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Abstract

We use homological ideals in triangulated categories to get a suffi-
cient criterion for a pair of subcategories in a triangulated category
to be complementary. We apply this criterion to construct the Baum-
Connes assembly map for locally compact groups and torsion-free
discrete quantum groups. Our methods are related to the abstract
version of the Adams spectral sequence by Brinkmann and Chris-
tensen.
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1 Introduction

The framework of triangulated categories is ideal to extend basic construc-
tions from homotopy theory to categories of C*-algebras. It provides a
uniform setting for various problems in non-commutative topology, includ-
ing homotopy colimits and Mayer-Vietoris sequences, universal coefficient
theorems, and generalisations of the Baum-Connes assembly map (cf. [16,
19, 17, 20, 18]). More specifically, the Baum-Connes assembly map for coac-
tions of certain compact Lie groups, which is studied in [17], is always an
isomorphism and it is closely related to a universal coefficient theorem for
equivariant Kasparov theory by Jonathan Rosenberg and Claude Schochet
([22]). Universal coefficient theorems for Kirchberg’s bivariant K-theory for
C*-algebras over certain finite topological spaces are derived in [20, 18].

This article continues [19], which deals with a framework for carrying
over familiar notions from homological algebra to general triangulated cat-
egories. Before we explain what this article is about, we outline some im-
portant ideas from [19].

The localisation (or total derived functor) of an additive functor between
Abelian categories is a functor between their derived categories. Mapping
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chain complexes to chain complexes, it belongs to the world of triangulated
categories by definition. Although the more classical derived functors orig-
inally live in the underlying Abelian categories, they can be carried over to
triangulated categories as well.

Both localisations and derived functors require additional structure on
a triangulated category to be defined. For the localisation of a functor, we
specify the subcategory to localise at, consisting of all objects on which the
localisation vanishes. For its derived functors, we specify an ideal, consisting
of all morphisms on which the derived functors vanish.

The idea to use ideals in triangulated categories goes back to Daniel
Christensen [7]. Some important related concepts are due to Apostolos
Beligiannis [2], who uses a slightly different but equivalent setup, which is
inspired by the notion of an exact category in homological algebra.

A homological ideal in a triangulated category ¥ is, by definition, the
kernel of a stable homological functor (cf. [19]). Such an ideal J allows us
to carry over various notions of homological algebra to €. The ultimate
explanation for this is that a homological ideal generates a canonical homo-
logical functor to a certain Abelian category, namely, the universal J-exact
stable homological functor Hy: ¥ — 2A5%. All homological notions in ¥ de-
fined using the ideal J reflect familiar notions in this Abelian category. The
homological algebra in the target Abelian category 5% provides a rough
Abelian approzimation to the category ¥.

An interesting and typical example is the G-equivariant Kasparov cate-
gory RRY for a countable discrete group G. Let J be the ideal defined by
the K-theory functor, that is, an element of KKG(A7 B) belongs to the ideal
if it induces the zero map K, (A4) — K.(B). The resulting Abelian approx-
imation A5 (RRY) is the category of all Z/2-graded countable modules over
the group ring Z[G], and the universal functor maps a C*-algebra A with
an action of G to its K-theory, equipped with the induced action of G (this
is a special case of a result in [19]).

Notice that the passage to the universal functor adds the group action
on K, (A). Forgetting this group action does not change the ideal defined
by the functor, but it kills most interesting homological algebra. (In §7,
we will actually consider a smaller ideal in ARY that is more closely related
to the Baum-Connes conjecture, but leads to a more complicated Abelian
approximation.)

The Abelian category 205% is usually not a localisation of T: we must
modify both morphisms and objects to get an Abelian category. Instead,
it is described in [2] as a localisation of the Abelian category containing ¥
constructed by Peter Freyd. The main innovation in [19] is a concrete
criterion for a stable homological functor to be universal, which involves its
partially defined left adjoint. Using this criterion, we can often find rather
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concrete models for the universal functor —as in the example mentioned
above— and then compute derived functors associated to the ideal.

What do the derived functors of a homological functor on ¥ tell us
about the original functor? In general, these derived functors are always
related to the original functor by a spectral sequence, whose convergence we
will discuss below. This result is mainly of theoretical importance because
spectral sequence computations are almost impossible without additional
simplifying assumptions. But given how much information is lost by passing
to an Abelian category, we cannot hope for much more than a spectral
sequence.

The spectral sequence that links a functor to its derived functors was
already discovered in the 1960s before triangulated categories became pop-
ular. First Frank Adams treated an important special case in stable homo-
topy theory — the Adams spectral sequence [1]. This was reformulated in
an abstract setting by Hans-Berndt Brinkmann [6]. Daniel Christensen [7]
formulated the Adams spectral sequence in the setting of triangulated cat-
egories, apparently unaware of Brinkmann’s work.

Given the sources of the spectral sequence, we call it the ABC' spec-
tral sequence here. We describe its construction and its higher pages in
greater detail than previous authors and weaken the assumptions needed to
guarantee its convergence.

I was drawn towards this theory because similar ideas provide an effective
method to prove that pairs of subcategories are complementary; this is the
most difficult technical aspect of the construction of the Baum-Connes as-
sembly map in [16]. In § 7, we first apply our new criterion to the group case
already treated in [16] and then define an analogue of the Baum-Connes as-
sembly map for all “torsion-free” discrete quantum groups. More precisely,
we construct an assembly map for all discrete quantum groups, but since
this map does not take into account torsion, it is not the right analogue of
the Baum-Connes assembly map unless the quantum group in question is
torsion-free.

A built-in feature of our new assembly map is that its domain is com-
puted by a spectral sequence —the ABC spectral sequence— whose second
page is quite accessible. The spectral sequence computation is very difficult,
but an operator algebraist might consider it to be a topological problem,
that is, Someone Else’s Problem. His own problem is to find out when the
assembly map is an isomorphism. Given our experience with the group case,
this should happen often but not always. So far —besides classical groups—
only the duals of certain compact Lie groups and quantum SU(2) have been
treated in [17] and in [24], respectively. For the alternative approach by
Aderemi Kuku and Debashish Goswami in [11], it is unclear whether the
domain of the assembly map is computable by topological methods.
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Our criterion for complementarity of two subcategories is also useful in
situations that have nothing to do with bivariant K-theory. The improve-
ment upon similar criteria in [2] is that we can cover categories that are
not compactly generated: what we need is an ideal with enough projective
objects that is compatible with countable direct sums. This assumption
is still satisfied for the ideals that appear in connection with the Baum-
Connes assembly map, although the categories in question are probably not
compactly generated.

More precisely, the criterion is the following. Let J be a homological
ideal in a triangulated category T. We assume that ¥ has countable direct
sums and that the ideal J is compatible with countable direct sums in
a suitable sense. Furthermore, we assume that J has enough projective
objects. Let P35 C ¥ be the class of J-projective objects in ¥ and let (5) be
the localising subcategory generated by it, that is, the smallest triangulated
subcategory that is closed under countable direct sums and contains 5.
Finally, let 915 be the subcategory of J-contractible objects. Under the
assumptions above, the pair of subcategories ({(J35),5) is complementary,
that is, T,(P, N) = 0 whenever P €€ (P5) and N €€ Ny, and any object
A €€ T is part of an exact triangle P — A — N — PJ[1] with P €€ (5)
and N €€ 915. Equivalently, the subcategory My is reflective, that is, the
embedding 913 — ¥ has a right adjoint functor.

Our proof also provides the following structural information on the cat-
egory (Ps). First, we get an increasing chain (P5),en of subcategories,
consisting of the projective objects for the ideals J"; these can also be gen-
erated iteratively from 5 using exact triangles. We show that any object
of (P5) is a homotopy colimit of an inductive system P, with P, €€ 5.

We write f € € for a morphism and A €€ € for an object of a category €.
We denote the category of Abelian groups by 2b. We usually write T for
triangulated, 2 for Abelian, and € for additive categories. The translation
automorphism in a triangulated category is denoted by A — A[1].

2 Homological ideals, powers, and filtrations

The convergence of a spectral sequence always involves a filtration on the
limit group. Hence we expect a homological ideal J in ¥ to generate filtra-
tions on the category ¥ itself and on homological and cohomological functors
on T. After recalling some basic notions, we introduce these filtrations here.

We will use the results and the notation of [19]. In particular, a stable
category is a category with a translation automorphism, denoted A — A[1],
and a stable functor is a functor F' together with natural isomorphisms
F(A[1]) 2 (FA)[1] for all objects A.
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Let F': ¥ — 2 be a stable homological functor from a triangulated
category ¥ to a stable Abelian category 2. We define an ideal ker F' in ¥
by

ker F(A, B) := {p € (A, B) | F(¢) =0}.

Ideals of this form are called homological ideals. A homological ideal is used
in [19] to carry over various notions from Abelian to triangulated categories.
This includes J-epimorphisms, J-exact chain complexes, J-exact functors,
J-projective objects, and J-projective resolutions. The first three of these
can be tested using the functor F'; for instance, a chain complex with entries
in ¥ is J-exact if and only if its F-image is an exact chain complex in the
Abelian category 2. Projective objects can only be described in terms of F'
if F'is the universal J-exact stable homological functor, cf. [19]. We also
call a morphism an J-phantom map if it belongs to J.

Most of our constructions require ¥ to contain enough J-projective ob-
jects — that is, any object should be the range of an J-epimorphism with
J-projective domain. This is equivalent to the existence of J-projective
resolutions for all objects.

Remark 2.1. Daniel Christensen uses a somewhat different terminology
in [7]. His projective classes (J,B) turn out to be the same as a homological
ideal J with enough projective objects together with its class 8 = B of pro-
jective objects. The ideal J in a projective class is homological because, in
the presence of enough projective objects, the universal homological functor
with kernel J is well-defined. There are two ways to construct this universal
functor, which involve a localisation of categories in one step. Apostolos
Beligiannis [2] first embeds the category T into an Abelian category and
then localises the latter at a Serre subcategory. The authors use the heart
of a t-structure on a suitable derived category of chain complexes over ¥ in
(19, §3.2.1]. In both cases, the morphisms in the relevant localisations can
be computed using projective resolutions, so that the localisation is again a
category with morphism sets instead of morphism classes.

2.1 Powers and intersections of ideals

At first, we do not care whether the ideals we are dealing with are homo-
logical. Let € be an additive category. If (J,)acs is a set of ideals, then
the intersection (] J, is again an ideal. If J1,Jo C € are ideals, define

J1 OjQ(A, B) = {fl o fg | fl S 31(X,B), f2 € jQ(A,X) for some X €€ Q:}
This is a subgroup of €(A, B) because we can decompose f10 fo+ f1o f} as

(%)
), o x AL g

A
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Thus J; 0 J5 is an ideal in €. We have J; 0 J9 C J1 N Js.

Now the powers of an ideal J C € are defined recursively: we let 30 := ¢
consist of all morphisms and define 3" := 3" 1o J for 1 < n < oo. The
sequence of ideals (J"),¢n is decreasing, and we have J™ o J" = J™*" for
all m,n € N. If 3% = 3**! for some n € N, then 3% = IV for all N > n.

We also let 3% := [, o I" and J"*° := (3°°)". In general, the ideals
J03% and J3* oJ may differ from 3 (cf. the remark after Proposition 4.2).
Theorem 3.19 shows that J7° = 32 for all n > 2 if J is compatible with
countable direct sums.

Now we replace the additive category € by a triangulated category ¥
and restrict attention to homological ideals. It is not obvious whether the
powers of a homological ideal are again homological. If J = ker F', then a
functor with kernel 32 C J contains more information than F because it
has a smaller kernel. Therefore, we cannot hope to construct such a functor
out of F.

