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RIEMANNIAN GEOMETRY OF LAGRANGIAN SUBMANIFOLDS

Bang-Yen Chen

Abstract. The study of Lagrangian submanifolds in Kähler manifolds and in
the nearly Kähler six-sphere has been a very active field over the last quarter
of century. In this article we survey the main results done during that period
from Riemannian geometric point of view.
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1. INTRODUCTION

A 2n-dimensional manifold is called a symplectic manifold if it admits a nonde-
generate closed 2-form Ω, i.e., Ωn �= 0 everywhere. An n-dimensional submanifold
M of a symplectic 2n-manifold (M̃,Ω) is called Lagrangian if the restriction of Ω
on the tangent bundle of M vanishes identically. Thus, one has Ω(X, Y ) = 0 for
X, Y tangent to M .

Symplectic manifolds and their Lagrangian submanifolds appear naturally in
the context of classical mechanics and mathematical physics. For instance, the sys-
tems of partial differential equations of Hamilton-Jacobi type lead to the study of
Lagrangian submanifolds and foliations in the cotangent bundle (cf., for instance,
[66]). Furthermore, Lagrangian submanifolds are part of a growing list of mathe-
matically rich special geometries that occur naturally in string theory.

The study of Lagrangian submanifolds of Kähler manifolds from Riemannian
geometric point of view was initiated in the early 1970s. A submanifold M of a
Kähler manifold M̃ is Lagrangian if the complex structure J of the ambient manifold
M̃ carries each tangent space of M onto the corresponding normal space of M , i.e.,
J(TpM) = T⊥

p M for any point p ∈ M . Since every curve in a Kähler curve is
Lagrangian automatically, we only consider Lagrangian submanifolds of dimension
greater than or equal to two.

Because the tangent bundle and the normal bundle of a Lagrangian submanifold
are isomorphic via the complex structure J of the ambient manifold, the Lagrangian
submanifold is a flat space if and only if the Lagrangian submanifold has flat normal
connection.

The study of Lagrangian submanifolds in Kähler manifolds and in the nearly
Kähler six-sphere is a very active field during the last quarter of century. Many
interesting results on Lagrangian submanifolds from Riemannian point of view have
been obtained by many mathematicians. In this article, we survey the main results
on Lagrangian submanifolds in Kähler manifolds and also in the nearly Kähler
six-sphere done during that period from this point of view.
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2. BASIC PROPERTIES

A result of Gromov [64] implies that every compact embedded Lagrangian
submanifold of C

n is not simply-connected. This result is not true when the compact
Lagrangian submanifolds were immersed but not embedded; for instance, an n-
sphere can be immersed as a Lagrangian submanifold in C

n.
Let h denote the second fundamental form of a Lagrangian submanifold M in

M̃ and let σ = Jh. Another fundamental property of Lagrangian submanifolds is
that g(σ(X, Y ), JZ) is totally symmetric, i.e., we have

g(σ(X, Y ), JZ) = g(σ(Y, Z), JX) = g(σ(Z,X), JY )(2.1)

for vectors X, Y, Z tangent to M .
Let M̃n(4c) denote a complex n-dimensional Kähler manifold with constant

holomorphic sectional curvature 4c. Such Kähler manifolds are called complex
space forms. It is known that the universal covering of a complete complex space
form M̃n(4c) is the complex projective n-space CPn(4c), the complex Euclidean
n-space C

n, or the complex hyperbolic space CHn(4c), according to c > 0, c = 0,
or c < 0. A Käehler manifold is called Käehler-Einstein if its Ricci tensor is a
constant multiple of its metric tensor.

The following existence and uniqueness theorems for Lagrangian isometric im-
mersions in complex space forms are very useful [23, 38].

Theorem 2.1. Let (M, 〈 . , .〉) be an n-dimensional simply connected Rie-
mannian manifold. If σ is a TM -valued symmetric bilinear form on M satisfying
(1) 〈σ(X, Y ), Z〉 is totally symmetric,
(2) (∇σ)(X, Y, Z) = ∇Xσ(Y, Z)−σ(∇XY, Z)−σ(Y,∇XZ) is totally symmet-

ric,
(3) R(X, Y )Z = c(〈Y, Z〉X − 〈X,Z〉Y ) + σ(σ(Y, Z), X)− σ(σ(X,Z), Y ),

then there exists a Lagrangian isometric immersion L : (M, 〈 . , .〉) → M̃n(4c)
whose second fundamental form h is given by h(X, Y ) = Jσ(X, Y ).

Theorem 2.2. Let L1, L2 : M → M̃n(4c) be two Lagrangian isometric im-
mersions of a Riemannian manifoldM with second fundamental forms h1 and h2.
If 〈

h1(X, Y ), JL1�Z
〉

=
〈
h2(X, Y ), JL2�Z

〉
for all vector fieldsX, Y, Z tangent toM, then there exists an isometry φ of M̃n(4c)
such that L1 = φ ◦ L2.

