesian closed. In this case, p! = p∗π0 : E → S and the category of π0-algebras
coincides with the subcategory p∗ : S → E .
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1 Introduction

It has already been argued convincingly (at least, since [11], but see also [10, 12, 13]) that
the constrast between cohesion and non-cohesion can be expressed by geometric morphisms
p : E → S such that the adjunction p∗ a p∗ extends to a string of adjoints

E
p!

��
a a ap∗

��
S

p∗

OO

p!

OO

satisfying certain properties including that p∗, p! : S → E are fully faithful and that the left-
most adjoint p! : E → S preserves finite products. Intuitively, E is a category of spaces, S is
a category of sets, p! : S → E may be identified with the subcategory of codiscrete spaces, p∗
sends a space to the associated set of points, p∗ : S → E may be identified with the subcate-
gory of discrete spaces, and p! sends a space to the corresponding set of pieces or connected
components.

On the other hand, as observed in the Author Commentary of [11], there are exam-
ples of (Grothendieck) toposes E , such as Johnstone’s topological topos [6] and Lawvere’s
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bornological topos (sheaves for finite coverings of countable sets), that are intuitively cate-
gories ‘of spaces’ (as opposed to ‘generalized spaces’) and yet the canonical geometric mor-
phisms p : E → Set fail to be essential, so the ‘pieces’ leftmost adjoint does not exist.

During an email discussion in March 2013 related to the observation above, Lawvere wrote
the following:

I believe that the attempt to rationalize the classical set-theoretic topology within
the conception of cohesion and its generalizations does include the construction of the
classical zero dimensional pizero as the image of a natural map to a product of discrete
spaces [...]. Namely, any X maps to the following semi-double-dualization: the internal
function space 2ˆX contains its own discrete part, and restricting along this defines a
forgetful map upon applying again 2ˆ( ). Does the codiscrete inclusion help in explaining
this?

Notice that for a geometric morphism p : E → S with counit β : C = p∗p∗ → Id, and any
X in E , restricting along β2X : C(2X)→ 2X and pre-composing with the transposition of
evaluation determines a canonical map

X
ev // 2(2X) 2β // 2C(2X)

from X to a power of 2. The epi/mono factorization of X → 2C(2X) may be denoted by

X // π0X // 2C(2X)

as suggested in the quotation. Under mild conditions, this construction underlies an idem-
potent monad π0 : E → E with unit the epic X → π0X above.

Our purpose here is to explore the construction suggested by Lawvere, illustrate its rela-
tion to classical topology and relate it to the axioms for Cohesion. The role of the codiscrete
inclusion will be clarified in our discussion of local hyperconnected geometric morphisms.

In Section 2 we study a mild generalization of the construction above by considering an
arbitrary object L (in a regular category) in place of the coproduct 2 = 1 + 1. This will
allow us to establish some simple facts that are specialized in Section 3 where we introduce
the ‘pizero’ monad associated to an adjunction p∗ a p∗ : E → S where S is a topos and E is
regular and cartesian closed. We also show in this section that a local and hyperconnected
geometric morphism p : E → S is pre-cohesive if and only if p∗ : S → E is cartesian closed.
For this, the necessary leftmost adjoint p! : E → S is built as p∗π0 : E → S.

In Section 4 we study the monad π0 : E → E in the context of a locally small, extensive,
regular and cartesian closed category. This is applied in Section 5 to the particular case
of the category of compactly generated Hausdorff spaces. We show that such a space is
indecomposable if and only if π0X = 1. We also show that π0-algebras are exactly the
totally separated spaces. An analogous analysis of the quasi-topos of subsequential spaces
is done in Section 6. It is well-known that this quasi-topos is the category of separated
objects for the double-negation topology in the topological topos. The role of separated
objects is clarified in Section 7 where we study the monad π0 : E → E induced by a local and
hyperconnected geometric morphism E → S.

In Section 8 we compare the construction of π0 with the proofs that locally connected
geometric morphisms are essential.
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2 Semi-double-dualization

Let S be a category and let E be a cartesian closed regular category. Let p∗ a p∗ : E → S be
an adjunction with counit β, and denote the induced comonad on E by C : E → E . Fix also
an object L in E .

For any X in E , restricting along βLX : C(LX)→ LX and pre-composing with the trans-
position of evaluation determines a canonical map

X
ev // L(LX) Lβ // LC(LX)

from X to LC(LX). The regular-epi/mono factorization of X → LC(LX) will be denoted by

X
λX // ΛX

ψX // LC(LX)

so that ΛX is the image of a natural map to a power of L.
If f : X → Y is a map in E then there exists a unique map Λf : ΛX → ΛY such that the

following diagram commutes

X

f

��

λX // ΛX

Λf

��

// LC(LX)

LC(Lf )

��

C(LX) LX

Y
λY

// ΛY // LC(LY ) C(LY )

C(Lf )

OO

LY

Lf

OO

and it is easy to check that the above determines a functor Λ : E → E and natural transfor-

mations λ : IdE → Λ and : Λ→ LC(L( )).

Lemma 2.1. The functor Λ : E → E preserves the terminal object, epimorphisms and regular
epimorphisms.

Proof. Since λ1 : 1→ Λ1 is a regular epimorphism it follows that Λ1 is terminal. It also
follows easily, from naturality and (regular-)epiness of λ, that Λ : E → E preserves epis and
regular epis. q.e.d.

The next result is a sufficient condition for Λ to produce a monomorphism. (Recall that
the support of an object X is the image of the unique morphism X → 1 and that X is
well-supported if its support is 1, i.e. if the unique X → 1 is a regular epimorphism.)

Lemma 2.2. For any map f : X → Y in E , if p∗(L
f ) : p∗(L

Y )→ p∗(L
X) is an epimor-

phism then Λf : ΛX → ΛY is a monomorphism. In particular, for any object X in E , if
p∗(L

!) : p∗(L
1)→ p∗(L

X) is epic then ΛX is the support of X; so, in this case, X is well-
supported if and only if ΛX = 1.
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Proof. The following diagram commutes

ΛX

Λf

��

// Lp
∗(p∗(L

X))

Lp
∗(p∗(Lf ))

��
ΛY // Lp

∗(p∗(L
Y ))

and the horizontal maps are monic. If p∗(L
f ) : p∗(L

Y )→ p∗(L
X) is epic, the right vertical

map is monic, so the left vertical map is also monic.
For the special case of ! : X → 1, if p∗(L

!) : p∗(L
1)→ p∗(L

X) is epic then Λ! : ΛX → Λ1
is monic and Λ1 = 1 by Lemma 2.1. So we have the following regular-epi/mono factorization

X
λ // ΛX

Λ! // Λ1 = 1

of the unique X → 1. q.e.d.

Although we are assuming that E has finite limits, we don’t have a good description of
the kernel of λ : X → ΛX but, in relation to this issue, the following will be useful.