Nevertheless, I expect that products and intersections of homological
ideals are again homological, at least if the categories in question are small
to rule out set theoretic difficulties with localisation of categories. A proof
could use Beligiannis’ axiomatic characterisation of homological ideals.
Since we only need the much easier case where there are enough projective
objects, I have not completed the argument. Proposition 2.5 and Theo-
rem 3.1 in [2] show that our “homological ideals” are exactly the “saturated
Y-stable ideals” in Beligiannis’ notation. Clearly, products and intersections
of Y-stable ideals remain Y-stable, and intersections of saturated ideals re-
main saturated. It is less clear whether products of saturated ideals remain
saturated; the proof should involve the octahedral axiom.

Here we only consider the easy case of ideals with enough projective
objects, where we can describe which objects are projective for products
and intersections:

Proposition 2.2 ([7, Proposition 3.3]). Let J; and J be homological ideals
in ¥ with enough projective objects. Then J; o J5 is a homological ideal
with enough projective objects. An object A of ¥ is J; o Js-projective if and
only if there are J;-projective objects P; and an exact triangle P, — P —
P, — P5[1], such that A is a direct summand of P.

Proposition 2.3 ([7, Proposition 3.1]). Let (J4)aes be a set of homological
ideals in ¥ with enough projective objects. Suppose that ¥ has direct sums
of cardinality [S]. Then Jg := ) ,cg Ja is a homological ideal with enough
projective objects. An object A of ¥ is Jg-projective if and only if there are

Ja-projective objects P, such that A is a direct summand of @ g Pa-

We may use Christensen’s results because of Remark 2.1.
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Definition 2.4. Let J be a homological ideal in a triangulated category ¥
with enough projective objects. We write PB4 for the class of J-projective
objects, and % for the class of J"-projective objects for n € NU {oo}.

The class 5 is always closed under direct summands, suspensions, and
direct sums that exist in ¥.

Propositions 2.2 and 2.3 show that the powers J" for n € N U {oo}
have enough projective objects. Moreover, B5 for n € N consists of all
direct summands of objects A,, €€ T for which there is an exact triangle
A, — A, —» A — Anfl[].] with A, _1 €€ &Bgil, A €€ mj; and mgo
consists of all retracts of objects of the form €, . A, with A, € P7.
The phantom castle introduced in Definition 3.10 explicitly decomposes
objects of % into objects of P33; essentially, its construction is the proof of
Proposition 2.2.

Example 2.5. Let J be a homological ideal with enough projective objects.
If 3 = 32, then Proposition 2.2 implies that 95 is closed under extensions.
Since this subcategory is always closed under direct summands, suspensions,
isomorphism, and direct sums, 5 is a localising subcategory of ¥.

Conversely, if 935 is a triangulated subcategory, then J and J2 have the
same projective objects. Since an ideal with enough projective objects is
determined by its class of projective objects, this implies J = J2.

Homological ideals with J = J2, but possibly without enough projec-
tive objects, play an important role in [14] as a substitute for localising
subcategories.

We usually know very little about the Abelian approximations generated
by J" for n > 2, even if the situation for J itself is rather simple. Derived
functors for J and 32 do not seem closely related. This is particularly
obvious in cases where J # 0 and 3% = 0. For instance, this happens if J is
the kernel of the homology functor on the derived category of the category of
Abelian groups. Here the universal J-exact functor is the homology functor
to 2Ab%; the universal J2-exact functor is the Freyd embedding of the derived
category into an Abelian category.

2.2 The phantom filtrations

Let J be an ideal in an additive category €. Since 3 C 3% for a > 3, we
get a decreasing filtration

¢(A,B)=73%A,B) 23'(A,B) 23*(A,B) 2 --- 2 3%(A, B) 2 {0},

called the phantom filtration [2]. We shall also need related filtrations on
contravariant and covariant functors on €.
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Let G: €°P — 2b be a contravariant functor and A €€ €. We define a
decreasing filtration

G(A) =3"G(A) 2T3'G(A) 2 F°G(A) 2 --- 2 I*G(A4) 2 {0}

on G(A) by

JG(A) ={f*(&) | f € T*(A,B), £ € G(B) for some B €€ ¢}.
If we apply this construction to the representable functor €(_, B) we get
back the filtration J%(A, B) on €(A4,B). If G is compatible with direct
sums, then (5.2) asserts that [,,cy I"G(A) = I*G(A).
The functoriality of G restricts to maps

37(A,B) ®3°G(B) — I*YG(A), oz~ f*(2),

for all o, 3. In particular, 3G is a contravariant functor on €. The ideal 37
acts trivially on the subquotients J*G(A)/3*tPG(A), which therefore de-
scend to functors on the quotient category €/J%.

We may also view G as a right module over the category € and €/J¢
as a ¢-bimodule. The quotient G/J*G corresponds to the right €-module
G ®@¢ €/3°.

For a covariant functor F': € — b, we define an increasing filtration
{0} =F:3°%(A) CF:3'(A) CF:3%(A) C--- CF:3%(A) C F(A)
for any A €€ € by
F:3%A):={z € F(A) | fo(x) =0 for all f € 3%(A4,B), B €€ €}.

If 3 and F are compatible with direct sums, then F : 3°(4) =
J"(A) (cf. Theorem 5.1), but this need not be the case in general.

The functoriality of F' restricts to maps

J(A,B)Y® F : 3°T8(B) - F : 3%(4),  f®z— f.(x),

nENF:

for all o, 3. In particular, F' : J% is a covariant functor on €. The ideal 37
acts trivially on the subquotients F : 3**P(A) / F : 3*(A), which therefore
descend to functors on €/J°.
We may also view F as a left module over the category € and €/J% as a
¢-bimodule. Then F' : 3% corresponds to the left €-module Home (€/3%, F).
The filtration F': 3%(A) is closely related to projective resolutions of A.
In contrast, the filtration

JF(A) ={f.(§) e F(A) | f € 3¥B, A), £ € F(B) for some B €€ ¢}

is related to injective (co)resolutions. There is also an increasing filtration
G : J" for a contravariant functor G. The filtrations J*F and G : J¢ will
not be used in this article.
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3 From projective resolutions to complementary pairs

First we refine a projective resolution by adjoining certain phantom maps.
This yields the phantom tower over an object (cf. also [2]). We show that
the projective resolution determines this tower uniquely up to non-canonical
isomorphism. There is another tower over an object, the cellular approxi-
mation tower. These two towers are related by various commuting diagrams
and exact triangles; we call the collection of all these exact or commuting
triangles the phantom castle.

The goal of this section is to show that the categories (P5) and 95
are complementary if J is compatible with direct sums. Before we come
to that, we recall the notion of complementary pair of subcategories and
define what it means for an ideal to be compatible with countable direct
sums. The main ingredients in the proof are the homotopy colimits of the
phantom tower and the cellular approximation tower. Finally, we describe
a method for checking that a given localising subcategory is reflective, that
is, part of a complementary pair.

All results involving infinite direct sums require that the category ¥ has
countable direct sums. Triangulated categories involving bivariant K-theory
have no more than countable direct sums because of built-in separability
assumptions that make the analysis behind the scenes work. This is why
we only use countable direct sums. Of course, everything remains true if we
drop the word “countable” or replace it by another cardinality constraint.

A triangulated subcategory of ¥ is called localising (more precisely,
Ro-localising) if it is closed under countable direct sums. Localising sub-
categories are automatically thick, that is, closed under direct summands
(cf. [21]).

Let J be a homological ideal in a triangulated category ¥. Recall that
an J-projective resolution of an object A of ¥ is a chain complex

Sni1 5n Sn—1 5 5
._”i%pn_)pn_l"_,..._%pl_Hpo

of J-projective objects P,, augmented by a map my: Py — A, such that the
augmented chain complex is J-exact. If J = ker F' for a stable homological
functor F' to some Abelian category 2, then J-ezactness means that the
chain complex

F(6n+1) F(én F(6n-1) F(ﬁl)
—

F(Py) 29 pip, ) F(Py) £ p(a)

is exact in 2. We say that J has enough projective objects if each A €€ ¥
has such an J-projective resolution.
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3.1 The phantom tower

Definition 3.1. A phantom tower over an object A of ¥ is a diagram

A= Ny L Ny i No - N3 c/
/ \ / \ / \ \ 3.1
7::)\ /60 Us! /61 T2 /52 T3 / ( )
BP0

with J-phantom maps ("1 and J-projective objects P, for n € N, such that
the triangles

n+1
in (3.1) are exact for all n € N and the other triangles in (3.1) commute,
that is, §,4+1 = €, 0 my41 for all n € N. Notice our convention that circled
arrows are maps of degree 1.

Since the maps J,, in the phantom tower have degree 1, we slightly
modify our notion of projective resolution, letting the boundary maps have
degree 1.

Lemma 3.2. The maps 6, for n € N>; and 7 in a phantom tower over A
form an J-projective resolution of A. Conversely, any J-projective resolution
can be embedded in a phantom tower, which is unique up to non-canonical
isomorphism.

A morphism f: A — A’ lifts (non-canonically) to a morphism between
two given phantom towers over A and A’. A chain map between projective
resolutions of A and A’ extends to the phantom towers that contain these
resolutions.

Proof. Let P,, my, and 6, be part of a phantom tower over A. The ob-
jects P, are J-projective by definition, and d,, o §,,41 = 0 for all n € N and
mg o 81 = 0 because these products involve two consecutive arrows in an
exact triangle. Hence the maps ¢,, and 7y form a chain complex. We claim
that it is J-exact.

Let F be a stable homological functor with ker F' = J. Recall that a
chain complex is J-exact if and only if its F-image is exact in the usual
sense by [19, Lemma 3.9]. The exact triangles in the phantom tower yield
short exact sequences

Fii1(Nns1) — Fo(Pn) = Fu(Np)

for all n € N because "+ € J; here F,(A) := F(A[-n]). Splicing these
extensions as in the definition of the Yoneda product, we get an exact chain
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complex. Since this chain complex is
= Fuya(P2) = Fupa(P1) — Fu(Py) — Fu(A) — 0,

we have got an J-exact chain complex and hence an J-projective resolution.

Now let mp: Py — A and 6,: P, — P,_1[1] for n € N>; form an
J-projective resolution. We recursively construct the triangles that com-
prise the phantom tower. To begin with, we embed 7y in an exact triangle

Py % A X% Ny ES pyla).

Since g is J-epic, ¢} is an J-phantom map and ey is J-monic. Thus our
exact triangle yields a short exact sequence

Tat1(P, N1) — T (P, By) — Tu(P, A)

for any J-projective object P. In particular, this applies to P = P; and
shows that d; factors uniquely as §; = g9 o m with m1 € To(Py, Nq).

We claim that 7 is J-epic. Let F' be a defining functor for J as above.
Then F(P,) — F(Py) — F(A) is exact at F(P), and F(Ny) — F(Py) —
F(A) is a short exact sequence. Hence the range of F(4;) is isomorphic to
F(Ny). This implies that F(71) is an epimorphism, that is, 71 is J-epic.

Thus the maps m; and d,, for n € N> form an J-projective resolution
of Ni. We may now repeat the above process and recursively construct
the phantom tower. Thus any J-projective resolution embeds in a phantom
tower. Furthermore, since the exact triangle containing a given morphism is
unique up to isomorphism and the liftings 71 above are unique, there is, up
to isomorphism, only one phantom tower that contains a given J-projective
resolution. Of course, different resolutions yield different phantom towers.