Lagrangian submanifolds exist extensively. For instance, we have the following
immersibility theorem from [31].
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Theorem 2.3. Every warped product I ×f(s) S
n−1 of an open interval I and

an (n− 1)-sphere admits a Lagrangian isometric immersion into C
n.

In particular, Theorem 2.3 implies that every rotational hypersurface of Euclidean
space and every real space form can be locally isometrically immersed in complex
Euclidean space as Lagrangian submanifolds, although globally not every real space
form is necessary so (cf. Section 3).

There exists a direct relationship between Lagrangian submanifolds in com-
plex projective or complex hyperbolic space with C-totally real submanifolds of
the Sasakian manifolds S2n+1 and H2n+1

1 . In fact, Reckziegel [94] proved that
each horizontal lift of a Lagrangian submanifold M in CPn(4) (respectively, in
CHn(−4)), via the Hopf fibration π : S2n+1 → CPn(4) (respectively, π : H2n+1

1 →
CHn(−4)), is a C-totally real submanifold of S2n+1 (respectively, of the anti de
Sitter space time H2n+1

1 ). Conversely, the projection of an n-dimensional C-totally
real submanifold of S2n+1 (respectively, of H2n+1

1 ) via the Hopf fibration is a
Lagrangian submanifold of CPn(4) (respectively, of CHn(−4)).

Lagrangian submanifolds in a nonflat complex space form can be characterized
by the curvature tensor of its ambient space in a very simple way. Namely, a result
of [46] states that an n-dimensional submanifold M of a nonflat complex space
form M̃n(4c) is curvature-invariant if and only if it is either a Kähler submanifold
or a Lagrangian submanifold. Here, a submanifold M in a complex space form is
called curvature-invariant if the Riemann curvature tensor R̃ of the ambient space
satisfies R̃(X, Y )TM ⊂ TM for X, Y tangent to M .

Harvey and Lawson [65] studied the so-called special Lagrangian submanifolds
in C

n, which are calibrated by the n-form Re(dz1 ∧ · · · ∧ dzn). Being calibrated
implies volume minimizing in the same homology class. So, in particular, special
Lagrangian submanifolds are oriented minimal Lagrangian submanifolds. In fact, a
special Lagrangian submanifoldM (with boundary ∂M ) in Cn is volume minimiz-
ing in the class of all submanifolds N of Cn satisfying [M ] = [N ] ∈ Hc

n(C
n; R)

with ∂M = ∂N . Harvey and Lawson constructed many examples of special La-
grangian submanifolds in Cn.

Using the idea of calibrations, one can show that every Lagrangian minimal sub-
manifold in an Einstein-Kähler manifold M̃ with c1(M̃) = 0 is volume minimizing.
It is false for the case c1 = λω with λ > 0, where ω is the canonical symplectic
form on M̃ . It is unknown for the case c1 = λω with λ < 0 (cf. [5]).

A general Kähler manifold may not have any minimal Lagrangian submanifold.
In contrast, minimal Lagrangian submanifolds in an Einstein-Kähler manifold do
exist in abundance, at least locally (cf. [5]). Bryant [6] constructed explicit examples
of special Lagrangian tori in Ricci flat Kähler manifolds.

Minimal Lagrangian surfaces in the complex plane are well-understood. In fact,
Chen and Morvan [42] proved that an orientable minimal surface M in E

4 is a
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Lagrangian surface with respect to an orthogonal complex structure on E4 if and
only if it is a holomorphic curve with respect to some orthogonal complex structure
on E4. It is also known from [2] that the only minimal Lagrangian immersion of a
topological 2-sphere into CP 2 is the totally geodesic one.

The intrinsic and extrinsic structures of minimal Lagrangian surfaces in complex
space forms are also well-understood. In fact, a simply connected Riemannian
2-manifold (M, g) with Gaussian curvature K less than a constant c admits a
Lagrangian minimal immersion into a complete simply connected complex space
form M̃2(4c) if and only if it satisfies the following differential equation [27, 37]:

Δ ln(c−K) = 6K,(2.2)

where Δ is the Laplacian on M associated with the metric g.
If f : M → M̃2(4c) is a Lagrangian minimal surface without totally geodesic

points, then, w.r.t. an isothermal coordinate system satisfying g = E(dx2 + dy2),
Δ0(lnE) = 4E−2 − 2cE , Δ0 = ∂2/∂x2 + ∂2/∂y2, the second fundamental form
of L is determined by

h

(
∂

∂x
,
∂

∂x

)
=− 1

E
J

(
∂

∂x

)
, h

(
∂

∂x
,
∂

∂y

)
=

1
E
J

(
∂

∂y

)
,

h

(
∂

∂y
,
∂

∂y

)
=

1
E
J

(
∂

∂x

)
.

(2.3)

Conversely, it was proved in [27] that if E is a positive function defined on
a simply connected domain U of E2 satisfying Δ0(lnE) = 4E−2 − 2cE and if
g = E(dx2 + dy2) is the metric tensor on U , then, up to rigid motions of M̃2(4c),
there is a unique minimal Lagrangian isometric immersion of (U, g) into M̃2(4c)
whose second fundamental form h is given by (2.3).