Lemma 2.3. For any f, g : W → X the following are equivalent:

1. The equality Λf = Λg : ΛW → ΛX holds.

2. The fork W
f //

g
// X

λ // ΛX commutes.

3. The fork W × C(LX)
f×β //

g×β
// X × LX

ev // L commutes.

If W is terminal then the above are equivalent to:

4. The fork

p∗1× p∗(LX)
(p∗f)×id //

(p∗g)×id
// p∗X × p∗(LX)

∼= // p∗(X × LX)
p∗ev // p∗L

commutes.

Proof. The first two items are equivalent because λ is a natural epimorphism. To prove that

the second and third items are equivalent observe that, since ψ : ΛX → LC(LX) is monic, the
diagram in the second item commutes if and only if the diagram below commutes

W
f //

g
// X

ev // L(LX) Lβ // LC(LX)
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and, in turn, this holds if and only if the transpositions W × C(LX)→ L are equal.
If W is terminal the fork in the third item commutes if and only if the next diagram

p∗(p∗(L
X))

π−1
1 // 1× p∗(p∗(LX))

f×β //

g×β
// X × LX

ev // L

commutes. By adjointness this is equivalent to the equality of the relevant transpositions
p∗(L

X)→ p∗L. In other words, the fork in the third item commutes if and only if the top
fork in the next diagram commutes

p∗(L
X)

∼=

π−1
1 --

α // p∗(p∗(p∗(LX)))
p∗π
−1
1 // p∗(1× C(LX))

∼=
��

p∗(f×β) //

p∗(g×β)
// p∗(X × LX)

∼=
��

p∗ev // p∗L

p∗1× p∗(LX)
id×α // p∗1× p∗(C(LX))

p∗f×p∗β //

p∗g×p∗β
// p∗X × p∗(LX)

where α is the unit of p∗ a p∗. The rest of the diagram shows that the top fork is commutative
if and only if the fork in the fourth item of the statement commutes. q.e.d.

For any X in E , the monomorphism : ΛX → LC(LX) may be transposed to a map
ΛX × C(LX)→ L and, again, transposed to a map that we denote by ω : C(LX)→ LΛX .
Let us record this for future reference.

Lemma 2.4. The map ω : C(LX)→ LΛX is the unique one that makes the following

C(LX)× ΛX

id×ψ
��

ω×id // LΛX × ΛX

ev

��
C(LX)× LC(LX)

ev
// L

commute.

The next result is a convenient intermediate step for a later calculation.

Lemma 2.5. The following diagram commutes

C(LX)×X

β×id
��

ω×λ // LΛX × ΛX

ev

��
LX ×X

ev
// L
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Proof. Just calculate using Lemma 2.4 and the definitions of λ and

C(LX)×X
β×id

��
id×ev

��

id×λ // C(LX)× ΛX

id×ψ
��

ω×id // LΛX × ΛX

ev

��
LX ×X

id×ev --

C(LX)× L(LX)

β×id
��

id×Lβ
// C(LX)× LC(LX) ev // L

LX × L(LX) ev

GG

together with the fact the ev : X → L(LX) is the transposition of ev : LX ×X → L. q.e.d.

We may now state the key fact about the map ω : C(LX)→ LΛX .

Lemma 2.6. The following triangles commute

C(LΛX)

β ..

C(Lλ) // C(LX)

ω

��

β

��
LΛX

Lλ
// LX

Proof. We first consider the triangle in the left of the statement. Transpose the top-vertical
composition and pre-compose with the epic id× λ : C(LΛX)×X → C(LΛX)× ΛX to obtain
the composite

C(LΛX)×X id×λ // C(LΛX)× ΛX
C(Lλ)×id // C(LX)× ΛX

ω×id // LΛX × ΛX
ev // L

which equals the top-right composite below, so we can calculate using Lemma 2.5

C(LΛX)×X
id×λ




β×id

��

C(Lλ)×id // C(LX)×X

β×id
��

ω×λ // LΛX × ΛX

ev

��
C(LΛX)× ΛX

β×id ..

LΛX ×X

id×λ
��

Lλ×id // LX ×X ev // L

LΛX × ΛX
ev

GG

to arrive at the equality on the left below

ev(ω × id)(C(Lλ)× id)(id× λ) = ev(β × id)(id× λ) ev(ω × id)(C(Lλ)× id) = ev(β × id)
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and, since λ is epic, we may deduce the equality on the right above, which is the transposition
of the left triangle in the statement.

Let us now consider the other triangle. Transpose and calculate

C(LX)×X

ω×λ --

ω×id // LΛX ×X Lλ×id //

id×λ
��

LX ×X

ev

��
LΛX × ΛX

ev
// L

using Lemma 2.5 to complete the proof. q.e.d.

We may now prove the main result of the section.

Proposition 2.7. If the left adjoint p∗ : S → E is fully faithful then, for any X in E ,
p∗(L

λ) : p∗(L
ΛX)→ p∗(L

X) is an iso.

Proof. The assumption that p∗ is fully faithful implies that p∗β : p∗p
∗p∗ → p∗ is an iso. If

we apply p∗ to the diagram in Lemma 2.6 we obtain

p∗(C(LΛX))

p∗β ..

p∗(C(Lλ)) // p∗(C(LX))

p∗ω

��

p∗β

��
p∗(L

ΛX)
p∗(L

λ)

// p∗(LX)

which implies (since p∗β is an iso) that p∗ω is both a split mono and a split epi and so, an
iso. Then the right triangle implies that p∗(L

λ) : p∗(L
ΛX)→ p∗(L

X) also an iso. q.e.d.

Notice that the conclusion of Proposition 2.7 is reminiscent of a property of finite-product
preserving reflections. See, for example, Proposition A4.3.1 in [8].

Corollary 2.8. If the left adjoint p∗ : S → E is fully faithful then the natural λ : IdE → Λ
is the unit of an idempotent monad.

Proof. Lemma 2.1 implies that Λλ is a regular epimorphism. Also, the following diagram
commutes

X

λ

��

λ // ΛX

Λλ

��

// Lp
∗(p∗(L

X))

LC(Lλ)

��

C(LX) LX

ΛX
λΛ

// Λ(ΛX) // Lp
∗(p∗(L

ΛX)) C(LΛX)

C(Lλ)

OO

LΛX

Lλ

OO

by definition of the functor Λ : E → E . The right inner square, together with Proposition 2.7,
implies that Λλ : ΛX → Λ(ΛX) is also monic, so it is an isomorphism. The left inner square
above implies that λΛ = Λλ : ΛX → Λ(ΛX). So Λ is an idempotent monad with unit λ and
multiplication λ−1

Λ . q.e.d.
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Let us introduce a piece of terminology.

Definition 2.9. The monad described in Corollary 2.8 will be called the semi-double-
dualization monad (determined by the fully faithful p∗ : S → E and the object L).