Finally, it remains to lift a morphism f: A — A’ to a transformation
between two given phantom towers. First we can lift f to a chain map
between the J-projective resolutions contained in these towers (cf. [19]); let
P,(f): P, — P) for n € N be this chain map. It remains to construct maps
N, (f): N — N/ that together with the maps P, (f) intertwine the various
maps in the phantom towers. We already have the map No(f) = f. The
triangulated category axioms provide a map Ni(f): N1 — N making the
diagram
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commute. We claim that Ny(f) om = 7} o Pi(f). As above, we get short
exact sequences

o1 (Pr, N) = T (P, Py) — S (Pr, AY).

Hence it suffices to check e, o N1(f) o m = g o) o Pi(f) = 81 o Pi(f).
But this is true because (o N1(f) = Po(f) oep and the maps P,(f) form a
chain map. Thus the map N1(f) has all required properties. Iterating this
construction, we get the maps N, (f) for all n € N. By the way, they need
not be unique even if the maps P, (f) are fixed. Q.E.D.

The following definition formalises an important property of the maps
("1 in a phantom tower.

Definition 3.3. Let J C T be anideal. Let A, B €€ . Wecall f € J(A, B)
J-versal if, for any C €€ ¥, any g € J(A, C) factors as g = h o f for some
h e X(B,0):

4—1.p

\Eh
PNy
C

We do not require this factorisation to be unique.

Since J is an ideal, any map of the form h o f belongs to J.

"+1in a phantom tower are J
Proof. Let f € J(N,,B). Since P, is J-projective, J.(P,,B) = 0. Thus
fom, =0. This forces f to factor through ("™ because T.(., B) is coho-
mological. Q.E.D.

Lemma 3.4. The maps ¢ -versal for all n € N.

Lemma 3.5. Let J; and J5 be ideals in a triangulated category. If f; €
J1(B,C) and fy € J5(A, B) are J;- and Jy-versal maps, respectively, then
fiofo: A— Cis Jy o Jp-versal.

PT’OOf. Let he€ J;0 jg(A,D), write h = hy o hy with h; € J; and hy € Js.
Using versality of f; and fo, we find the maps hf and A’ in the following
diagram:

A f2 B f1 c

ERA 3in
ho v g
[ )

Y
E—
» D.

Thus h factors through fi o fo as required. Q.E.D.
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As a consequence, the maps

L2+k = Lzmq -0 L:LH—l: Np — Npg

in a phantom tower are J*-versal for all n, k € N.
Lemma 3.6. A map f: A — B is J*-versal if and only if
(A, C) = range(f*: T(B,C) — T(A4,0))

for all C' €€ %.
Let f: A — B be JF-versal. If F: T — b is homological, then

F:3%(A) = ker(f.: F(A) — F(B));
if G: T°P — 2Ab is cohomological, then

J*G(A) = range(f*: G(B) — G(A)).
Proof. This follows immediately from the definitions. Q.E.D.

As a consequence, we can compute the filtrations F : 3%(A) and J*G(A)
of §2.2 from the phantom tower.

3.2 The phantom castle

Now we extend the phantom tower to the phantom castle, which contains
among other things the cellular approximation tower. We start with a
phantom tower over some object A €€ €. Let

n._ ,mn 0. —
M= qo-r0u7: A= Ny — N,

and embed (™ in an exact triangle
Ap 2 A N, 2 A1) (3.2)

The octahedral axiom relates the mapping cones fln_H, P,, and A, of the
maps ("1 "1 and " because "1 = "o (cf. [21, Proposition 1.4.6]
or [16, Proposition A.1]). More precisely, the octahedral axiom allows us to

choose maps
N

A, 22— Ap I P, I A1, (3.3)
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such that this triangle is exact and the following diagram commutes:

Ln+1

n
—_— n+1

Ny,
’Yn% Tn+1
A

n Apia Py —o— A4,

iaw “l S (3.4)

Ln+1
el "

Nn+l

In addition, we can achieve that the triangle

AOn41 n oo
Np[-1] — Ap i1 M Agp, LT N (3.5)
is exact, that is, the square in the middle of (3.4) is homotopy Cartesian

and the diagonal of the top right square provides its differential.
Lemma 3.7. The object A, is J™-projective for each n € N.

Proof by induction on n. The case n = 0 is clear. Since P, €€ 5 for all
n € N, the exact triangles (3.3) and Proposition 2.2 provide the induction
step. Q.E.D.

Furthermore, the map a,,: A, — A is 3"-epic because (™ € I, so that
it is the first step of an J™-projective resolution of A. This provides another
explanation why the map " is J-versal (compare Lemma 3.4).

Remark 3.8. The cone of the map " ** is J*-projective for all m,k € N
by a similar argument. Hence

o 0k B
A= Ny — N — Noj —> N3y — - -~

together with the exact triangles that contain the maps Lgllfrk

is an J*-phan-
tom tower and hence yields an J*-projective resolution by Lemma 3.2.
As a result, an J-phantom tower determines J*-phantom towers for all

k e N.

Definition 3.9. The sequence of exact triangles (3.3) is called the cellular
approximation tower over A.
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The motivation for our terminology is the following. If A has a projective
resolution of finite length, then we can choose a phantom tower with P,, = 0
for n > 0. Suppose, in addition, that A belongs to the thick triangulated
subcategory generated by B5. Then the proof of Proposition 4.5 yields
N,, = 0 for n.>> 0. The exact triangles (3.2) mean that the maps o, : A, —
A become invertible for n > 0, that is, A,, 2 A. Therefore, we think of the
objects N,, as “obstructions” that should get smaller for n — oo, and of
the objects A, as better and better approximations to A. They are called
“PBy-cellular” because they are constructed out of J-projective objects —the
cells— by iterated exact triangles.

Definition 3.10. A phantom castle over A is a sequence of objects Ny, Py,
A, with maps "L 7., €0, L™, @y Yy Ony K such that the triangles (4.1),

(3.2), (3.3), and (3.5) are exact and the diagram (3.4) commutes.

We will use most of the information encoded in this definition to identify
the spectral sequences generated by the phantom tower and the cellular
approximation tower; only the commutativity of the square in the middle
of (3.4) and the exact sequence (3.5) seem irrelevant in the following.

3.3 Complementary pairs of subcategories and localisation

We call two thick subcategories £ and N of ¥ complementary if T, (L, N) =0
forall L €€ £, N €€ D and, for any A €€ T, there is an exact triangle L —
A — N — L[1] with L €€ £ and N €€ 91 (cf. [16, Definition 2.8]). Similar
situations have been studied by various authors, under various names, such
as localisation pairs, stable t-structures, torsion pairs; a complementary pair
is equivalent to a localisation functor L on ¥, where £ is the class of L-local
objects and M is the class of L-acyclic objects.

The following assertions are contained in [16, Proposition 2.9]. Let
(£,M) be complementary. Then the exact triangle L — A — N — L[1]
with L €€ £ and N €€ 91 is unique and functorial, and the resulting func-
tors L: ¥ — £and N: T — 9t mapping A to L and N, respectively, are left
adjoint to the embedding functor £ — ¥ and right adjoint to the embedding
functor M — ¥, respectively. That is, the subcategory I is reflective and £
is coreflective. The composite functors £ - ¥ — T /M and N — T — T/L
are equivalences of categories.

Conversely, let 91 C ¥ be a reflective subcategory and let N: ¥ — 9t be
the left adjoint of the embedding functor 9t — ¥. Let

L£={AeccT|N(A) =0}

be the left orthogonal complement of M. Then (£,N) is a complementary
pair of subcategories, and £ is the only possible partner for 91. Thus comple-
mentary pairs are essentially the same as reflective subcategories. Dually, a
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subcategory £ is coreflective if and only if it is part of a complementary pair
(£,97), and the only candidate for 91 is the right orthogonal complement
of £.

If F: ¥ — €is a covariant functor, then its localisation LF with respect
to D is defined by LF := F o L, where L: ¥ — £ is the right adjoint of
the embedding £ — . The natural maps L(A) — A provide a natural
transformation LF = F. If G: T°° — € is a contravariant functor, then
the localisation G o L is denoted by RG. It comes together with a natural
transformation G = RG.

This localisation process is an important tool to construct functors. Spe-
cial cases are derived functors in homological algebra and the domain of the
Baum-Connes assembly map (cf. [16]).

Although the definition of a complementary pair is symmetric, the sub-
categories £ and 91 have a rather different nature in most examples. Usually,
one of them —here it is always 91— is defined directly and the other one
is only described by generators. This makes it hard to tell which objects it
contains and to find the exact triangles needed for complementarity.

Here homological ideals help. Let J be a homological ideal with enough
projective objects in a triangulated category ¥. Let (85) be the localising
subcategory generated by By, that is, the smallest localising subcategory
of ¥ that contains JB5. Since the name “projective” is already taken, we call
objects of (Py) Py-cellular. We have P C (P5y) for alln € NU{o0, 200,... }
by Propositions 2.2 and 2.3.

Definition 3.11. Let 915 be the full subcategory of J-contractible objects,
that is, objects N with idy € J(N, N).

An object N is J-contractible if and only if 0 — N is an J-projective
resolution. Thus all J-derived functors vanish on 915.

Now the following question arises: is the pair of subcategories ((P3), Ny)
complementary? It is evident that T(P,N) = 0 if P € B3 and N € N;.
This extends to P € (P5) because the left orthogonal complement of 95 is
localising. This is the easy half of the definition of a complementary pair.
The other, non-trivial half requires an additional condition on the ideal J.

3.4 Compatibility with direct sums

Definition 3.12. An ideal J is called compatible with countable direct sums
if, for any countable family (A;);e; of objects of T, the canonical isomor-

phism
‘Z(@Ai,B> =[] =4, B)
i€l i€l
Ai, B) = T1;e; (A, B).

restricts to an isomorphism 3(@ie I
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An ideal J is compatible with countable direct sums if and only if the
following holds: given countable families of objects (4;), (B;) and maps
fi € j(AZ,BZ) fori e I, we have @fz € j(@ Am@-Bz)

Recall that direct sums of exact triangles are again exact (cf. [21]) and
that the ideal determines and is determined by the classes of J-epimorphisms
or of J-monomorphisms. Therefore, J is compatible with direct sums if and
only if direct sums of J-monomorphisms are again J-monomorphisms, if and
only if direct sums of J-epimorphisms are again J-epimorphisms.

Moreover, if J is compatible with countable direct sums, then a direct
sum of J-equivalences is again an J-equivalence, and 915 is a localising sub-
category of ¥; and a direct sum of phantom castles over A; is a phantom
castle over @ A;.

Example 3.13. Let F' be a stable homological functor or an exact func-
tor to another triangulated category, and suppose that F' commutes with
countable direct sums. Then ker F' is a homological ideal and compatible
with countable direct sums.

This example is, in fact, already the most general case:

Proposition 3.14. Let ¥ be a triangulated category with countable direct
sums and let J be a homological ideal in T. Let F': € — 5% be a universal
J-exact stable homological functor. The ideal J is compatible with countable
direct sums if and only if the Abelian category 5% has exact countable
direct sums and the functor F': T — 5% commutes with countable direct
sums.

Proof. One direction is just the assertion in Example 3.13. The other di-
rection requires some description of the universal functor F. We use the
description in [19], which starts with the homotopy category Ho(%) of chain
complexes with entries in €. Since ¥ has countable direct sums, so has
Ho(%). The J-exact chain complexes form a thick subcategory £ of Ho(%);
it is closed under countable direct sums because J is compatible with count-
able direct sums. Hence the localisation Ho(%)/€ still has countable direct
sums.