Very recently, Aiyama [114] obtains a simple proof of Chen-Morvan’s result by
applying a representation formula.

3. OBSTRUCTIONS TO LAGRANGIAN ISOMETRIC IMMERSIONS

Gromov stated in [63] that a compact n-manifold M admits a Lagrangian im-
mersion into C

n if and only if the complexification of the tangent bundle, TM ⊗C,
is trivial. Since the tangent bundle of a 3-manifold is always trivial, Gromov’s result
implies that there do not exist topological obstructions to Lagrangian immersions
for compact 3-manifolds. In views of Gromov’s result, it is natural to search for
Riemannian obstructions to Lagrangian isometric immersions.

Let τ =
∑

i�=j K(ei ∧ ej) be the scalar curvature of a Riemannian n-manifold
M , where {e1, . . . , en} is an orthonormal local frame. For an integer k ≥ 0,
denote by S(n, k) the finite set consisting of k-tuples (n1, . . . , nk) of integers ≥ 2
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satisfying n1 < n and n1 + · · ·+ nk ≤ n. Denote by S(n) the set of (unordered)
k-tuples with k ≥ 0 for a fixed positive integer n.

The cardinal number #S(n) of S(n) is equal to p(n)− 1, where p(n) denotes
the number of partitions of n, which increases quite rapidly with n. For instance,
for

n = 2,3,4,5,6,7,8,9,10, . . . ,20, . . . ,50, . . . ,100, . . . ,200,
the cardinal numbers #S(n) are given by

1,2,4,6,10,14,21,29,41, . . . , 626, . . . , 204225, . . . , 190569291, . . . , 3972999029387,

respectively.
For each (n1, . . . , nk) ∈ S(n), Chen introduced in [25, 30] the Riemannian

invariant δ(n1, . . . , nk) defined by

δ(n1, . . . , nk)(x) =
1
2

(
τ(x)− inf{τ(L1) + · · ·+ τ(Lk)}

)
,(3.1)

where L1, . . . , Lk run over all k mutually orthogonal subspaces of TxM such that
dimLj = nj, j = 1, . . . , k. Here τ(Lj) is the scalar curvature of the linear
subspace Lj defined by τ(Lj) =

∑
a �=bK(εa ∧ εb) and {εa, a = 1, . . . , nj} is an

orthonormal basis of Lj . The invariants δ(n1, . . . , nk) with k > 0 and the scalar
curvature τ are very different in nature.

For each (n1, . . . , nk) ∈ S(n), we put

a(n1, . . . , nk) =
1
2
n(n − 1)− 1

2

k∑
j=1

nj(nj − 1),(3.2)

b(n1, . . . , nk) =
n2(n+ k − 1 −

∑
nj)

2(n+ k −
∑
nj)

.(3.3)

The following result from [25, 30] provides a sharp and simple relationship
between the squared mean curvature |H |2 and the invariant δ(n1, . . . , nk).

Theorem 3.1. For any n-dimensional Lagrangian submanifoldM of a complex
space form M̃n(4c) and any k-tuple (n1, . . . , nk) ∈ S(n), we have

δ(n1, . . . , nk) ≤ b(n1, . . . , nk)|H |2 + a(n1, . . . , nk)c.(3.4)

The equality of (3.4) holds at a point x ∈ M if and only if there exists an
orthonormal basis e1, . . . , em at x such that the shape operator takes the following
form:

Ar =

⎡
⎢⎢⎢⎣
Ar1 · · · 0
... . . . ... 0
0 · · · Ark

0 μrI

⎤
⎥⎥⎥⎦ , r = n+ 1, . . . , m,(3.5)
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where Arj are symmetric nj × nj submatrices satisfying

trace (Ar1) = · · · = trace (Ark) = μr .(3.6)

Inequality (3.4) is fundamental in the sense that it provides the control of the
most fundamental extrinsic invariant, the squared mean curvature, through the string
of Riemannian invariants δ(n1, . . . , nk).

By applying Theorem 3.1, we may obtain the following Riemannian obstructions
to Lagrangian isometric immersions in complex space forms [30].

Theorem 3.2. Let M be a compact Riemannian manifold with finite funda-
mental group π1(M) or null first Betti number β1(M). If there exists a k-tuple
(n1, . . . , nk) in S(n) such that

δ(n1, . . . , nk) >
1
2

(
n(n− 1) −

k∑
j=1

nj(nj − 1)
)
c,(3.7)

then M admits no Lagrangian isometric immersion into a complex space form of
constant holomorphic sectional curvature 4c.