The next result provides a characterization of the objects in E whose associated free
Λ-algebra is terminal.

Corollary 2.10. Let p∗ : S → E be full and faithful. For any X in E , ΛX = 1 if and only if
X is well-supported and p∗(L

!) : p∗(L
1)→ p∗(L

X) is an isomorphism in S.

Proof. If p∗(L
!) : p∗(L

1)→ p∗(L
X) is an isomorphism in S then, by Lemma 2.2, X is well-

supported if and only if ΛX = 1. So, to complete the proof, we need only show that if
ΛX = 1 then p∗(L

!) : p∗(L
1)→ p∗(L

X) is an isomorphism. Let us start with a more general
observation. For every f : X → Y in E the following diagram commutes

p∗(L
ΛY )

p∗(L
Λf )

��

p∗(L
λ)// p∗(LY )

p∗(L
f )

��
p∗(L

ΛX)
p∗(L

λ)

// p∗(LX)

in S. By Proposition 2.7 the horizontal maps are isomorphisms, so the vertical maps are
isomorphic in the arrow category E→. In particular, if we let Y = 1 and f = ! : X → 1 then
Λf = Λ! = ! : ΛX → Λ1 = 1 by Lemma 2.1 and we have the diagram below

p∗(L
1)

p∗(L
!)

��

p∗(L
λ)

=
// p∗(L1)

p∗(L
!)

��
p∗(L

ΛX)
p∗(L

λ)

// p∗(LX)

showing that, if ΛX = 1 then the right vertical map is an isomorphism. q.e.d.

Before discussing the particular case of semi-double-dualization monad that we are mainly
interested in, it seems relevant to notice that S may be degenerate. In this case, for every

X in E , CX = p∗(p∗X) = p∗0 = 0. So LC(LX) = L0 = 1 and ΛX coincides with the support
of X. This is not the kind of example we have in mind. In order to positively exclude it we
introduce the hypothesis that p∗ preserves the terminal object. Notice that in this case, any
point 1→ p∗X is uniquely determined by a point 1→ X.

Corollary 2.11. Let p∗ : S → E be fully faithful and preserve 1. Then, for any X in E , the
following are equivalent:

1. ΛX = 1.
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2. p∗(ΛX) is well-supported and p∗(L
!) : p∗(L

1)→ p∗(L
X) is epic in S.

3. X is well-supported and p∗(L
!) : p∗(L

1)→ p∗(L
X) is an isomorphism in S.

Proof. The first and last items are equivalent by Corollary 2.10. The first item easily implies
that p∗(ΛX) = 1, so p∗(ΛX) is well-supported, and the third item trivially implies that
p∗(L

!) : p∗(L
1)→ p∗(L

X) is epic. So, to complete the proof, it is enough to show that the
second item implies the first.

If p∗(L
!) : p∗(L

1)→ p∗(L
X) is epic in S then ΛX is subterminal in E by Lemma 2.2.

Then p∗(ΛX) is subterminal in S. So, if it is also well-supported, then p∗(ΛX) = 1 and the
point 1→ p∗(ΛX) transposes to a point of ΛX. Altogether, ΛX is subterminal and has a
point. q.e.d.

3 The construction of π0

Fix a topos S with subobject classifier denoted by > : 1→ 2 . (To avoid a possible confusion
we stress that we are not assuming that S is Boolean. The present notation is suggestive
and allows us to avoid subindices such as that in ΩS .)

Let E be a cartesian closed regular category and let p∗ a p∗ : E → S be an adjunction
with fully faithful p∗ : S → E that also preserves 1. As before, the counit of this adjunction
will be denoted by β and the induced comonad by C : E → E . The intuition is that E is a
category of spaces and that p∗ : S → E is the full subcategory of discrete spaces. For this
reason we say that an object X in E is discrete if the counit βX : CX = p∗(p∗X)→ X is an
isomorphism.

The discrete object p∗2 will be denoted by Υ.
We have all the ingredients necessary for the construction of a particular case of the

monads introduced in Definition 2.9.

Definition 3.1. Let π0 : E → E be the semi-double-dualization monad on E determined by
the adjunction p∗ a p∗ and the object L = Υ = p∗2 . The unit of this monad will be denoted
by ςX : X → π0X.

We have slightly changed the notation in order to emphasize this particular case of Corol-
lary 2.8, so let us stress that the unit ςX : X → π0X (denoted by λ in the general case) makes
the following diagram commute

X

ς

��

ev // Υ(ΥX)

Υβ

��
π0X

ψX

// ΥC(ΥX)

and that the left and bottom maps form the regular-epi/mono factorization of the top-right
composite.

Following the intuition that p∗ : S → E is the full subcategory determined by the ‘discrete
spaces’ among all spaces, Υ = p∗2 is the discrete space of truth values, so that ΥX is the
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space of clopens of X and X → ΥC(ΥX) sends x ∈ X to the set of clopen neighborhoods
of x. Hence, ς : X → π0X identifies x and x′ if and only if they have the same clopen
neighborhoods. So we may picture π0X as the space of ‘pieces’ or ‘(quasi-)components’ of
X. Let us also emphasize Corollary 2.11 by restating it using the new notation.

Corollary 3.2 (2.11 restated). For any X in E , the following are equivalent:

1. π0X = 1

2. p∗(π0X) is well-supported and p∗(Υ
!) : p∗(Υ

1)→ p∗(Υ
X) is epic in S.

3. X is well-supported and p∗(Υ
!) : p∗(Υ

1)→ p∗(Υ
X) is an isomorphism in S.

Roughly speaking, π0X = 1 if and only if X is well-supported and the set of clopens of X
equals p∗(Υ) = p∗(p

∗2 ) = 2 . This intuition, supported by the corollary above, seems robust
enough to justify the following piece of terminology.

Definition 3.3. An object X in E is connected if it satisfies the equivalent conditions of
Corollary 3.2.

It is natural to wonder about other alternatives. For example, what about p∗(π0X) = 1
or Υ! : Υ1 → ΥX being an isomorphism? Certainly, X connected implies p∗(π0X) = 1 and
we will have more to say about this but, for the moment, consider the following.

Proposition 3.4. Assume that the fully faithful p∗ : S → E preserves finite products and
that subterminals in E are discrete. For every X in E , if Υ! : Υ1 → ΥX is an isomorphism
then X is connected.

Proof. If Υ! : Υ1 → ΥX is an isomorphism then so is p∗(Υ
!) : p∗(Υ

1)→ p∗(Υ
X). Therefore,

we need only prove that p∗(π0X) is well-supported.
Lemma 2.2 implies that π0X is subterminal so, by hypothesis, π0X is discrete. That

is β : C(π0X)→ π0X is an isomorphism. Also by hypothesis, p∗ : S → E preserves finite
products. Let us denote the canonical comparison map by κA,B = κ : p∗(BA)→ (p∗B)p

∗A.
To prove that p∗(π0X) is well-supported notice that since β : C(π0X)→ π0X is an

isomorphism then so is Υβ : Υπ0X → ΥC(π0X). Hence, we can consider the following diagram

p∗(2 1)

p∗(2 !)