The Abelian approximation 205% is equivalent to the heart of a canonical
truncation structure on Ho(%)/E described in [19] and consists of chain
complexes that are exact in degrees not equal to 0. The universal functor F
is the obvious one, viewing an object of ¥ as a chain complex supported in
degree 0. It is evident that the subcategory 23T C Ho(%)/€ is closed under
countable direct sums. Countable direct sums of extensions in 5% remain
extensions because the analogous assertion holds for direct sums of exact
triangles in any triangulated category (cf. [21]) and extensions in the heart
are related to exact triangles in the ambient triangulated category. Clearly,
the functor ¥ — A5% preserves countable direct sums. Q.E.D.
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Example 3.15. The ideal of finite rank operators on the category of vector
spaces is an ideal that is not compatible with countable direct sums.

3.5 Complementarity and structure of cellular objects

The results in this section generalise results of Apostolos Beligiannis (cf. [2,
Theorem 6.5], [2, Corollary 5.12]) in the case where By is generated by a
single compact object.

Theorem 3.16. Let ¥ be a triangulated category with countable direct
sums, and let J be a homological ideal in ¥ with enough projective objects.
Suppose that J is compatible with countable direct sums. Then the pair of
localising subcategories ({(P5),M5) in T is complementary.

We will present two independent proofs, one using phantom towers, the
other cellular approximation towers. Both require homotopy colimits:

Definition 3.17. Let (D, ¢""!) be an inductive system in T. Define the
shift

n+1
S: PD.—~ P D, Slp,: Dy Z— Dpi1 € P D
The homotopy colimit ho- h_H)l (D, o7 *1) is the third leg in the exact triangle

@D, 2 @D, —— ho-lim (Dy,, i) —— @ D, [1].

Recall that id — S determines this triangle uniquely up to isomorphism.

Proof of Theorem 38.16. Since the class of A €€ T with T, (A4, B) = 0 for all
B €€ My is localising, we have T,(A,B) =0 if A €€ (PB5) and B €€ Ny.
It remains to construct, for each A €€ ¥, an exact triangle A—-A—N-—
A[1] with N €€ M5 and A €€ (P5).

Construct a phantom castle over A and let N := ho-lim (N, ("1 be
the homotopy colimit of the phantom tower. We also use the homotopy
colimit of the constant inductive system (A,id ). This is just A because of
the split exact triangle

Pa = PasadPan, (3.6)

where V is the codiagonal map. By [3, Proposition 1.1.11] (and a rotation),
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we can find A and the dotted arrows in the following diagram

@An rrrrrrrr > @An rrrrrrrrr >Ao>@/~1n
i@ An l@ (820 l@ Qn
. v
AL AT 4L pa
i@ o l@ o l@ i (3.7)
id—S v
P N, P N, N ——=@N,

%@ Tn %@’Yﬂ © - i_@ Yn
\

®A, @A, AL o -@A,

so that the rows and columns are exact triangles and the squares commute
except for the one marked with a minus sign, which anti-commutes.

Lemma 3.7 yields A,, €€ P2 for all n € N. Hence @ A,, €€ P° C (Py)
by Proposition 2.3. The exactness of the first row in (3.7) implies A ee
(P3). We claim that N €€ 915. Hence the third column in (3.7) is the kind
of exact triangle we need for (P5) and Dy to be complementary.

Let F be a stable homological functor with ker F' = J. We must show
F(N) = 0. The map S factors through € :"*!; this map belongs to J =
ker F' because J is compatible with direct sums. Hence F'(id — S) = F(id)
is invertible. By a long exact sequence, this implies F'(N) = 0, that is,
N e Ny. Q.E.D.

Suppose from now on that we are in the situation of Theorem 3.16.
Since (P5) and 9y are complementary, there is a unique exact triangle
A — A — N — A[1] with J-contractible N and P5-cellular A; we call A the
By -cellular approximation of A. Even more, A and N depend functorially
on A, so that we get two functors L: T — (P5) and N: T — Nj.

The proof of Theorem 3.16 above provides an explicit model for N(A):
it is the homotopy colimit of the phantom tower of A.

Proposition 3.18. Let A €€ T and construct a phantom castle over A.
Then L(A) = A is the homotopy colimit of the cellular approximation tower

(An)n€N~

This does not yet follow from (3.7) because we cannot control the dotted
maps.

Proof. Let A := ho—li_n;(fln,azﬂ). We compare the exact triangle that
defines the homotopy colimit A with the triangle (3.6). The triangulated
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category axioms provide f € T(A, A) that makes the following diagram
commute:

@An s @An A—o»@An
l@ Qn l@ Qn f l@ Qn (38)
id— \
DAL pa Y 4 oA

We claim that f is an J-equivalence. Equivalently, the cone of f is
J-contractible, so that the mapping cone triangle for f has entries in (P7)
and My; this implies that L(A) = A.

Let F be a stable homological functor with ker F' = J. We check that
F(f) is invertible. The direct sum of the triangles (3.2) for n € N is again
an exact triangle. On the long exact homology sequence

— (@)
ﬁFm(@An) —>Fm(@A) —»Fm(@Nn) — ..

for this exact triangle, consider the operator induced by id — .S on each
entry. Since J is compatible with direct sums, the shift map S on @ N,
is a phantom map, so that F(id — S) acts identically on F(@ N,). On
F (@ A), the map id — S induces a split monomorphism with cokernel
F(V): F(@®A) — F(A). Now a diagram chase shows that the map on
F (@ fln) induced by id — S is injective and has the cokernel

FE@ ) 2L p (@ a) 1 pia),

Comparing the long exact homology sequences for the two rows in (3.8), we
conclude that F(f) is indeed invertible. Q.E.D.

We have proved Proposition 3.18 by constructing an J-equivalence be-
tween an arbitrary object of ¥ and the homotopy colimit of its cellular
approximation tower. This provides another, independent proof of Theo-
rem 3.16. Since the exact triangle A — A — N — A[1] with A €€ (P5)
and N €€ 95 is unique up to isomorphism, both proofs construct the same
exact triangle. The first proof shows that N is the homotopy colimit of the
phantom tower, the second one shows that A is the homotopy colimit of the
cellular approximation tower. We conclude, therefore, that the object A
in (3.7) is the homotopy colimit of the phantom tower and that the map
A — Ain (3.7) agrees with the map f from (3.8).
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Theorem 3.19. Let ¥ be a triangulated category with countable direct
sums, and let J be a homological ideal in ¥ that is compatible with countable
direct sums and has enough projective objects. Let A €€ ¥ and construct
a phantom castle over A. The following are equivalent:

(1) A is Py-cellular, that is, A €€ (P5);

(2) A is isomorphic to the homotopy colimit of its cellular approximation
tower;

(3) A is isomorphic to the homotopy colimit of an inductive system
(Pn,@n) with P, €€ Upen PBE for all n € N;

(4) A is J%°-projective.
As a consequence, J?®° = 37 for all n > 2.

Proof. Since L(A) = A if and only if A €€ (PB5), Proposition 3.18 yields the
equivalence of (1) and (2). The implication (2)==(3) is trivial: the cellular
approximation tower provides an inductive system of the required kind.

We check that (3) implies (4). Let (P,, ) be an inductive system as
in (3). First, Proposition 2.3 shows that € P, is J*°-projective. Then
Proposition 2.2 shows that the homotopy colimit is J2>°-projective.

Propositions 2.3 and 2.2 show recursively that all J*-projective objects
belong to (P5) forn =0,1,2,3,...,00,2-00. Hence (4) implies (1), so that
all four conditions are equivalent.

Finally, since P2 = (P3), it follows from Proposition 2.2 that the
powers J"*° for n > 2 have the same projective objects. Therefore, they are
all equal. Q.E.D.

Proposition 3.20. The Py-cellular approximation functor L: T — (P7)
maps a phantom castle over A €€ T to a phantom castle over L(A). A
morphism f € (A, B) belongs to J* for some « if and only if L(f) €
T(L(A), L(B)) does.

Proof. Since L is an exact functor, it preserves the commuting diagrams
and exact triangles required for a phantom castle. It also maps By to
itself because L(B) = B for all B €€ (P5). It remains to check that
L(f) € 3%(L(B),L(B")) if and only if f € 3%(B,B’). Let F be a stable
homological functor with 3 = ker F'. Then F(N) = 0 for all N €€ M.
Therefore, F' descends to the localisation ¥/95; equivalently, the natural
transformation F o L = F is an isomorphism. In particular, F(f) = 0 if
and only if F(L(f)) =0. Q.E.D.
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As aresult, it makes almost no difference whether we work in ¥ or /5.
We work in T most of the time and allow 915 to be non-trivial in order to
formulate Theorem 3.16.

The direct sums @ A,, in (3.8) are J*°-projective by Proposition 2.3.
The map Vo P ay,: @fln — A is J*°-epic because it is J"-epic for all
n € N. We may replace A by A in this statement by Proposition 3.20. Thus
the top row in (3.8) is an J*-exact triangle. This means that the chain

complex
~H0H@Anﬂ>@flnHA

is J°°-exact and hence an J°°-projective resolution of A. Once again, Propo-
sition 3.20 allows us to replace A by A in this statement, that is, we get an
J°°-projective resolution of length 1

HOHED/LLE»@/I”HA (3.9)

This will allow us to analyse the convergence of the ABC spectral sequence.

3.6 Complementarity via partially defined adjoints

Suppose that we are given a thick subcategory 91 of a triangulated cate-
gory ¥ and that we want to use Theorem 3.16 to show that it is reflective,
that is, there is another thick subcategory £ such that (£,91) is comple-
mentary.

To have a chance of doing so, ¥ must have countable direct sums, and
the subcategory 91 must be localising, that is, closed under countable direct
sums: this happens whenever Theorem 3.16 applies. By [16, Proposition
2.9], the only candidate for £ is the left orthogonal complement

L:={AcecT|F(A,N)=0foral N ce N}

of 1, which is another localising subcategory.
The starting point of our method is a stable additive functor F': ¥ — €&
with
N=MNp:={AcecT|F(A) =0}

This functor yields a stable ideal Jr := ker F'. In applications, F' is either a
stable homological functor to a stable Abelian category or an exact functor
to another triangulated category; in either case, the ideal ker F' is homo-
logical and 91p is the class of all Jp-contractible objects. In addition, we
assume F' to commute with countable direct sums, so that Jg is compatible
with countable direct sums.

In order to apply Theorem 3.16, it remains to prove that there are enough
Jp-projective objects in T. Then the pair of subcategories ((PB7,.),MN) is
complementary. For a good choice of F, this may be much easier than
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proving directly that (£,97) is complementary. The choice in the following
example never helps. But often, there is another choice for F' that does.

Example 3.21. The localisation functor € — /9 is a possible choice
for ' —that is, it has the right kernel on objects— but it should be a bad
one because it tells us nothing new about 9. In fact, the ker F-projective
objects are precisely the objects of £, so that we have not gained anything.

We now discuss a sufficient condition for enough projective objects from
[19]. The left adjoint of F: ¥ — € is defined on an object A €€ € if
the functor B — QZ(A,F(B)) on ¥ is representable, that is, there is an
object F""(A) of T and a natural isomorphism T(F"(A), B) = €(A, F(B))
for all B €€ . We say that F" is defined on enough objects if, for any
object B of € there is an epimorphism B’ — B such that F" is defined
on B’

The following theorem asserts that Jr has enough projective objects
if F© is defined on enough objects. The statement is somewhat more in-
volved because it is often useful to shrink the domain of definition of F to
a sufficiently big subcategory B¢.