An immediate consequence of Theorem 3.2 is the following necessary Rie-
mannian condition for compact Lagrangian submanifolds in Cn; namely, the Ricci
curvature of every compact Lagrangian submanifoldM in C

n must satisfy

inf
u
Ric(u) ≤ 0,(3.8)

where u runs over all unit tangent vectors of M .
For Lagrangian surfaces condition (3.8) means that the Gaussian curvature of

every compact Lagrangian surface M in C2 must be nonpositive at some points
on M . Another immediate consequence of (3.8) is that every compact irreducible
symmetric space cannot be isometrically immersed in a complex Euclidean space
as a Lagrangian submanifold.

Let f : En+1 → Cn be the map defined by

f(x0, . . . , xn) =
1

1 + x2
0

(x1, . . . , xn, x0x1, . . . , x0xn).(3.9)

Then f induces an immersion w : Sn → C
n of Sn into C

n which has a unique
self-intersection point f(−1, 0, . . . , 0) = f(1, 0, . . . , 0).

With respect to the canonicals complex structure J on C
n, the immersion w is a

Lagrangian immersion of Sn into Cn, which is called the Whitney immersion. The
Sn endowed with the Riemannian metric induced from the Whitney immersion is
called a Whitney n-sphere.
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The example of Whitney immersion shows that the condition on the invariants
given in Theorem 3.2 is sharp, since Sn has trivial fundamental group and trivial
first Betti number when n ≥ 2. Moreover, for each k-tuple (n1, . . . , nk) ∈ S(n),
the Whitney n-sphere satisfies δ(n1, . . . , nk) > 0 except at the unique point of
self-intersection. Also, the assumptions on the finiteness of π1(M) and vanishing
of β1(M) given above are both necessary.

For further applications of Theorem 3.1 and the invariants δ(n1, . . . , nk), see
for instance [25, 30, 34, 103].

4. OPTIMAL INEQUALITIES BETWEEN SCALAR CURVATURE, RICCI CURVATURE, SHAPE
OPERATOR AND MEAN CURVATURE

Besides inequality (3.4), there exist other optimal general inequalities for La-
grangian submanifolds in complex space forms.

Theorem 4.1. The scalar curvature τ and the squared mean curvature |H |2
of a Lagrangian submanifold in complex space form M̃n(4c) satisfy the following
general sharp inequality:

τ ≤ n(n − 1)c+
n2(n− 1)
n+ 2

|H |2.(4.1)

Inequality (4.1) with c = 0 and n = 2 was proved in [11]. Their proof relies
on complex analysis which is not applicable to n ≥ 3. The general inequality was
established in [4] for c = 0 and arbitrary n; and in [21] for c �= 0 and arbitrary n;
and independently by [12] for c �= 0 with n = 2, also using the method of complex
analysis.

If M̃n(4c) = Cn, the equality of (4.1) holds identically if and only if the
Lagrangian submanifold is either an open portion of a Lagrangian n-plane or, up to
dilations, an open portion of the Whitney sphere [4] (see also [97] for an alternative
proof).

It was proved in [21] that there exists a one-parameter family of Riemannian
n-manifolds, denoted by Pna (a > 1), which admit Lagrangian isometric immersions
into CPn(4) satisfying the equality case of (4.1) for c = 1, and two one-parameter
families of Riemannian manifolds,Cna (a > 1),Dn

a(0 < a < 1), and two exceptional
n-spaces, Fn, Ln, which admit Lagrangian isometric immersion into CHn(−4) and
satisfy the equality case of (4.1) for c = −1. It was proved in [21] that, besides the
totally geodesic ones, these are the only Lagrangian submanifolds in CPn(4) and
in CHn(−4) which satisfy the equality case of (4.1).

The explicit expressions of those Lagrangian immersions of Pna , Cna , Dn
a , Fn

and Ln satisfying the equality case of (4.1) were completely determined in [48].
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Castro and Urbano [13] showed that a Lagrangian surface in CP 2 satisfies the
equality case of (4.1) for n = 2 and c = 1 if and only if the Lagrangian surface has
holomorphic twistor lift. (For a most recent article related with inequality (4.1), see
[8].)

Let Ric denote the maximum Ricci curvature function on a Riemannian n-
manifold M , which is defined by

Ric(p) = max{Ric(u, u) | u ∈ UpM}, p ∈M,(4.2)

where UM denotes the unit tangent bundle of M .
For the Ricci tensor Ric and the maximum Ricci curvature function Ric of a

Lagrangian submanifold in a complex space form, we have the following general
results from [32].

Theorem 4.2. If M is a Lagrangian submanifold of a complex space form
M̃n(4c), then the Ricci tensor of M satisfies

Ric ≤
(
(n− 1)c+

n2

4
|H |2

)
g.(4.3)

The equality case of (4.3) holds identically if and only if either M is a totally
geodesic submanifold or n = 2 and M is totally umbilical.

Theorem 4.3. Let M be a Lagrangian submanifold of a complex space form
M̃n(4c). Then

Ric ≤ (n − 1)c+
n2

4
|H |2.(4.4)

If M satisfies the equality case of (4.4) identically, then M is a minimal sub-
manifold.