��

κ // Υ1

Υ!

tt
Υ!

||
Υ!

��
p∗(2 p∗(π0X))

κ
// ΥC(π0X)

(Υβ)−1

// Υπ0X

Υς
// ΥX

which commutes because the inner polygons do. The top map is an iso. Hence, if the right
vertical map is monic, then so is the left vertical map and, since p∗ : S → E is fully faithful,
2 ! : 2 1 → 2 p∗(π0X) is monic in S. Now recall that for any f : A→ B in S, 2 f : 2B → 2A is
monic if and only if f is epic (see, for example, Exercise IV.6 in [15]). In particular, if the
left vertical map is monic then ! : p∗(π0X)→ 1 is epic. q.e.d.
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We will later see that, under further hypotheses, X is connected if and only if the map
Υ! : Υ1 → ΥX is an isomorphism. For the moment let us turn our attention to π0-algebras.
Notice that an object X is a π0-algebra if and only if ς : X → π0X is an isomorphism if and

only if the canonical composite X → ΥC(ΥX) is monic.
Following the intuition about points and pieces, an object X such that ς : X → π0X is

an isomorphism (i.e. a π0-algebra) may be thought of as being ‘totally separated’. This idea
suggests that discrete spaces are π0-algebras. We prove (in Proposition 3.6 below) that this
holds under reasonable hypotheses.

Lemma 3.5. For any object A in S, the transposition ev : A→ 2 (2A) of the evaluation
ev : A× 2A → 2 is monic.

Proof. The composite

A
ev // 2 (2A) 2{} // 2A

equals the monic ‘singleton’ map {} : A→ 2A. (See Lemma IV.1.1 in [15].) q.e.d.

If p∗ : S → E is assumed to preserve finite products, there is a natural canonical iso
δ = δA,Y : (p∗Y )A → p∗(Y

p∗A). Indeed, it is the unique one such that the following diagram
commutes

p∗((p∗Y )A)× p∗A
(p∗δ)×id // p∗(p∗(Y p

∗A))× p∗A
β×id // Y p

∗A × p∗A

ev

��
p∗((p∗Y )A ×A)

〈p∗π0,p
∗π1〉 ∼=

OO

p∗ev
// p∗(p∗A)

β
// A

where the left vertical iso is given by the assumption that p∗ preserves finite products.

Proposition 3.6. If p∗ : S → E preserves finite limits and β is monic then, for every A in
S, the unit ς : p∗A→ π0(p∗A) is an isomorphism.

Proof. It is enough to show that the canonical p∗A
ev // Υ(Υp

∗A) Υβ // Υp∗(p∗(Υ
p∗A)) is

monic. Using the diagram before the statement, it is straightforward to check that the
following diagram commutes

p∗A

p∗ev

��

ev // Υ(Υp
∗A) Υβ // Υp∗(p∗(Υ

p∗A)) Υp
∗δ

∼=
// Υp∗((p∗Υ)A) = // Υp∗((p∗(p

∗2))A)

Υp
∗(αA)∼=

��
p∗(2 (2A))

p∗(α(2A))

// p∗((p∗Υ)(2A))
p∗δ
// p∗(p∗(Υp∗(2A)))

β
// Υp∗(2A)

where α is the (iso) unit of p∗ a p∗. Since p∗ preserves monos, the left vertical map p∗ev is
monic by Lemma 3.5. Since β is monic by hypothesis, the left-bottom composite is monic.

q.e.d.
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In other words, discrete objects are π0-algebras. (The referee noticed that the assumption
that β is monic is equivalent to saying that the coreflective subcategory p∗ : S → E is closed
under (regular) quotients, and that this immediately yields the fact that π0(p∗A) is discrete.)
The next result shows that the composite p∗π0 : E → S is very close to being a left adjoint
to p∗ : S → E .

Corollary 3.7. Assume that p∗ : S → E preserves finite limits and that β is mono. For
every X in E , if π0X is discrete then the composite

X
ς // π0X

β−1

// p∗(p∗(π0X))

is universal from X to p∗ : S → E .

Proof. Let f : X → p∗S be a map in E . Since π0X is the free π0-algebra determined by X
and p∗S is a π0-algebra by Proposition 3.6, there is a unique map f ′ : π0X → p∗S such that
the triangle below commutes.

X

f ..

ςX // π0X

f ′

��
p∗S

As π0X is discrete by hypothesis, there exists a unique g : p∗(p∗(π0X))→ p∗S making the
following triangle

X

f //

ς // π0X
β−1

// p∗(p∗(π0X))

g

��
p∗S

commute. Since p∗ : S → E is fully faithful, this g : p∗(p∗(π0X))→ p∗S equals p∗f for a
unique f : p∗(π0X)→ S in S. q.e.d.

Assume from now that E is a topos, just as S.
Recall that a geometric morphism p : E → S is hyperconnected if and only if p∗ : S → E is

fully faithful and the counit β : p∗p∗ → IdE is monic. In this case, p∗ : S → E is closed under
subobjects in E .

Corollary 3.8. Let p : E → S be a hyperconnected geometric morphism. If p∗ : S → E is
cartesian closed then the following hold:

1. An object is discrete if and only if it is a π0-algebra.

2. The functor p∗ has a left adjoint p! = p∗π0 : E → S.

3. X is connected if and only if p!X = 1.
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Proof. If an object is discrete then it is a π0-algebra by Proposition 3.6. For the converse
consider a π0-algebra π0X where X is some object in E . The very definition of π0X shows
that it is a subobject of an object of the form (p∗2 )p

∗A for some A in S. Since p∗ : S → E is
cartesian closed, π0X is a subobject of a discrete object. Since p is hyperconnected, π0X is
discrete.

Corollary 3.7 implies that p∗π0 : E → S is left adjoint to p∗.
If X is connected then, of course, p!X = p∗(π0X) = 1. On the other hand, if p!X = 1

then p∗(p!X) = p∗(p∗(π0X)) = 1. Since β : p∗(p∗(π0X))→ π0X is an iso because π0X is
discrete, π0X = 1. q.e.d.

The referee observed that the functor π0 : E → E need not preserve finite products and
provided the following example. For a non-trivial group G, the canonical geometric morphism
p : [G,Set]→ Set is connected atomic, and so hyperconnected and locally connected (and
hence essential, see C3.5 in [8]). The leftmost adjoint π0 = p! : [G,Set]→ Set sends a G-set
to its set of orbits, so π0G = 1 but π0(G×G) 6= 1. In contrast, consider the following.