Theorem 3.22. Let T, €, and F' be as above, that is, ¥ is a triangulated
category with countable direct sums, € is either a stable Abelian category or
a triangulated category, and F': € — € is a stable functor commuting with
countable direct sums and either homological (if € is Abelian) or exact (if €
is triangulated). Let Jp := ker F" and let DMz be the class of F-contractible
objects as above.

Let € C € be a subcategory with two properties: first, for any A €€ ¥,
there exists an epimorphism P — F(A) with P €€ B¢; secondly, the left
adjoint functor F" of F is defined on B¢, that is, for each P € PE, there
is an object F"(P) in T with T(F"(P), B) & T(P, F(B)) naturally for all
Bee%.

Then Jp has enough projective objects, the subcategory M is reflective,
and the pair of localising subcategories ((F" (€)),Mp) is complementary.

Proof. [19, Proposition 3.37] shows that Jr has enough projective objects
and that any projective object is a direct summand of F"(P) for some
P € B&. Now Theorem 3.16 yields the assertions. Q.E.D.

Theorem 3.22 is non-trivial even if 9y contains only zero objects, that
is, if F(A) = 0 implies A = 0. Then it asserts (F" (e)) = T.

In the situation of Theorem 3.22, we also understand how objects of
(F*(p2)) are to be constructed from the building blocks in F" (B€).

Let € x & for subcategories €;,&5 C ¥ be the subcategory of all ob-
jects A for which there is an exact sequence A; — A — Ay — A;[1] with
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Ay €€ € and A, €€ &,. We abbreviate PBr := F"(PE) and recursively
define %" for n € N by P30 := {0} and P35 = P! x Pp for n > 1.

Theorem 3.23. In the situation of Theorem 3.22, any object of (F" (B¢))
is a homotopy colimit of an inductive system (A, )nen with A, € P,

Proof. This follows from Theorem 3.19. But an extra observation is needed
here because we do not adjoin direct summands of objects in the defini-
tion of the subcategories P73, so that they do not necessarily contain all
J'%-projective objects.

There is an J p-projective resolution with entries in Pz, which we embed
in a phantom castle. The resulting cellular approximation tower satisfies
A, ec B3, so that Theorem 3.19 yields an inductive system of the required
form. Q.E.D.

We have considered two cases above: homological and exact functors.
For homological functors with values in the category of Abelian groups,
our results were obtained previously by Apostolos Beligiannis [2]. Let
F: % — Ab% be a stable homological functor that commutes with direct
sums. Suppose that F' is defined on sufficiently many objects. Then there
must be a surjective map A — Z for which F'"(A) is defined. Since Z is
projective, Z is a retract of A. Since we assume T to have direct sums,
idempotent morphisms in T have range objects. Thus F'(Z) is defined as
well. By definition, F"(Z) is a representing object for F. Conversely, if F'
is representable, then F'™ can be defined on all free Abelian groups. Hence
the adjoint F"™ is defined on sufficiently many objects if and only if F is rep-
resentable. Furthermore, we can take P to be the set of all direct sums of
translated copies of the representing object F(Z). The assumption that F
commute with direct sums means that F"(Z) is a compact object.

Summing up, if F' is a stable homological functor to lez, then our
methods apply if and only if F(A) = ¥,(D, A) for a compact generator D
of ¥. This situation is considered already in [2].

4 The ABC spectral sequence

When we apply a homological or cohomological functor to the phantom
tower, we get first an exact couple and then a spectral sequence. We call
it the ABC spectral sequence after Adams, Brinkmann, and Christensen.
Its second page only involves derived functors. The higher pages can be
described in terms of the phantom tower, but are more complicated. It is
remarkable that the ABC spectral sequence is well-defined and functorial
on the level of triangulated categories, that is, all the higher boundary maps
are uniquely determined and functorial without introducing finer structure
like, say, model categories.



Homological algebra in bivariant K-theory II 189

Several results in this section are already know to the experts or can
be extracted from [2, 4, 7]. We have included them, nevertheless, to give a
reasonably self-contained account.

4.1 A spectral sequence from the phantom tower

We are going to construct exact couples out of the phantom tower, extending
results of Daniel Christensen [7]. We fix A €€ ¥ and a phantom tower (3.1)
over A. In addition, we let

P, =0, N, :=A, and [/ :=idy

for n < 0. Thus the triangles

n+1

P, I N, 2 N =5 P1] (4.1)

are exact for all n € Z. Of course, /" *! rarely belongs to J for n < 0.
Let F: ¥ — 2Ab be a homological functor. Define bigraded Abelian

groups

D:= > Dy Dygi=Fprgr1(Npr1),
P,qEZ

E:= Z Enpq, Epq = Fpiq(Pp),
P,qEZL

and homogeneous group homomorphisms

D———=D ipg = (041)s: Dpg = Dypi1g-1,  degi=(1,-1),
x / Jpg = (€p)x:  Dpg — Epg, degj = (0,0),
B kpg = (mp)s:  Epg— Dp_1.4, degk = (—1,0).

Since F' is homological and the triangles (4.1) are exact, the chain com-
plexes

n+1
L Enx

are exact for all m € Z. Hence the data (D, E,i,j,k) above is an exact
couple (cf. [15, § XL.5]).

We briefly recall how an exact couple yields a spectral sequence, cf. also
(15, pp. 336-337] or [4]. The first step is to form derived exact couples. Let

D" :=i""Y(D) C D, E" =k Y (D") / jlkeri"™"),
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for all » > 1. Let i("): D" — D" be the restriction of i; let k). Er — D
be induced by k: E — D; and let j(”: D" — E" be induced by the relation
joi'~". Tt is shown in [15] that E™+* = H(E",d") for all r € N, where
d™ = jEM); the map d™) has bidegree (—r,7 — 1). We call this spectral
sequence the ABC spectral sequence for F' and A.

We are going to describe the derived exact couples explicitly. First, we
claim that

Fpyq(A) for p <0,
D;t%,q = Fora(4) / Fpiq: I7(4) for0<p<r, (4.2)
Fptq(Np—r) / Fprq: 3" (Np—y) forr <p.
By definition, D;J_riq for r € N is the range of the map i": Dp_1_p g+r —
D,,_1,4. This is the identity map on Fj,44(A) for p <0, the map f: F,1,(A)
— Fpiq(Np) for 0 < p <7, and the map (1p_,)x: Fyprq(Np—r) — Fpiq(Np)
for r < p. Now recall that the maps ¢];, are 3"~ "-versal for all n > m > 0
and use Lemma 3.6.

Proposition 4.1. Let 1 <1 < oo. Then we have EJ ! =0 for p < —1; for
0 < p < r, there is an exact sequence

Forqi(Np) ™ Fpigr1(NVp+1)

0 — =
Fyigr1: I (Ny) Fopiqr1 T (Npy1)
. ~p+1
— E;;l — —Ferq . JN (4) — 0;
Fpiq:37(4)
for p > r, there is an exact sequence
0 Fpigt1(Np) (5 ) Fypiqr1(Np+1)
Fopger : THH(Np) Foiqr1: 37 (Npy1)
N N Fpiq: 3T+1(Np—r) 0.
i Fotrq : 37 (Np—r)
Finally, for r = oo, let
Bad,, = Fy(Np) / U Fo: 37(Np);
reN
then we get Epy =0 for p < —1, and exact sequences
F, . :37T1(A
0 — Badp7p+q+1 — Badp+17p+q+1 — E;Z — W—() 0.

Fpiq: I7(4)
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Therefore, if | J, oy Fy : T"(Np) = Fy(Np) for all p € N, then

FE° Foiq: jp-’—l(A)
P TE, 0h(A)
that is, the ABC spectral sequence converges towards F,,(A), and the in-

duced increasing filtration on the limit is (F, : TJ’"(A))T N’

Proof. We have EJF! = 0 for p < —1 because already E,; = E}, = 0.
Let p > 0. We use (4.2) and the exactness of the derived exact couple
(D™ E™1) to compute E"t! by an extension involving the kernel and
cokernel of the restriction of i to D"*1. Since (™ *! is J-versal, x € F(N,,)
satisfies (¢ *1),(z) € F : 3"(Nyy1) if and only if z € F : 37F(N,,).
Plugging this into the extension that describes E"!, we get the assertion,
at least for finite r.

The case r = oo is similar. Now

E* =) /fl(z‘TD)/ L (k). (4.3)

reN reN

The injectivity of the map Bady piq+1 — Badpii,pygr1 follows from the
exactness of colimits of Abelian groups. Using (D) = ker j, keri = k(F),
and (4.3), we get a short exact sequence

0— Dy, (i(Dp_l,qul) + U ker i”) — Epe
— Dy_1,4NkeriN()i"(D) - 0; (4.4)

the first map is induced by j, the second one by k.
The intersection (4" (D) is described by (4.2) for r = oo, so that the
third case in (4.2) is missing. Hence the quotient in (4.4) is

keri N ﬂiT(D) & Fopg : IPTHA) [ Fpyq : IP(A).

The versality of the maps ¢}, yields (Jkeri" N Dp_1,4 = U, Fptq : I (Np).
Hence the kernel in (4.4) is Bad,+1 ptq+1/Bady prq+1. If Bad = 0, then the
groups EJ¢ for p + g = m are the subquotients of the filtration F, : 37(A)

on F,,(A). Moreover, since Badp,, = F,(4) / Upen i+ TP(4), our

hypothesis includes the statement that Fy,(A4) = U,ey Fm : P(4).  Q.ED.

Dual constructions apply to a cohomological functor G: TP — 2b.
Equation (4.1) yields a sequence of exact chain complexes

(Ln+1)* o

= G (P,) > GM(Npy1) 2 G™(N,) — G™(Py) — -+
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Therefore, the following defines an exact couple:

DP4 .— Gp+q+1(Np+1)’ EPY9 -— Gerq(Pp),

D — D P9 = (LZH)*: Dra —, pp=hatl degi = (-1,1),
x / JP =T DPe — prila, degj = (1,0),
i kP =g EP4 — DP9 degk = (0,0).

Again we form derived exact couples (DT, Ehimjr, k), and (E~',ﬂ7 d,) with
d, = j.k, is a spectral sequence. The map d, has bidegree (r,1 —r). We
call this spectral sequence the ABC spectral sequence for G and A.

We can describe the derived exact couples as above. To begin with,

GPTI(A) for p <0,
Df_Hl’q JPGPTI(A) for0<p<r, (4.5)
J"GPYI(N,_,) forr <p.

Proposition 4.2. Let 1 <7 < co. Then EP?; =0 for p < —1, and there
are exact sequences

jPGP+Q(A> 1
FIGrTa(A) EPY, =TGP (Np)
PN
W grigrtaet (V) 0 (4.6)
for 0 <p<rand

erp+q( T) v
Jr+lGe+ ET+1
J GP q(prr)

0 TGP (N )

CAoh

3T+1Gp+q+1(Np) -0 (4.7
for p > r. For r = oo, let

Bad’? := (1) 3"GY(N,),
reN
then we get Epy =0 for p < —1, and exact sequences
IPGpiq(A)
G g (A)
Therefore, if [, oy I"G?(N,) = 0 for all p, g, then
JPGpyq(A)
jp-"_leJrq(A) 7

N Egg — BadPtliptatl _, Badrptatl

~

E:

P
o]
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that is, the ABC spectral sequence converges towards G™(A), and the in-

duced decreasing filtration on the limit is (erm(A))T N’

Proof. This is proved exactly as in the homological case. Q.E.D.