LetM be a Riemannian n-manifold and Lk a k-plane section of TxMn, x ∈M.
For each unit vector X in Lk, we choose an orthonormal basis {e1, . . . , ek} of Lk
such that e1 = X . Define the Ricci curvature RicLk of Lk at X by

RicLk(X) = K12 + · · ·+K1k,(4.5)

where Kij denotes the sectional curvature of the 2-plane section spanned by ei, ej.
We call RicLk(X) a k-Ricci curvature of M at X relative to Lk. Clearly, the nth
Ricci curvature is nothing but the Ricci curvature in the usual sense and the second
Ricci curvature coincides with the sectional curvature.
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For each integer k, 2 ≤ k ≤ n, let θk denote the Riemannian invariant on M
defined by

θk(x) =
(

1
k − 1

)
inf
Lk,X

RicLk(X), X ∈ TxM,(4.6)

where Lk runs over all k-plane sections in TxM and X runs over all unit vectors
in Lk.

The following results provide a sharp relationship between the k-Ricci curvature
and the shape operator for Lagrangian submanifold in a complex space form.

Theorem 4.4. Let f : M → M̃n(4c) be a Lagrangian isometric immersion of
a Riemannian manifold M into a complex space form M̃n(4c). For any integer
k, 2 ≤ k ≤ n, and any point x ∈M, we have
(1) If θk(x) �= c, then the shape operator in the direction of the mean curvature

vector satisfies

AH >
n − 1
n

(θk(x) − c)I at x,(4.7)

where I is the identity map of TM .
(2) If θk(x) = c, then AH ≥ 0 at x.
(3) A unit vector X ∈ TxM satisfies AHX = ((n− 1)/n)(θk(x) − c)X if and

only if θk(x) = c and X lies in the relative null space at x.
(4) AH ≡ ((n− 1)/n)(θk − c)I at x if and only if x is a totally geodesic point.

Since the proof of Theorem 4.4 bases on the equation of Gauss, its proof is
exactly the same as the one given in [29] for submanifolds in real space form (see
[76]).

5. A VANISHING THEOREM FOR LAGRANGIAN ISOMETRIC IMMERSIONS

Let S1 ⊂ C
1 denote a unit circle in C

1. Then the n-torus

T n = S1 × · · · × S1 ⊂ C
n = C

1 × · · ·C1

is a Lagrangian submanifold with nonzero constant mean curvature. On contrast,
the following vanishing theorem from [26] implies that the mean curvature function
of each compact Lagrangian submanifold M in an Einstein-Kähler manifold must
have zeros under a simple topological condition.

Theorem 5.1. Let M be a compact manifold with finite fundamental group
π1(M) or null first Betti number β1(M). Then every Lagrangian immersion from
M into any Einstein-Kähler manifold must have minimal points.
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Theorem 5.1 has several interesting geometric applications. For example, it
implies the following.

Theorem 5.2.

(1) There do not exist Lagrangian isometric immersions from a compact Rie-
mannian n-manifold with positive Ricci curvature into any flat Kähler n-
manifold or into any complex hyperbolic n-space.

(2) Up to dilations, a compact Lagrangian submanifold M in Cn is congruent
to the Whitney sphere if and only if JH is a conformal vector field, where J
is the complex structure and H the mean curvature vector field.

(3) Every Lagrangian isometric immersion from a spherical space form into a
complex projective n-space CPn is a totally geodesic immersion if it has
constant mean curvature.

(4) Every Lagrangian isometric immersion of a compact Riemannian manifold
with positive Ricci curvature into an Einstein-Kähler manifold is a minimal
immersion if it has constant mean curvature.

Statement (2) of Theorem 5.2 follows from Theorems 5.1 and 14.3.
Theorem 5.1 is sharp in the sense that both conditions on β1 and π1 cannot be

removed.

6. PINCHING THEOREMS FOR LAGRANGIAN MINIMAL SUBMANIFOLDS

It follows from the equation of Gauss that an n-dimensional totally real minimal
submanifold of a complex space form M̃n(4c) satisfies the following two properties
[46]:

(1) Ric≤ (n− 1)cg, with equality holding if and only if it is totally geodesic.
(2) τ ≤ n(n− 1)c, with equality holding if and only if it is totally geodesic.
Montiel, Ros and Urbano proved the following [81].

Theorem 6.1. If the Ricci curvature of a compact Lagrangian submanifold
M of CPn(4c) satisfies Ric ≥ 3(n− 2)c/4, then the second fundamental form is
parallel, i.e., M is a parallel submanifold.

Compact Lagrangian submanifolds of CPn(4c) with parallel second fundamen-
tal form were completely classified by Naitoh in [84, 85].

By applying the result of Naitoh and Theorem 4.2, we know that an n-dimensional
compact Lagrangian minimal submanifold of CPn(4) satisfies Ric ≥ 3(n− 2)c/4
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is one of the following:

RPn(1) → CPn(4) (r ≥ 2) (totally geodesic),
T 2 → CP 2(4) (minimal),

SU(r)/SO(r) → CP (r−1)(r+2)/2(4) (r ≥ 3) (minimal),
SU(2r)/Sp(r) → CP (r−1)(2r+1)(4) (r ≥ 3) (minimal),

SU(r) → CP r
2−1(4) (r ≥ 3) (minimal),

E6/F4 → CP 26(4) (minimal).