Corollary 3.9. Let p : E → S be a hyperconnected geometric morphism. Then, the fully
faithful p∗ : S → E is an exponential ideal if and only if it has a finite-product preserving left
adjoint.

Proof. Part of this result is well-known. Indeed, if the left adjoint p! : E → S exists then,
p∗ : S → E is an exponential ideal if and only if p! : E → S preserves finite products. (See,
for instance, Proposition A4.3.1 in [8]). So all we need to prove is that: if p∗ : S → E is an
exponential ideal then it has a left adjoint. This follows from Corollary 3.8, because if the full
subcategory p∗ : S → E is an exponential ideal then the inclusion is cartesian closed. q.e.d.

Let us recall two concepts from standard topos theory. A geometric morphism p : E → S
is essential if p∗ : S → E has a left adjoint p! : E → S. The morphism p is local if p∗ : E → S
has a fully faithful right adjoint p! : S → E . Recall also [18, 17, 13, 16] that a geometric
morphism p : E → S is pre-cohesive if the adjunction p∗ a p∗ extends to a string of adjoints

E
p!

��
a a ap∗

��
S

p∗

OO

p!

OO

where p∗, p! : S → E are fully faithful, the canonical natural transformation p∗ → p! is epic
(Nullstellensatz) and p! : E → S preserves finite products. Notice that pre-cohesive geometric
morphisms are local and essential by definition.

A geometric morphism p : E → S is locally connected if p∗ has an S-indexed left adjoint.
In particular, locally connected geometric morphisms are essential. Less trivially, it holds
that if p is locally connected then p∗ is cartesian closed. (See C3.3 in [8] and also Section 8
below.)

Although not stated in this way, one of the main results in [9] is a characterization of the
locally connected geometric morphisms that are pre-cohesive. Indeed, a locally connected
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geometric morphism is pre-cohesive if and only if it is local and hyperconnected. Part of
this result does not need local connectedness. For instance, Lemma 3.1(i) shows that if
p : E → S is local then, p is hyperconnected if and only if the canonical natural transformation
ϕ : p∗ → p! is monic; which, as stated in [12], is equivalent to θ : p∗ → p! being epic when p!

exists. See also [13]. In particular, pre-cohesive geometric morphisms are hyperconnected.
Another consequence of the work in [9] that does not need local connectedness is the following.

Proposition 3.10. Let p : E → S be local, hyperconnected and essential. If p∗ : S → E is
cartesian closed then p! : E → S preserves finite products.

Proof. Since p∗ is full and faithful, the unit 1→ p!(p
∗1) = p!1 is an iso and so p! preserves the

terminal object. Proposition 2.7 in [9] proves that p! preserves binary products. (We stress
that Proposition 2.7 in [9] does not need local connectedness. It only requires the string of
adjoints p! a p∗ a p∗ a p!, the Nullstellensatz, and cartesian closure of p∗.) q.e.d.

As we have already mentioned, pre-cohesive geometric morphisms are local and hyper-
connected. On the other hand, I still do not know if pre-cohesive implies locally connected
so it still makes sense to characterize pre-cohesive geometric morphisms without assuming
local connectedness. The construction of π0 suggests a characterization among local hyper-
connected ones.

Corollary 3.11. Let p : E → S be a local and hyperconnected geometric morphism. Then
p : E → S is pre-cohesive if and only if p∗ : S → E is cartesian closed.

Proof. If p is pre-cohesive then p∗ : S → E is cartesian closed by Corollary A1.5.9 in [8].
On the other hand, if p is hyperconnected and local, and p∗ : S → E is cartesian closed
then Corollary 3.8 implies that p∗ has a left adjoint p! : E → S. So we have a string of
adjoints p! a p∗ a p∗ a p! with fully faithful p! : S → E (because p is local) and satisfying the
Nullstellensatz (because p is hyperconnected). Proposition 3.10 is then applicable so that p!

preserves finite products, completing the proof that p is pre-cohesive. q.e.d.

Further information about the connection between local-connectedness and pre-cohesion
may be found in [13].

4 Total separation and indecomposability

The notion of totally separated topological space admits the following elementary general-
ization. Let E be an extensive category with terminal object. As usual, let 2 = 1 + 1.

Definition 4.1. Let X be an object in E . A pair of points x, x′ : 1→ X in E is said to be
inseparable if, for every f : X → 2, fx = fx′. The object X is totally separated if, for every
inseparable x, x′ : 1→ X, x = x′. That is, inseparable points are equal.

For example, let Top be the category of topological spaces. An object X in Top is totally
separated in the sense of Definition 4.1 if and only if it is totally separated in the classical
sense, that is: whenever x and x′ are distinct points of X, there is a clopen subset of X
containing x but not y. (See, e.g., II.4.1 in [7].) We want to compare totally separated
objects (in the sense of Definition 4.1) with π0-algebras.
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1. Let E be a locally small, extensive, regular, and cartesian closed category.

2. Let p∗ : E → Set have a fully faithful left adjoint p∗ : Set→ E that preserves terminal
object. (It follows that p∗ = E(1, ) : E → Set and Υ = p∗2 = 2 in E .)

Let π0 : E → E be the associated idempotent monad of Definition 3.1. The unit of π0

is denoted by ςX : X → π0X for X in E . The main thing to realize in this section is that
inseparability is detected by π0.

Lemma 4.2. For every x, x′ : 1→ X in E , ςx = ςx′ : 1→ π0X if and only if, x and x′ are
inseparable.

Proof. By Lemma 2.3, ςx = ςx′ if and only if the top-fork in the diagram below

p∗1× p∗(2X)

∼=
��

(p∗x)×id //

(p∗x
′)×id

// p∗X × p∗(2X)

∼=
��

∼= // p∗(X × 2X)
p∗ev // p∗2

=

��
E(1, 1)× E(X, 2)

E(1,x)×id //

E(1,x′)×id
// E(1, X)× E(X, 2) ◦

// E(1, 2)

commutes. The rest of the diagram commutes because the composite on the left below

p∗X × p∗(2X)
∼= // p∗(X × 2X)

p∗ev // p∗2 E(1, X)× E(X, 2)
◦ // E(1, 2)

is canonically isomorphic to the composition of maps indicated on the right above. So the
top fork (in the first diagram) commutes if and only if the bottom fork does. In turn, the
bottom fork commutes if and only if for every f : X → 2, fx = fx′. That is, if and only if x
and x′ are inseparable. q.e.d.

We may characterize total separation in terms of π0 as follows.

Proposition 4.3. For every object X in E , X is totally separated if and only if the map
p∗ςX : p∗X → p∗(π0X) is monic (in Set).

Proof. The map p∗ς : p∗X → p∗(π0X) is a monomorphism in Set if and only if the function
E(X, ς) : E(1, X)→ E(1,π0X) is injective. That is, if and only if, for every pair of points
x, x′ : 1→ X, ςx = ςx′ implies x = x′. So it is enough to prove that for every x, x′ : 1→ X,
ςx = ςx′ if and only if x and x′ are inseparable; but this is Lemma 4.2. q.e.d.