Notice that we do not claim that the maps BadP+1:P+a+1 — Badprta+l
are surjective. If G is representable, that is, G(A) = T(A, B) for some
B €€ T, then the question whether the maps BadPtlp+at+l _ Badp-rtatl
are surjective is related to the question whether J°° - J = J°°. In this case,
Bad?* = 3°°(N,[#], B). Since the maps ¢"*! are J-versal,

range(Bad?t1* — BadP*) = 3% 0 3(N,[%], B) C 3°(N,[%], B).

Theorem 4.3. Starting with the second page, the ABC spectral sequences
for homological and cohomological functors are independent of auxiliary
choices and functorial in A. Their second pages contain the derived functors:

El, 2 L,F,(A),  E}I=RPGI(A).

Proof. We only formulate the proof for homological functors; the cohomo-
logical case is similar. The map d := jk: E — FE is induced by the maps
0p: Pyy1 — Py[1] in the phantom tower. By Lemma 3.2, these maps form
a P-projective resolution of A. This together with counting of suspensions
yields the description of EZ, .

Let f: A — A’ be amorphism in T. By Lemma 3.2, it lifts to a morphism
between the phantom towers over A and A’. This induces a morphism
of exact couples and hence a morphism of spectral sequences. The maps
P, — P! form a chain map between the J-projective resolutions embedded
in the phantom towers. This chain map lifting of f is unique up to chain
homotopy (cf. [19, Proposition 3.36]). Hence the induced map on E? is
unique and functorial. We get E” for r € N>o U {00} as subquotients of E2.
Since our map on E? is part of a morphism of exact couples, it descends
to these subquotients in a unique and functorial way. Thus E" is functorial
for all » > 2. Q.E.D.

The naturality of the ABC spectral sequence does not mean that the
exact sequences in Propositions 4.1 and 4.2 are natural. They use the exact
couple underlying the ABC spectral sequence, and this exact couple is not
natural. It is easy to check that the maps Ejf' — F,q, : JPT1(4) /
Fptq : 3P(A) in Proposition 4.1 are canonical for 0 < p < r < oo. But
Fpiq: I (Np—y) / Fypiq : I"(Np—r) depends on auxiliary choices.

Our results so far only formulate the convergence problem for the ABC
spectral sequence. It remains to check whether the relevant obstructions
vanish. The easy special case where the projective resolutions have finite
length is already dealt with in [7]. Recall that P% denotes the class of
J"-projective objects.
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Lemma 4.4. Let k € N and A €€ PB4, Then (7 = 0 and N,,, €€ P~ for
all m € N.

Proof. Since ;% is 3*-versal, we have ;™% = 0 if and only if N,,, €€ PL.
We prove ("% = 0 by induction on m. The case m = 0 is clear because
No = A If Lﬁ*‘k = 0, then mef factors through the map e,,: Np11 —
P,,[1] by the long exact homology sequence for the triangles (4.1). If we
compose the resulting map Pp,[1] — N,,4% with L;’;I’,EH € 7, we get zero

because Py, [1] €€ P. Thus T4 vanishes as well. Q.E.D.

Proposition 4.5. Let F': T — 2b be a homological functor and let m € N.

If A ee ‘Bg”“, then the ABC spectral sequence for F' and A collapses
at E™*2 and converges towards F,(A), and its limiting page B> = E™+2
is supported in the region 0 < p < m.

If, instead, A has a J3-projective resolution of length m, then the ABC
spectral sequence for F' and A is supported in the region 0 < p < m from
the second page onward, so that it collapses at E™*!. If, in addition,
A belongs to the localising subcategory of ¥ generated by 5, then the
spectral sequence converges towards Fy(A). Similar assertions hold in the
cohomological case.

Proof. We only write down the argument in the homological case. If A €€
‘Bg”rl, then N, €€ ‘B?Jrl for all p € N by Lemma 4.4. Therefore, F :
J"(Np) = F(N,) for all r > m + 1. Plugging this into Proposition 4.1, we
get B, = 0forr > m+2and p > m+1. This forces the boundary maps d"
to vanish for r > m + 2, so that Epe = E;,’}I+2.

Suppose now that A has a projective resolution of length m. Embed
such a resolution in a phantom tower by Lemma 3.2, so that P, = 0 and
Np = Npiq for p > m. Then E" is supported in the region 0 < p < m for all
r > 1. For r > 2, this holds for any choice of phantom tower by Theorem 4.3.
As a consequence, d” = 0 for r > m + 1 and hence E* = E™*1,

Suppose, in addition, that A belongs to the localising subcategory of T
generated by ‘By. We claim that N, = 0 for p > m. This implies that the
ABC spectral sequence converges towards Fi(A). If D € PB5, then there are
exact sequences

Tei1(D.N,) — Tu(D, Pyor) — Tu(D, Ny )

for all p € N> (cf. the proof of Lemma 3.2). Therefore, T, (D, N,) = 0 for
p > m if D €€ P5. The class of objects D with this property is localising,
that is, closed under suspensions, direct sums, direct summands, and exact
triangles. Hence it contains the localising subcategory generated by ;.
This includes A = Ny by assumption. Since it contains all P, as well, it
contains N,, for all n € N because of the exact triangles in the phantom
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tower, so that T.(N,, N,) vanishes for all n € N. Thus T.(N,,N,) = 0,
forcing N, = 0. Q.E.D.

If A belongs to the localising subcategory generated by the J-projective
objects, then the existence of a projective resolution of length n implies
that A is J"-projective. This fails without an additional hypothesis because
J-contractible objects have projective resolutions of length 0.

The converse assertion is usually far from true (cf. [7]). Proposition 2.2
shows that an object A of T is J?-projective if and only if there is an exact
triangle P, — P; — A — P,[1] with J-projective objects P, and P,. The
resulting chain complex 0 — P, — P; — A is an J-projective resolution if
and only if the map A — P;[1] is an J-phantom map, if and only if the map
P, — Py is J-monic. But this need not be the case in general.

Recall that the derived functors of the contravariant functor
A — Z.(A,B) are the extension groups Extg 5(A, B). These agree with
extension groups in the Abelian approximation, that is, the target cate-
gory of the universal J-exact stable homological functor. In particular,
Ext%,j(A,B) is the space of morphisms between the images of A and B
in the Abelian approximation (cf. [19]). Theorem 4.3 and Proposition 4.2
yield exact sequences

0= g((i g; s Bxt (4, B) — 3(Mi[-1], B) L5 32(A[-1), B) — 0
(4.8)
and
0— ’jj?(a ?) - EthTJ(AaB) - 3(N2[—1],B) ﬁ) 32(N1[—1],B) =0.

(4.9)
In particular, we get injective maps

T/3(A, B) — Extt 5(A, B),
J/3%(A, B) — Extg 5(A, B).

But these maps need not be surjective. What they do is easy to understand.
The first map is simply the functor from ¥ to the Abelian approximation.
The second map embeds a morphism in J in an exact triangle. This trian-
gle is J-exact because it involves a phantom map, and hence provides an
extension in the Abelian approximation.

The higher quotients 3" /3" "1 (A, B) are also related to Extf 5(4, B),
but this is merely a relation in the formal sense, that is, it is no longer a map.
To construct this relation, we use the J"-versality of the map ": A — N,,.
Thus any map f € J"(A, B) factors through a map f: N, — B, and we
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can choose f € J(N,, B) if f € 3"*(A, B). Now we use the map
%/3(Nn, B) — Exty 5(A, B)

provided by Theorem 4.3 and Proposition 4.2. Since f does not determine
the class of fin T /J(N,,, B) uniquely, we only get a relation. The ambiguity
in this relation disappears on the nth page of the ABC spectral sequence
by Proposition 4.2.

Once we have chosen f as above, we can also extend it to a morphism
between the phantom towers of A and B that shifts degrees down by n —
the extension to the left of IV,, is induced by fo it Ny — B form < n
and vanishes on P, for m < n. Thus we get a morphism between the
ABC spectral sequences for A and B for any homological or cohomological
functor — shifting degrees down by n, of course.

4.2 An equivalent exact couple
The cellular approximation tower produces a spectral sequence in the same
way as the phantom tower.

We extend the phantom tower to n < 0 by A, =0 and P, = 0 for all
n < 0. The triangles (3.3) are exact for all n € Z. A homological functor F
maps these exact triangles to exact chain complexes

Otn+1

o Onx Rnx

' Fm(An) Fm(An-i-l) > Fn(Pn) >

As above, these amount to an exact couple

g +2y .
D’ D’ D =F N (A +1) Z;’Q T (QZH)*' DIIQ»(] - D;;?-'qu—l’
pq ‘T T PTq 4 v . L .
/ ./ /A jz/nq T (OP)*' D;Lq - Ezlv,q’
k J qu T FP+Q(PP)’ ro . / /
E kpg = (Rp)e: Epgq— Dpo1 g

Part of the commuting diagram (3.4) asserts that the identity maps
E — E’ and the maps y,414: Dpg — Dj,, form a morphism of exact cou-
ples between the exact couples from the phantom tower and the cellular
approximation tower. This induces a morphism between the resulting spec-
tral sequences. Since this morphism acts identically on E', the induced
morphisms on E” must be invertible for all » € N>; U {co}. Hence our new
spectral sequence is isomorphic to the ABC spectral sequence.

Although the spectral sequences are isomorphic, the underlying exact
couples are different and thus provide isomorphic but different descriptions
of E*.

An important difference between the two exact couples is that D;q =0
for p < 0. Hence any element of D}, is annihilated by a sufficiently high
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power of i. Therefore, the kernel in (4.4) vanishes and

B =D, Nkeri' 0 () (i)"(D).

p—1yq
reN
Let ~ ~
Ly, = @range(a;*: Fy(Ap) — Fy(Ay));
these spaces define an increasing filtration (Fj,)pen on li_r)nFq(/L) — we

form the limit with the maps «aJ},. Using (4.4) and the exactness of colimits
of Abelian groups, we get isomorphisms

[ o Lp+17p+q
pqg — L .
p,p+q

Hence Ep; converges towards lim F,(A,) and induces the filtration (L p+4)
on its limit — without any assumption on the ideal or the homological
functor.

In the cohomological case, the exact triangles (3.3) yield an exact couple
as well, and the morphism between the two exact couples from the cellular
approximation tower and the phantom tower induces an isomorphism be-
tween the associated spectral sequences. Again, we get a new description
of E.

But the result is not as simple as in the homological case because the
projective limit functor for Abelian groups is not exact. Let

P = ﬂ range (o) : Gi(A,) — Gq(flp)).

r2p

Then
EP9 o~ ker(ip+1»p+q N Ep,erq)_

In general, we cannot say much more than this. If LP9 is the range of the

map @T Gq(fl,.) — G‘I(ﬁp) for all p and ¢, then the ABC spectral sequence

converges towards @r G1(A,) and induces on this limit the decreasing fil-
tration by the subspaces ker (1&117“ Gi(A,) — G (flp)) for p € N.

5 Convergence of the ABC spectral sequence

There is an obvious obstruction to the convergence of the ABC spectral
sequence: the subcategory 915 of J-contractible objects. Since J-derived
functors vanish on 95, the spectral sequence cannot converge towards the
original functor unless it vanishes on 95 as well. At best, the ABC spectral
sequence may converge to the localisation of the given functor at 9t5. We
show that this is indeed the case for homological functors that commute
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with direct sums, provided the ideal J is compatible with direct sums. The
situation for cohomological functors is less satisfactory because the projec-
tive limit functor for Abelian groups is not exact.

We continue to assume throughout this section that the category ¥ has
countable direct sums. Various notions of convergence of spectral sequences
are discussed in [4]. The following results deal only with strong convergence.