(6.1)

Liu [74] investigated scalar pinching for complete Lagrangian submanifolds and
obtained the following.

Theorem 6.2. Let M be a complete Lagrangian minimal submanifold in
CPn(4). If the Ricci curvature of M is bounded from below, then either M is
totally geodesic or the infimum of the scalar curvature of M is less than or equal
to (3n+ 1)(n− 2)/3.

Compact Lagrangian minimal submanifolds in CPn(4) satisfying a pinching on
scalar curvature were studied in [46, 75, 84, 85, 79, 111, 112], among others. In
particular, we have the following.

Theorem 6.3 [79]. Let M be a compact Lagrangian minimal submanifold of
CPn(4c). Then M has constant scalar curvature τ satisfying τ ≥ 3n(n− 2)c/4 if
and only if one of the following conditions holds:
(A) τ = n(n − 1)c/4 and M is totally geodesic,
(B) τ = 0, n = 2, and M is a finite Riemannian covering of the flat torus

minimally embedded in CP 2(4c) with parallel second fundamental form, or
(C) τ = 3n(n− 2)c/4, n > 2, and M is an embedded submanifold congruent to

the standard embedding of:

SU(3)/SO(3), n = 5;SU(6)/Sp(3), n = 14,
SU(3), n = 8, or E6/F4, n = 26.

(6.2)

A submanifoldM of a Riemannian manifold is called an isotropic submanifold
if its second fundamental form h satisfies |h(v, v)| = λ(p) for each point p of M
and every unit vector v tangent to M at p. Moreover, if λ is constant then M is
said to be constant isotropic.

Montiel and Urbano [82] proved the following.

Theorem 6.4. If an n-dimensional (n ≥ 3) minimal Lagrangian submanifold
M of a complex n-dimensional Kâhler manifold is isotropic, then M is totally
geodesic or the dimension n is equal to 5, 8, 14 or 26.
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Montiel and Urbano also classified constant isotropic Lagrangian submanifolds
of complex space forms.

Xia [111] and Matsuyama [78] proved the following.

Theorem 6.5. Let M be a compact minimal Lagrangian submanifold of
CPn(4c). If |h(v, v)|2 ≤ c/2 for any unit tangent vector v, then either
(1) M is totally geodesic, or
(2) |h(v, v)|2 = c/2, n = 2, and M is a finite Riemannian covering of a flat

torus embedded in CP 2(4c) with parallel second fundamental form, or
(3) |h(v, v)|2 = c/2, n > 2, and M is an embedded submanifold congruent to

the standard embedding of the spaces given in (6.2).

7. LAGRANGIAN SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE VECTOR

A natural extension of minimal submanifold is submanifolds with parallel mean
curvature vector.

Chen, Houh and Lue proved in 1977 the following.

Theorem 7.1 [41]. Let M be a compact Lagrangian submanifold of C
n. If

M has nonnegative sectional curvature and parallel mean curvature vector, then
M is a product submanifoldM1 × · · · ×Mr, where Mj is a compact Lagrangian
submanifold embedded in some complex linear subspace Cnj and is immersed as
a minimal submanifold in a hypersphere of C

nj .

Theorem 7.1 was extended to complete Lagrangian minimal submanifolds of C
n

by Urbano in [107] and by Ki and Kim in [68].
Ohnita [91] and Urbano [106] investigated Lagrangian submanifolds in complex

projective space with K ≥ 0 and obtained the following.

Theorem 7.2. Let M be a compact Lagrangian submanifold of CPn(4) with
parallel mean curvature vector. If M has nonnegative sectional curvature, then the
second fundamental form of M is parallel.

By applying Theorem 7.2 and the classification of parallel submanifolds of CPn,
it follows that compact Lagrangian submanifolds of CPn(4) with parallel mean
curvature vector and K ≥ 0 must be the product submanifolds: T ×M1×· · ·×Mk,
where T is a flat torus with dimM ≥ k− 1 and each Mi is one of the following:

RP r(1) → CP r(4) (r ≥ 2) (totally geodesic),
SU(r)/SO(r) → CP (r−1)(r+2)/2(4) (r ≥ 3) (minimal),
SU(2r)/Sp(r) → CP (r−1)(2r+1)(4) (r ≥ 3) (minimal),

SU(r) → CP r
2−1(4) (r ≥ 3) (minimal),

E6/F4 → CP 26(4) (minimal).

(7.2)
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For 3-dimensional compact Lagrangian submanifolds of complex space forms,
Urbano [107] proved the following.

Theorem 7.3. If M3 is a 3-dimensional compact Lagrangian submanifold of
a complex space form M̃3(4c) with nonzero parallel mean curvature vector, then
M3 is flat and has parallel second fundamental form.