We may now relate total separation and π0-algebras.

Corollary 4.4. If p∗ : E → Set is faithful then, an object in E is a π0-algebra if and only if
it is totally separated.

Proof. Since p∗ is faithful, ς : X → π0X is monic if and only if p∗ς : p∗X → p∗(π0X) is
monic. q.e.d.
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Recall that in an extensive category an object is called indecomposable if it has exactly
two complemented subobjects. Hence, if the extensive category has a terminal object then
an object X is indecomposable if and only if there are exactly two maps X → 1 + 1 = 2.
In particular, 1 is indecomposable if and only if the function 2→ E(1, 2) determined by the
injections 1→ 2 is an isomorphism.

As we are assuming that p∗ : S → E is full and faithful and preserves 1, the unit of p∗ a p∗
is an iso and p∗2 = 2. Therefore 2→ p∗(p

∗2) = E(1, 2) is an iso. That is, under our current
hypotheses, 1 is indecomposable in E .

Corollary 4.5. For every object X in E , X is indecomposable if and only if the map
p∗(2

!) : p∗(2
1)→ p∗(2

X) is an iso in Set.

Proof. Consider the unique map ! : X → 1 and the induced E(!, 2) : E(1, 2)→ E(X, 2). Since
1 is indecomposable then, by definition, X is indecomposable if and only if the function
E(!, 2) : E(1, 2)→ E(X, 2) is an isomorphism. This is equivalent to p∗(2

!) : p∗(2
1)→ p∗(2

X)
being an isomorphism. q.e.d.

5 Compactly generated Hausdorff spaces

Let CGHaus be the category with objects all compactly generated Hausdorff spaces, and
with arrows all continuous maps between them. Theorem VII.8.3 in [14] shows that CGHaus
is cartesian closed. It is also an extensive category, and it is regular [2]. Moreover, regular
epimorphisms in CGHaus are exactly the topological quotients.

The faithful functor p∗ = CGHaus(1, ) : CGHaus→ Set that sends each space to its
underlying set of points has a left adjoint p∗ : Set→ CGHaus that assigns to each set the
corresponding discrete space. The unit of p∗ a p∗ will be denoted by β and the induced
comonad by C : CGHaus→ CGHaus. For any X in CGHaus, βX : CX → X is simply
the canonical (epic) inclusion of the discrete space determined by X.

The functor p∗ : Set→ CGHaus preserves finite limits so, in this example, we have
that Υ = p∗2 = 2 ∈ CGHaus. Let π0 : CGHaus→ CGHaus denote the induced monad
(Definition 3.1).

Corollary 5.1. The π0-algebras in CGHaus are exactly the totally separated spaces there.

Proof. Follows from Corollary 4.4. q.e.d.

Exponential transpositions in CGHaus are calculated as in Set so, for every X in
CGHaus, the canonical composite

X
ev // 2(2X) 2β // 2C(2X)

sends x ∈ X to the function evx : C(2X)→ 2 defined by evx(f : X → 2) = fx ∈ 2. Alterna-
tively, if we identity f : X → 2 with the clopen arising by pulling back > : 1→ 2 then we

may say that the composite X → 2C(2X) sends x to the set of clopens of X containing x. It
is then clear, that ς : X → π0X is the topological quotient that equates two points if and
only if they have the same clopen neighborhoods.
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Corollary 5.2. For any X in CGHaus the following conditions are equivalent.

1. Υ! : Υ1 → ΥX is an isomorphism.

2. X is connected.

3. p∗(π0X) = 1.

4. X is indecomposable.

Proof. The first item implies the second by Proposition 3.4. The second item trivially implies
the third. The third implies the second because, in the present context, p∗ reflects terminal
object. Corollary 4.5 and the fact that indecomposables are well-supported in CGHaus
imply that the second and fourth items are equivalent. So, to complete the proof, we need to
check that the second item implies the first. For this, assume that p∗(Υ

!) : p∗(Υ
1)→ p∗(Υ

X)
is an isomorphism. Then ΥX is finite, as well as Hausdorff, so it is discrete. Hence, we have
that the top and vertical maps in the commutative diagram below

p∗(p∗(Υ
1))

β

��

p∗(p∗(Υ
!)) // p∗(p∗(ΥX))

β

��
Υ1

Υ!

// ΥX

are isomorphisms. It follows that the bottom map is also an iso. q.e.d.

6 Subsequential spaces

Let N+ be the one-point compactification of the discrete space of natural numbers. A subse-
quential space consists of a set X together with a distinguished family of functions N+ → X
called convergent sequences in X, satisfying:

1. for every x ∈ X, the constant sequence (x) converges to x;

2. if (xn) converges to x, then so does every subsequence of (xn);

3. if (xn) is a sequence and x a point such that every subsequence of (xn) contains a
subsequence converging to x, then (xn) converges to x.

A function between subsequential spaces is said to be continuous if it preserves convergent
sequences. We write sSeq for the category of subsequential spaces and continuous maps
between them.

The category sSeq is a quasi-topos [6] so it is cartesian closed and regular. It is straight-
forward to prove that it is also extensive and the functor p∗ = sSeq(1, ) : sSeq→ Set is
clearly faithful. Moreover it has a fully faithful left adjoint p∗ : Set→ sSeq that preserves
finite limits. So we have the induced π0 : sSeq→ sSeq and we will characterize the inde-
composable objects and the π0-algebras in sSeq. Before we do this it is convenient to recall
the category of sequential spaces and its relation to sSeq.
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Let X be a topological space. A subset U ⊆ X is sequentially open if every sequence in
X converging to a point of U is eventually in U . The space X is called sequential if every
sequentially open subset of X is open [4]. Let Seq→ Top be the full subcategory determined
by sequential spaces. Lemma 2.2 in [6] proves that this inclusion has a right adjoint which
sends an X in Top to the sequential space with the same underlying set of points and the
sequentially open sets of X as opens. It follows that Seq→ Top preserves coequalizers (see
also Proposition 1.2 in [4]).

As observed in Lemma 2.3 loc. cit., the standard definition of convergent sequence makes
a sequential space into a subsequential space and this assignment extends to a fully faithful
inclusion Seq→ sSeq that has a left adjoint.

A subsequential space is sequentially Hausdorff if every sequence converges to at most one
point. Theorem 10.4 in [5] proves that the inclusion Seq→ sSeq restricts to an equivalence
between sequentially Hausdorff subsequential spaces and sequentially Hausdorff sequential
spaces.

Lemma 6.1. Let Y in sSeq be sequentially Hausdorff. Then every subobject of Y is se-
quentially Hausdorff and, for every X in sSeq, Y X is sequentially Hausdorff.