Theorem 5.1. Let J be a homological ideal compatible with direct sums
in a triangulated category ¥; let F': ¥ — 2(b be a homological functor
that commutes with countable direct sums, and let A €€ T; let LF be the
localisation of F' at 915. Then

F:3%°(A)=F:3%(A) = | | F:77(A) = range(LF(A) — F(A)),
reN

and the ABC spectral sequence for F' and A converges towards LF(A) with

the filtration (LF : J* (A))keN' We have |J; oy LF : 3¥(A) = LF(A).

Proof. Lemma 3.6 implies that F : 37(A) is the range of a,.: F(4,) —
F(A) for all r € N and that F : 3°°(A) is the range of F (&) flr) — F(A)
because (3.9) is an J*-projective resolution. Now F (€D /L,) =PFA4,)
shows that F': 3*°(A) is the union of F': J7(A) for r € N.

Let A be as in (3.8), so that A = L(A) and LF(A) = F(A). Since
the inductive limit functor for Abelian groups is exact, the map id — S on
@ F(A,) is injective and has cokernel h_n)1F(/~1,) Since the top row in (3.8)

is an exact triangle, the long exact sequence yields F'(A) & lim F'(4,). As a
consequence, the range of f,: F(A) — F(A) is equal to F : 3°(A). Since A
is J2%-projective by Theorem 3.19 and f: A — A is an J-equivalence, this
map is an J2>-projective resolution of A. Hence the range of f, also agrees
with F : 32°°(A) by Lemma 3.6.

Especially, F' : 3°(A) = F(A) if A €€ (P3). For such A, all ob-
jects that occur in the phantom castle belong to (PB5) as well, so that
F(Np) = U,en F' :+ 37(Np) for all p € N. Hence Proposition 4.1 yields
the convergence of the ABC spectral sequence to F'(A) as asserted. Since
the ABC spectral sequences for A and A are isomorphic by Proposition 3.20,
we get convergence towards LE(A) for general A. Q.E.D.

The convergence of the ABC spectral sequences is more problematic for
a cohomological functor G: T°P — b because projective limits of Abelian
groups are not exact. In the following, we assume that G maps direct sums
to direct products — this is the correct compatibility with direct sums for
contravariant functors.

The exactness of the first row in (3.8) yields an exact sequence

lim' G*1(A,) — G*(A) - lim G*(4,) (5.1)
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for any A (this also follows from [19, Theorem 4.4] applied to the ideal 3°°).
Furthermore, G*(A) = RG*(A). Since (3.8) is an J*°-projective resolution,
we have

lim' G71(A4,) = 3°G(A).
pa—
The same argument as in the homological case yields

I®G(A) = (] I"G(A). (5.2)

neN

Using compatibility of G with direct sums, we can also rewrite the obstruc-
tions to the convergence of the ABC spectral sequence in Proposition 4.2:

Badvt = 3 GI(N,),

where Np is the pth object in a phantom tower over A instead of A. The
spectral sequence converges towards RG(A) if these obstructions all vanish.

Proposition 5.2. Let J be a homological ideal with enough projectives
that is compatible with direct sums, and let G: T°°? — 2b be a cohomolog-
ical functor that maps direct sums to direct products. Let A €€ ¥ and let
L(A) €€ (PB3) be its Py-cellular approximation. If L(A) is T*-projective,
then the ABC spectral sequence for A and G converges towards RG(A) =
GoL(A).

Proof. Proposition 3.20 implies that A and L(A) have canonically isomor-
phic ABC spectral sequences. Hence we may replace A by L(A) and assume
that A itself is J°°-projective. By Proposition 2.3, A is a direct summand
of @,,cn An with J"-projective objects A,. The ABC spectral sequence for
each A, converges by Proposition 4.5.

Since J is compatible with countable direct sums, a direct sum of phan-
tom castles over A,, is a phantom castle over @ A,,. Thus the ABC spec-
tral sequence for @, . An is the direct product of the ABC spectral se-
quences for A,; here we use that G maps direct sums to direct prod-
ucts. Hence the ABC spectral sequence for €, .y A, converges towards
[1G(A,) = G(@A,). Since the ABC spectral sequence is an additive
functor on ¥, this implies that the ABC spectral sequence for any direct
summand of @ A, converges. This yields the convergence of the ABC
spectral sequence for L(A), as desired. Q.E.D.

6 A classical special case

Before we apply our results to equivariant bivariant K-theory, we briefly
discuss a more classical application in homological algebra, where we re-
cover results by Marcel Bokstedt and Amnon Neeman [5] and where the
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ABC sectral sequence specialises to a spectral sequence due to Alexander
Grothendieck.

Let 2 be an Abelian category with enough projective objects and ex-
act countable direct sums. Let Ho(2l) be the homotopy category of chain
complexes over 2. We require no finiteness conditions, so that Ho(2) is a
triangulated category with countable direct sums. We are interested in the
derived category of & and therefore want to localise at the full subcategory
M C Ho(2A) of exact chain complexes. This subcategory is localising be-
cause countable direct sums of exact chain complexes are again exact by
assumption.

The obvious functor defining this subcategory 9 is the functor
H: Ho(A) — A~

that maps a chain complex to its homology. The functor H is a stable
homological functor that commutes with direct sums. Hence its kernel Jg
is a homological ideal that is compatible with direct sums.

Let PAZ C AZ be the full subcategory of projective objects. Since we
assume 2 to have enough projective objects, any object of A% admits an
epimorphism from an object in PAZ. It is easy to see that the left adjoint
of the homology functor is defined on A% and maps a sequence (P,) of
projective objects to the chain complex (P,,) with vanishing boundary map.
Since this functor is clearly fully faithful, we use it to view PUAZ as a full
subcategory of Ho(2), omitting the functor H" from our notation. Using
the criterion of [19], it is easy to check that the functor H above is the
universal Jg-exact homological functor.

Theorems 3.22 and 3.23 apply here. The first one shows that ((PAZ), N)
is a complementary pair of subcategories. Thus (PAZ) is equivalent to the
derived category of . Furthermore, any object of the derived category is a
homotopy colimit of a diagram with entries in (PA*)*" for n € N.

Let F': % — 2Ab be an additive covariant functor that commutes with
direct sums. We extend F' to an exact functor Ho(F'): Ho(2) — Ho(2b).
Let

F,=H,oHo(F): Ho(2) — 2Ab

be the functor that maps a chain complex C, to the gth homology of
Ho(F')(C,). This is a homological functor. Its derived functors with re-
spect to Jg are computed in [19]: for a chain complex C,, we have

LpFy(Co) = (LpF) (Hy(Ch)),

that is, we apply the usual derived functors of F' to the homology of C,.
Thus the ABC spectral sequence computes the homology of the total derived
functor of F' applied to Cy in terms of the derived functors of F', applied
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to H.(C,). Such a spectral sequence was already constructed by Alexander
Grothendieck.

7 Construction of the Baum-Connes assembly map

Finally, we apply our general machinery to construct the Baum-Connes
assembly map with coefficients first for locally compact groups and then
for certain discrete quantum groups. In the group case, we get a simpler
argument than in [16].

7.1 The assembly map for locally compact groups

Let G be a second countable locally compact group and let ARY be the
G-equivariant Kasparov category; its objects are the separable C*-algebras
with a strongly continuous action of G, its morphism space A — B is
KKS (A, B). Tt is shown in [16] that this category is triangulated (we must
exclude Z/2-graded C*-algebras for this).

The category ARY has countable direct sums — they are just direct sums
of C*-algebras. But uncountable direct sums usually do not exist because
of the separability assumption in the definition of ﬁﬁG, which is needed
to make the analysis work. Alternative definitions of bivariant K-theory
by Joachim Cuntz [8] still work for non-separable C*-algebras, but it is not
clear whether direct sums of C*-algebras remain direct sums in this category
because the definition of the Kasparov groups for inseparable C*-algebras
involves colimits, which do not commute with the direct products that ap-
pear in the definition of the direct sum.

With enough effort, it should be possible to extend RRY to a category
with uncountable direct sums. But it seems easier to avoid this by imposing
cardinality restrictions on direct sums.

For any closed subgroup H C G, we have induction and restriction
functors

md%: &Y — RR%,  Resl: RRY — AR,

the latter functor is quite trivial and simply forgets part of the group action.
These functors give rise to two subcategories of ARY, which play a crucial
role in [16].

Definition 7.1. Let F be the set of all compact subgroups of G.

CC:={A cc RRY | ResH (A) = 0 for all H € F},
CT := {Ind$(A) | A ce AR and H € F}.

Whereas the subcategory CC is localising by definition, CZ is not. There-
fore, the localising subcategory it generates, (CZ), plays an important role as
well. Since G acts properly on objects of CZ, they satisfy the Baum-Connes
conjecture, that is, the Baum-Connes assembly map is an isomorphism for
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coefficients in CZ. Since domain and target of the assembly map are exact
functors on RRG, this extends to the category (CZ). On objects of CC the
domain of the Baum-Connes assembly map is known to vanish, so that the
Baum-Connes conjecture predicts K, (G x, A) =0 for A €€ CC.

On a technical level, the main tool in [16] is that the pair of subcategories
({(CT),CC) is complementary. Hence the Baum-Connes assembly map is
determined by what it does on these two subcategories. This implies that
its domain is the localisation of the functor A — K, (G x, A) at CC and
that the assembly map is the natural transformation from this localisation
to the original functor.

Put differently, the Baum-Connes assembly map is the only natural
transformation from an exact functor on RRY to the functor K, (G x, .)
that is an isomorphism on CZ and whose domain vanishes on CC (we give
some more details about this argument in the related quantum group case
below).

In order to prove that ({(CZ),CC) is complementary, we introduce the
following ideal:

Definition 7.2. Let 7 = (. 7 ker Res& .

This ideal consists of the morphisms that vanish for compact subgroups
in the notation of [16]. Clearly, an object belongs to CC if and only if its
identity map belongs to Z, that is, 9z = CC. Moreover, [16, Proposition
4.4] implies that objects of CZ are Z-projective; even more, f € Z(A, B)
if and only if f induces the zero map KKf(D,A) — KKS(D,B) for all
D ee(CI.

We can also describe 7 as the kernel of a single functor:

F = (Resfl)er: RRY — [ /8"
HeF

The functor F commutes with direct sums because each functor Res& clearly
does so. Hence 7 is compatible with countable direct sums.

The following theorem contains the main assertion in [16, Theorem 4.7].
We will provide a simpler proof here than in [16].

Theorem 7.3. The projective objects for Z are the retracts of direct sums
of objects in CZ, and the ideal Z has enough projective objects. Hence the
pair of subcategories ({(CZ),CC) is complementary.

Proof. As in Theorem 3.22, we study the partially defined left adjoint of
the functor F' above or, equivalently, of the functors Resg for H € F.

The discrete case is particularly simple because then all H € F are open
subgroups. If H C G is open, then Indg is left adjoint to Resg . Thus
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we may take PC =[], - ARM in Theorem 3.22 and get F© ((Aw)ner) =
Drecr Ind$ (Ag). Notice that the set F is countable if G is discrete, so that
this definition is legitimate. It follows that Z has enough projective objects
and that they are all direct summands of ¢ Ind% (Ag) for suitable
families (Agy), as asserted.

For locally compact GG, the argument gets more complicated because the
functor Resg does not always have a left adjoint, and if it has, it need not
be simply Indg. But there are still enough compact subgroups H for which
the left adjoint is defined on enough H-C*-algebras and close enough to the
induction functor for the argument above to go through.