8. LAGRANGIAN REAL SPACE FORM Mn(c) IN COMPLEX SPACE FORM M̃n(4c)

The simplest examples of Lagrangian submanifolds of complex space forms are
totally geodesic Lagrangian submanifolds. A totally geodesic Lagrangian subman-
ifold of a complex space form M̃n(4c) is a real space form of constant sectional
curvature c.

The real projective n-space RPn(1) (respectively, the real hyperbolic n-space
Hn(−1)) can be isometrically embedded in CPn(4) (respectively, in complex hy-
perbolic space CHn(−4)) as a Lagrangian totally geodesic submanifold.

Non-totally geodesic Lagrangian isometric immersions from real space forms of
constant curvature c into a complex space form M̃n(4c) were determined by Chen,
Dillen, Verstraelen, and Vrancken in [39] by applying the notion of twisted products.

Let (M1, g1), . . . , (Mm, gm) bem Riemannian manifolds, fi a positive function
on M1 × · · · ×Mm and πi : M1 × . . .×Mm → Mi the ith canonical projection,
i = 1, . . . , m. Then the twisted product

f1M1 × · · · ×fm Mm(8.1)

of (M1, g1), . . . , (Mm, gm) is by definition the differentiable manifoldM1 × . . .×
Mm equipped with the twisted product metric g defined by

g(X, Y ) = f1 · g1(π1∗X, π1∗Y ) + · · ·+ fm · gm(πm∗X, πm∗Y )(8.2)

for vector fields X and Y on M1 × · · · ×Mm.
LetNn−k(c) denote an (n−k)-dimensional real space form of constant sectional

curvature c. Consider, for k < n− 1, the twisted product:

f1I1 × · · · ×fk
Ik ×1 N

n−k(c)(8.3)

with twisted product metric defined by

g = f1dx
2
1 + · · ·+ fkdx

2
k + g0,(8.4)

where g0 denotes the canonical metric ofNn−k(c) and I1, . . . , Ik are open intervals.
When k = n − 1 (respectively, k = n), consider the following twisted product
instead:

f1I1 × · · · ×fn−1 In−1 ×1 In (respectively, f1I1 × · · · ×fn In).(8.5)
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If the twisted product defined by (8.3) or (8.5) is a real space form Mn(c)
of constant sectional curvature c, it is called a twisted product decomposition of
Mn(c). We denote such a decomposition of Mn(c) by T Pn

f1···fk
(c).

Coordinates {x1, . . . , xn} on T Pn
f1···fk

(c) such that ∂/∂xj is tangent to Ij for
j = 1, . . . , k, the last n−k coordinate vectors are tangent toNn−k(c) and the metric
in this coordinate system takes the form (8.4) are called adapted coordinates.

The 1-form Φ(T P) defined on T Pn
f1···fk

(c) by

Φ(T P) = f1dx1 + · · ·+ fkdxk(8.6)

is called the twistor form of T Pn
f1···fk

(c).
The twistor form Φ(T P) of T Pn

f1···fk
(c) is said to be twisted closed if

k∑
i,j=1

∂fi
∂xj

dxj ∧ dxi = 0.(8.7)

It follows from (8.6) that the twistor form Φ(T P) is automatically twisted closed
when k = 1. If k = n, the twistor form is twisted closed if and only if it is a closed
1-form in the usual sense.

Chen, Dillen, Verstraelen, and Vrancken [39] proved the following theorem
which determines Lagrangian real space form of constant curvature c in a complex
space form M̃n(4c).

Theorem 8.1. We have the following.
(1) Let T Pn

f1···fk
(c), 1 ≤ k ≤ n, be a twisted product decomposition of a simply

connected real space formMn(c). If the twistor form Φ(T P) of T Pn
f1···fk

(c)
is twisted closed, then, up to rigid motions of M̃n(4c), there is a unique
Lagrangian isometric immersion:

Lf1···fk
: T Pn

f1···fk
(c) → M̃n(4c),(8.8)

whose second fundamental form satisfies

h

(
∂

∂xj
,
∂

∂xj

)
= J

∂

∂xj
, j = 1, . . . , k,

h

(
∂

∂xr
,
∂

∂xt

)
= 0, otherwise,

(8.9)

for any adapted coordinate system {x1, . . . , xn} on T Pn
f1···fk

(c).
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(2) LetM be a Lagrangian submanifold of a complex space form M̃n(4c). Then
M is of constant sectional curvature c if and only if, for each point p ∈M,
the second fundamental form of M in M̃n(4c) at p satisfies

h(e1, e1) = λ1Je1, . . . , h(en, en) = λnJen,

h(ei, ej) = 0, 1 ≤ i �= j ≤ n,
(8.10)

for some λ1, . . . , λn with respect to some orthonormal basis e1, . . . , en of
TpM .