Proof. Let m : X → Y be mono in sSeq. Assume that the sequence (xn) converges to x
and to x′ in X. Then (mxn) converves to mx and to mx′ in Y , so mx = mx′. Since m is
injective, x = x′.

As recalled in [5], the underlying set of Y X is sSeq(X,Y ) and a sequence (fn) in Y X

converges to f if and only if whenever (xn) converges to x in X then (fnxn) converges to
fx in Y . To prove the second part of the statement, suppose that (fn) converges to f and
f ′ in Y X then, for every x ∈ X, (fnx) converges to fx and to f ′x. Since Y is sequentially
Hausdorff, fx = f ′x. q.e.d.

We may now characterize the π0-algebras in sSeq.

Proposition 6.2. An object in sSeq is a π0-algebra if and only if it is a totally separated
sequential space.

Proof. First observe that, since π0X → 2C(2X) is monic, Lemma 6.1 implies that π0X is
sequentially Hausdorff, because 2 is. Also, as in the case of CGHaus, we may apply Corol-
lary 4.4 to conclude that an object X in sSeq is a π0-algebra if and only if X is totally
separated in the extensive category sSeq. q.e.d.

The same argument in Corollary 5.2 proves the following.

Corollary 6.3. For any X in E the following conditions are equivalent.

1. Υ! : Υ1 → ΥX is an isomorphism.

2. X is connected.

3. p∗(π0X) = 1.

4. X is indecomposable.
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It may be interesting to characterize the objects X in CGHaus or sSeq such that π0X
is discrete.

7 Local maps and separated objects

Let c : S → E be a subtopos. A monomorphism m in E is dense (with respect to the subtopos
c) if c∗m is an isomorphism in S. An object X in E is separated if for every span

U

m

��

f // X

Y

with m a dense monomorphism, there exists at most one g : Y → X such that gm = f .
It is well-known that the full subcategory SepE → E of separated objects is closed under

subobjects, reflective and that the left adjoint preserves finite products and monomorphisms.
(See [3] and the comments before and after A4.4.6 in [8].) Either directly or as a corollary
of product-preservation of the left adjoint, it follows that SepE → E is an exponential ideal.

Assume from now on that p : E → S is a hyperconnected and local geometric morphism.
We will consider separated objects with respect to the subtopos p∗ a p! : S → E . As be-
fore, we denote the (monic) counit of p∗ a p∗ by β. Notice that, since p∗ is fully faithful,
βX : p∗(p∗X)→ X is dense for every X in E .

Denote the unit of p∗ a p∗ by α, the unit of p∗ a p! by η and its counit by ε. The following
diagram commutes

p∗

p∗ε−1

��

η // p!p∗p
∗

p!α−1

��
p∗p∗p

!

β
// p!

and we denote the composite by ϕ : p∗ → p! as in [12] and [9]. The natural ϕ is monic if and
only if β is monic. Therefore, since p is hyperconnected, ϕ is monic.

Let π0 : E → E be the idempotent ‘pizero’ monad determined by the hyperconnected and
local p : E → S.

Lemma 7.1. Discrete objects and π0-algebras are separated in E .

Proof. Let A be an object in S. The monomorphism ϕA : p∗A→ p!A shows that p∗A is
a subobject of a sheaf so discrete objects are indeed separated. In particular, Υ = p∗2 is

separated and, as separated objects form an exponential ideal, ΥC(ΥX) is separated for any X

in E . The monomorphism π0X → ΥC(ΥX) implies that π0X is separated for any X. q.e.d.

Let M be the idempotent monad on the topos E determined by the reflective subcategory
SepE → E , and denote its unit by ρ.

Proposition 7.2. For any X in E , π0ρ : π0X → π0(MX) is an isomorphism.
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Proof. Consider the naturality diagram

X

ρ

��

ς // π0X

π0ρ

��
MX

ς
// π0(MX)

and notice that, since π0-algebras are separated by Lemma 7.1, the left-bottom composite
has the same universal property as the top map. It follows that the right map is an iso. q.e.d.

In other words, every object X in E has the same π0 as its separated reflection.

Lemma 7.3. If m : Y → X is a dense mono and Z is separated then Zm : ZX → ZY is
monic.

Proof. If the fork below commutes

W
f //

g
// Z
X Zm // ZY

then, by transposition, the left-bottom composites of the commutative diagram below are
equal

W × Y

id×m
��

f×id //

g×id
// Z
X × Y

id×m
��

Zm×id // ZY × Y

ev

��
W ×X

f×id //

g×id
// Z
X ×X

ev
// Z

and, since Z is separated and the left vertical map is a dense monomorphism, the bottom
fork in the diagram above commutes; which means that f = g. q.e.d.

Notice that Lemma 7.3 is a statement about separated objects for an arbitrary subtopos.
That is, the subtopos does not need to be the center of a local geometric morphism. On the
other hand, the application of the lemma in the next result involves the dense and monic
counit of the local hyperconnected p.

Lemma 7.4. For every X in E the map Υβ : Υ(ΥX) → ΥC(ΥX) is monic. Therefore, there

exists a unique (monic) map ν : π0X → Υ(ΥX) such that the inner triangles below commute

X

ev

��

ς // π0X
ν

yy ��
Υ(ΥX)

Υβ
// ΥC(ΥX)

in E .
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Proof. As p is hyperconnected, the counit β of p∗ a p∗ is monic and p∗β is an isomor-

phism. So, for every X in E , Υβ : Υ(ΥX) → ΥC(ΥX) is monic by Lemma 7.3. The map

ν : π0X → Υ(ΥX) exists by orthogonality and it is monic because ψ is. q.e.d.

In other words, π0X may be calculated as the image of ev : X → Υ(ΥX). The referee
noticed that this implies that the subcategory of π0-algebras coincides with that of subobjects
of powers of Υ. Moreover, the referee’s observation leads to the following.

Proposition 7.5. The functor π0 : E → E preserves finite products. Therefore, the map
Sς : Sπ0X → SX is an isomorphism for any X in E and any π0-algebra S. In particular,
Υς : Υπ0X → ΥX is an isomorphism.

Proof. First let us expand on the referee’s comment. Fix an object L in E and consider the
subcategory L → E determined by the objects that appear as the domain of a subobject of
a power of L. The inclusion L → E has a left adjoint which sends X in E to the image of

ev : X → L(LX). To prove the universal property consider a map f : X → Y and a monomor-
phism m : Y → LZ . Interchanging X and Z in the composite mf : X → LZ determines a
map g : Z → LX such that the following diagram

X

f

��

ev // L(LX)

Lg

��
Y

m
// LZ

commutes. Since the underlying category is regular and m is monic, orthogonality implies

that f factors uniquely through the image of ev : X → L(LX). This proves that L → E is
reflective. Moreover, notice that if m : Y → LZ is a monomorphism then so is the map
mW : YW → (LZ)W ∼= LZ×W for any W in E . In other words, the subcategory L → E is an
exponential ideal.