A good way to understand this is the duality theory developed in [9,
10]. This is relevant because the induction functor provides an equivalence
of categories AR ~ gpexG/H , where we use the groupoid G x G/H,
that is, we consider G-equivariant bundles of C*-algebras over G/H. This
equivalence of categories reflects the equivalence between the groupoids H
and G x G/H.

Identifying RRT ~ RREXG/H , the restriction functor Resg becomes the
functor pg/H  RRY — RREXG/H that pulls back a G-C*-algebra to a trivial
bundle of G-C*-algebras over G/H. Following [12], it is shown in [9] that
the left adjoint of py,,,, is defined on all trivial bundles if G//H is a smooth
manifold. We will see that this is enough for our purposes.

As in [16], we call a compact subgroup large if it is a maximal compact
subgroup in an open, almost connected subgroup of G.

Let H be large. Then G/H is a smooth manifold and any compact
subgroup is contained in a large one by [16, Lemma 3.1]. Furthermore,
since G is second countable there is a sequence (Up, )nen of almost connected
open subgroups of G such that any other one is contained in U,, for some
n € N. Pick a maximal compact subgroup H, C U, for each n € N.
Then any compact subgroup of G is subconjugate to H,, for some n € N.
Therefore, we already have 7 = (), oy Resg" because Resg factors through
Resg if K is subconjugate to H.

For a compact subgroup H C G, let %ﬁﬁG(G/H) C RREXG/H e the
full subcategory of trivial bundles over G/H or, equivalently, the essen-
tial range of the functor pf, JH We do not care whether this category is
triangulated, it is certainly additive. We replace the functors Resg by
Pom ARY — MARRY(G/H) for H € F. For the large compact sub-
groups H, selected above, the results in [10] show that the left adjoint
of pg /gy 1s defined on all of RARY (G/H) and maps the trivial bundle with

fibre A to Co(T G/H) ® A with the diagonal action of G; here T G/H de-
notes the tangent space of G/H (we are not allowed to use the Clifford
algebra dual considered in [9] because it involves Z/2-graded C*-algebras,
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which do not belong to our category).

Thus we have verified the hypotheses of Theorem 3.22 and can conclude
that Z has enough projective objects and that CC is reflective. It remains
to observe that the projective objects are precisely the direct summands
of countable direct sums of objects of CZ. We have already observed that
objects of CZ are Z-projective. Conversely, Theorem 3.22 shows that the
projective objects are retracts of @, . Co(T G/ H,)® A,, for suitable G-C*-
algebras A,. The summands are isomorphic to Indgn (Co(Th G/H,) ® Ay)
where T1 G/ H,, denotes the tangent space of G/H,, at the base point 1- H,.
Hence all projective objects are of the required form. Q.E.D.

Since the stable homological functor Fi(A) := K,(G x, A) commutes
with direct sums, Theorem 5.1 applies to it and shows that the ABC spectral
sequence for the ideal Z converges towards the domain of the Baum-Connes
assembly map — which is the localisation of F, at CC by [16, Theorem 5.2].

It turns out that for a totally disconnected group G the ABC spectral
sequence agrees with a known spectral sequence that we get from the older
definition of the Baum-Connes assembly map and the skeletal filtration of
a G-CW-model for the universal proper G-space EG (cf. [13]). We omit the
proof of this statement, which requires some work.

7.2 An assembly map for torsion-free discrete quantum groups

Before we turn to the assembly map, we must discuss some open problems
that lead us to restrict attention to the torsion-free case.

The first issue is the correct definition of “torsion” for locally compact
quantum groups. The torsion in a locally compact group is the family of
compact subgroups. Quantum groups exhibit some torsion phenomena that
do not appear for groups, and it is conceivable that we have not yet found all
of them. First, compact quantum subgroups are not enough: they should be
replaced by proper quantum homogeneous spaces, so that open subgroups
provide torsion in C*(G) whenever G is disconnected. Secondly, projective
representations of compact groups with a non-trivial cocycle also provide
torsion (in their discrete dual); for instance, C*(SO(3)) is not torsion-free
because of its projective representation on C2.

If we considered C*(SO(3)) to be torsion-free, then the Baum-Connes
assembly map for it (which we describe below) would fail to be an iso-
morphism. The correct formulation of the Baum-Connes conjecture for
C*(SO(3)) turns out to be equivalent to the Baum-Connes conjecture for
C*(SU(2)) —which is torsion-free— so that there is no need to discuss it
in its own right in [17].

I propose to approach torsion in discrete quantum groups by studying ac-
tions of its compact dual quantum group on finite-dimensional C*-algebras.
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A discrete quantum group is torsion-free if any such action is a direct sum
of actions that are Morita equivalent to the trivial action on C.

The above definition of torsion gives the expected results in simple cases.
First, Co(G) for a discrete group G is torsion-free if and only if G contains
no finite subgroups. Secondly, C*(G) for a compact group is torsion-free if
and only if G is connected and has torsion-free fundamental group; this is
exactly the generality in which Universal Coefficient Theorems for equivari-
ant Kasparov theory work (cf. [17, 22]). Christian Voigt shows in [24] that
the quantum deformations of simply connected Lie groups such as SU,(n)
are torsion-free.

Another issue is to find analogues of the restriction and induction func-
tors for the non-classical torsion that may appear, and to prove analogues
of the adjointness relations used in the proof of Theorem 7.3. For honest
quantum subgroups, the restriction functor is evident, and Stefaan Vaes has
constructed induction functors for actions of quantum group C*-algebras
in [23]. I expect restriction to be left adjoint to induction for open quantum
subgroups and, in particular, for quantum subgroups of discrete quantum
groups.

For the time being, we avoid these problems and limit our attention to
the torsion-free case. More precisely, we consider arbitrary discrete quantum
groups, but disregard torsion. The resulting assembly map should not be
an isomorphism for quantum groups with torsion.

The discrete quantum groups are precisely the duals of compact quan-
tum groups; we use reduced duals here because these appear also in the
Baum-Connes conjecture. It is useful to reformulate results about a dis-
crete quantum group in terms of its compact dual as in [19, Remark 2.9].
Let G be a compact quantum group and let G be its discrete dual. Since
we pretend that G is torsion-free, there is only one “restriction functor” to

consider: the forgetful functor ARY — RA that forgets the action of G alto-
gether. The category RRY is equivalent to KRS by Baaj-Skandalis duality.

Under this equivalence, the forgetful functor RRY — KRR corresponds to the
crossed product functor

Gx .: R8¢ — AR, A G A

The induction functor from the trivial subgroup to G corresponds un-
der Baaj-Skandalis duality to the functor 7: A& — RRY that equips a
C*-algebra with the trivial action of G. This functor is left adjoint to the
crossed product functor.

Hence the relevant subcategories CZ, CC and the ideal Z correspond to

CI={r(A)| Acc RR}, CC={Acc /R |G x A~0},
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where ~ means KK-equivalence, that is, isomorphism in &R], and
I={fcRRY|Gxf=0}

The ideal Z is already studied in [19, §5]. It is shown there that Z has
enough projective objects, and the universal homological functor for it is
described. The target category involves actions of the representation ring
Rep(G) of the compact quantum group G on objects of RR; such an ac-
tion on A is, by definition, a ring homomorphism Rep(G) — KKy(A4, A).
The category RR[Rep(G)] of Rep(G)-modules in KR is not yet Abelian be-
cause KR is not Abelian. To remedy this, we must replace KR by its Freyd
category of coherent functors AR — 2Ab. But this completion does not af-
fect homological algebra much because RR[Rep(G)] is an exact subcategory
that contains all projective objects; hence we can compute derived functors
without leaving the subcategory RR[Rep(G)].

We could modify the ideal Z and consider all f for which G x f induces
the zero map on K-theory. This leads to a simpler Abelian approximation,
namely, the category of all countable Z/2-graded Rep(G)-modules. But this
larger ideal no longer leads to the subcategories CC and CZ above.

Theorem 7.4. Let G be any compact quantum group. Then the ideal 7 is
compatible with countable direct sums and has enough projective objects.
The pair of subcategories ((CZ),CC) is complementary.

Proof. The ideal Z has enough Z-projective objects by [16, Lemma 5.2],
which also shows that the Z-projective objects are precisely the direct sum-
mands of objects in CZ. The ideal Z is compatible with direct sums because
the crossed product functor commutes with direct sums. Now Theorem 3.16
shows that the pair of subcategories ((CZ),CC) is complementary.  q.E.p.

Definition 7.5. Let F: 88Y — 2 be some homological functor. The as-
sembly map for F' with coefficients in A is the map LF(A) — F(A), where
the localisation LF' is formed with respect to the subcategory CC.

To get an analogue of the Baum-Connes assembly map, we should con-
sider the functor F'(A) := K.(A) because it corresponds to the functor
B — K.(G %, B) under Baaj-Skandalis duality. A torsion-free discrete
quantum group has the Baum-Connes property with coefficients if the as-
sembly map LF(A) — F(A) is an isomorphism for all A for this functor.

Proposition 7.6. Let F: R8¢ — A be a homological functor that com-
mutes with direct sums. The assembly map LF = F' is the unique natural
transformation from a functor F' to F' with the following properties:

o [is homological and commutes with direct sums;
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e the natural transformation is an isomorphism for objects in CZ;
e [ vanishes on CC.

Proof. Let F = F be a natural transformation with the required properties.
Since both functors involved are homological, the Five Lemma implies that
the class of objects for which the natural transformation F = F is an
isomorphism is triangulated. It is also closed under direct sums because
both functors commute with direct sums. Hence the natural transformation
F = F is an isomorphism for all objects in (CZ) because this holds for
objects in CZ.

Since F vanishes on CC and is homological, the universal property of the
localisation shows that the natural transformation F = F factors uniquely
through the assembly map: F = LF = F. Both F and LF descend
to the category RR®/CC, which is equivalent to (CZ). Since both natural
transformations F' = F and LF = F are invertible on objects of (CZ), we
get the desired natural isomorphism F 2 LF. Q.E.D.

The critical property in Proposition 7.6 is the vanishing on CC. This
cannot be expected if G has torsion. The Baum-Connes assembly map is
an isomorphism for F' if and only if F' vanishes on CC: one direction is
trivial, and the other follows by taking F = F in Proposition 7.6. While
this reformulation of the Baum-Connes conjecture came too late to be used
in verifying the conjecture for groups, it is quite helpful for duals of compact
groups (cf. [17]) and probably also for their deformations.

8 Conclusion

The idea of localisation —central both in homological algebra and in homo-
topy theory— is becoming more important in non-commutative topology as
well. When refined using homological ideals, it unifies various new and old
universal coefficient theorems, the Baum-Connes conjecture, and its exten-
sions to quantum groups.

Homological ideals provide some basic topological tools in the general
setting of triangulated categories. This includes

e important notions from homological algebra like projective resolutions
and derived functors (these were already dealt with in [19]);

e an efficient method to check that pairs of subcategories in a triangu-
lated category are complementary;

e some control on how objects of the category are constructed from
generators, that is, from the projective objects for the ideal;
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e a natural spectral sequence that computes the localisation of a homo-
logical functor from its values on generators.

Since the assumptions on the underlying category are quite weak, all this
applies to equivariant bivariant K-theory.

We have applied this general machinery to construct the Baum-Connes
assembly map for torsion-free quantum groups, whose domain is of topolog-
ical nature in the sense that it can be computed by topological techniques
such as spectral sequences. But much remains to be done here. The three
main issues are to understand torsion in locally compact quantum groups,
to adapt the reduction and induction functors to exotic torsion phenomena,
and to check whether the assembly map is an isomorphism. These problems
are mainly analytical in nature.
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