In particular, we may consider the object L = Υ. Lemma 7.4 implies that the resulting
exponential ideal L → E coincides with the category of π0-algebras. It follows that the
reflection π0 : E → E preserves finite products and that the unit ς : X → π0X induces an iso
Sς : Sπ0X → SX for every π0-algebra S. See, for example, Proposition A4.3.1 in [8].

Proposition 3.6 implies that Υ = p∗2 is a π0-algebra so the proof is complete. q.e.d.

It follows that finite products of connected objects are connected. Also, connected objects
in the present hyperconnected and local context have a nice characterization. In order to
prove it we need the following auxiliary fact about separated objects.

Lemma 7.6. The functor p∗ : E → S is faithful with respect to morphisms with separated
codomain. So, if Y is separated and p∗Y = 1 then Y = 1.

Proof. Let Y be separated and let f, g : Z → Y be such that p∗f = p∗g. Then

fβ = β(p∗(p∗f)) = β(p∗(p∗g)) = gβ
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and, since β is dense and Y is separated, f = g.
If Y is separated and p∗Y is subterminal then Y is subterminal by the first part of the

result. If p∗Y = 1 then Y also has a point. q.e.d.

Notice the similarity between Corollaries 5.2 and 6.3 and the following one.

Corollary 7.7. For any X in E the following are equivalent:

1. Υ! : Υ1 → ΥX is an isomorphism.

2. X is connected.

3. p∗(π0X) = 1.

Proof. The first item implies the second by Proposition 3.4 and the second easily implies the
third. To prove that the third implies the second assume that p∗(π0X) = 1. By Lemma 7.1,
π0X is separated. So π0X = 1 by Lemma 7.6. To prove that the second implies the first
assume that π0X = 1. Then Υ! : Υ1 → ΥX is an isomorphism by Proposition 7.5. q.e.d.

Proposition 7.2 and Lemma 7.4 together imply that π0X may be calculated as the image

of ev : MX → Υ(ΥMX); but more is true: we may calculate this image in the category SepE ,
thanks to the following result which is probably folklore.

Lemma 7.8. The functor SepE → E preserves regular epimorphisms.

Proof. Let e : X → Y be a regular epimorphism in SepE . Let e = md be the (regular-
)epi/mono factorization of e in E , say with m : U → Y . Since SepE → E is closed under
subobjects, m is in SepE . Then d : X → U is also in SepE and the left adjoint E → SepE
sends it to a regular epimorphism. So e = md is a regular-epi/mono factorization of e in
SepE . It follows that m is an isomorphism in SepE because quasi-toposes are regular. So m
is an isomorphism in E . That is, e is a (regular-)epimorphism in E . q.e.d.

(The referee confirmed that Lemma 7.8 is folklore and observed that it is a general fact
about regular-epi-reflective subcategories of regular categories, since they are closed under
arbitrary subobjects.)

We may conclude that the π0-algebras in E coincide with those in SepE . Rather than
introducing notation for the restriction of p to SepE , and for the resulting π0 on SepE , we
illustrate the idea with a concrete example.

The topological topos, denoted here by J , is the topos of sheaves for the canonical topol-
ogy on the monoid of continuous endofunctions of the one-point compactification of the
discrete space of natural numbers [6]. It follows from the results loc. cit. that the canon-
ical geometric morphism p : E → Set is hyperconnected, local, and moreover, the subtopos
p∗ a p! : Set→ J coincides with the subtopos of ¬¬-sheaves. Proposition 3.6 loc. cit. shows
that the subcategory of ¬¬-separated objects in E is equivalent to the category of subsequen-
tial spaces.

Corollary 7.9. An object X in J is a π0-algebra if and only if X is a totally separated
sequential space.

204



Proof. By Proposition 7.2, π0X = π0(MX) and, since SepE → E is an exponential ideal,

ev : MX → ΥΥMX is a map in SepE . By Lemma 7.8 (and Lemma 7.4), its image in SepE
coincides with π0(MX). Moreover, MX → π0(MX) is an iso in SepE if and only if it is an
iso in E . The result then follows from Proposition 6.2. q.e.d.

8 Locally connected geometric morphisms

Corollary 3.8 is reminiscent of the fact that locally connected morphisms are essential.

Theorem 8.1 (Barr-Paré [1]). For a geometric morphism f : E → S the following are equiv-
alent:

1. f∗ has an S-indexed left adjoint (denoted by f! : E → S).

2. f∗ preserves
∏
a for each map a in S.

3. For each A in S, (f/A)∗ : S/A→ E/(f∗A) is cartesian closed.

A geometric morphism satisfying the equivalent conditions of Theorem 8.1 is called locally
connected.

Any proof of Theorem 8.1 must produce, from items 2 or 3, a left adjoint to f∗. For
example, the proof (of Proposition C3.3.1) in [8] observes that item 2 is just the assertion
that f∗ is continuous as an S-indexed functor, so the existence of f! follows from an Indexed
Adjoint Functor Theorem. On the other hand, the proof in [1] invokes the following result.

Theorem 8.2 (Butler - see [1]). Assume that the following diagram commutes

A Φ // B

C
F

__

G

OO

F a U , G a V , U : A → C is monadic, Φ preserves coequalizers of U -split pairs. Then Φ has
a right adjoint Ψ : B → A.

We will not reproduce the proof of Theorem 8.2 here. Suffice it to say that Ψ is defined
as the coequalizer

FUFV
εFV //

Fα
// FV // Ψ

where ε is the counit of F a U and α is an explicit map that may be constructed under the
hypothesis of the theorem.

Let > : 1→ 2 be the subobject classifier of S and let Υ = p∗2 . Barr and Paré apply
Theorem 8.2 to the following diagram

Sop
(f∗)op

// Eop

S
2 ( )

bb

(f∗2)(f∗ )=Υ(f∗ )

OO
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so that UX = 2X and V X = f∗(Υ
X). Hence, the right adjoint to (f∗)op, i.e. the left adjoint

to f∗, is defined by an equalizer

f!X // 2 f∗(Υ
X) //

// 2
2 2f∗(Υ

X )

in S. In contrast, π0X appears as a subobject

π0X // // Υf∗(f∗(Υ
X))

in E . By Corollary 3.8 we may conclude that: if f is connected and locally connected then
f! = f∗π0 : E → S.

Altogether, we have mentioned three constructions. The two ‘classical’ ones are the Barr-
Paré application of Butler’s Theorem on right adjoints to functors (over some base) whose
domain is monadic, and Johnstone’s application of the Indexed Adjoint Functor Theorem. In
contrast, the simple elementary construction of π0 does not produce a left adjoint in general,
but it involves no indexing and has a direct geometric intuition.
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