(3) Let L̃ : Mn(c) → M̃n(4c) be a Lagrangian isometric immersion of a real
space form Mn(c) into M̃n(4c). If there is an integer k ∈ {1, . . . , n} such
that the second fundamental form of L̃ satisfies

h(e1, e1) = λ1Je1, . . . , h(ek, ek) = λkJek, and
h(ei, ej) = 0, otherwise,

(8.11)

for some nowhere vanishing functions λ1, . . . , λk, with respect to some suit-
able orthonormal frame field e1, . . . , en, thenMn(c) admits the twisted prod-
uct decomposition T Pn

λ−2
1 ···λ−2

k

(c) whose twistor form is twisted closed.
Moreover, up to rigid motions, the Lagrangian isometric immersion L̃ is

given by the Lagrangian isometric immersion Lf1···fk
given in Statement (1).

Chen et al. also provides in [39] the explicit construction of adapted Lagrangian
isometric immersions of some natural twisted product decompositions of real space
forms. Oh [90] determined in her doctoral thesis the explicit expressions of adapted
Lagrangian isometric immersions for the remaining twisted product decompositions
of real space forms also by applying Theorem 8.1.

9. MORE ON LAGRANGIAN REAL SPACE FORMS IN COMPLEX SPACE FORMS

For Lagrangian minimal immersions in complex space forms, Chen and Ogiue
[46] proved the following.

Theorem 9.1. A Lagrangian minimal submanifold of constant sectional cur-
vature c in a complex space form M̃n(4c̃) is either totally geodesic (with c = c̃)
or c ≤ 0.

On the other hand, Ejiri [60] proved the following.

Theorem 9.2. The only Lagrangian minimal submanifolds of constant sectional
curvature c ≤ 0 in a complex space form M̃n(4c̃) are the flat ones.

Ejiri’s result extends the corresponding result of [46] for n = 2 to n ≥ 2.
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A submanifoldM of a Riemannian manifold is known as a Chen submanifold if∑
i,j〈h(ei, ej), H〉h(ei, ej) is parallel to the mean curvature vector H , where {ei}

is an orthonormal frame of the submanifoldM (for general properties and examples
of Chen submanifolds, see for instance [62, 98]).

Kotani studied in [69] Lagrangian Chen submanifolds of constant curvature in
complex space forms and obtained the following.

Theorem 9.3. If M is a Lagrangian Chen submanifold with constant sectional
curvature in a complex space form M̃n(4c̃) with c < c̃, then either M is minimal,
or locally, M = I×L̃n−1 equipped with the warped metric g = dt2 +f(t)g̃, where
I is an open interval, (L̃n−1, g̃) is the following submanifold in M̃n(4c̃):

L̃n−1 ⊂ S2n−1 ⊂ M̃n(4c̃)
π ↓ ↓ π
Ln−1 ⊂ CPn−1 ,

(9.1)

S2n−1 is a geodesic hypersphere in M̃n(4c̃), and L̃ is the horizontal lift of a
Lagrangian minimal flat torus Ln−1 in CPn−1 .

Dajczer and Tojeiro [51] studied flat Lagrangian submanifolds in CPn and
proved the following.

Theorem 9.4. A complete flat Lagrangian submanifold in CPn with constant
mean curvature is a flat torus T n with parallel second fundamental form.

Let M̃n
k (4c̃) denote a complex space form of constant holomorphic sectional

curvature 4c̃, complex dimension n and complex index k. In [70], Kriele and
Vrancken studied Lagrangian minimal isometric immersions of a Lorentzian real
space form Mn

1 (c) of constant sectional curvature c into a Lorentzian complex
space form M̃n

1 (4c̃). They obtained the following.

Theorem 9.5. Let f be a Lagrangian minimal isometric immersions of a
Lorentzian real space formMn

1 (c) of constant sectional curvature c into a Lorentzian
complex space form M̃n

1 (4c̃).
(1) If c̃ < 0 and n > 3, then c = c̃, and
(2) if c̃ > 0 and c �= c̃, then c = 0.

Kriele and Vrancken also classified Lagrangian minimal isometric immersions of
a Lorentzian real space formMn

1 (c) into a Lagrangian complex space form M̃n
1 (4c̃)

with c �= c̃ in [70]. The method used in [70] relies heavily on the assumption: c �= c̄.
Hence the method of [70] does not apply to the most fundamental case; namely,
minimal Lagrangian submanifolds of constant sectional curvature c in a Lorentzian
complex space form M̃n

1 (4c) of holomorphic sectional curvature 4c.
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The classification of Lagrangian minimal isometric immersions of a Lorentzian
real space form Mn

1 (c) into a Lagrangian complex space form M̃n
1 (4c) was estab-

lished by Chen and Vrancken in [50] using a method different from [70].

10. IDEAL LAGRANGIAN ISOMETRIC IMMERSIONS

A Lagrangian isometric immersion from a Riemannian n-manifold into a com-
plex space form M̃n(4c) is called ideal if it satisfies the equality case of (3.4) for
some k-tuple (n1, . . . , nk) ∈ S(n).

Roughly speaking, an ideal isometric immersion of a Riemannian manifold into
a space form is an isometric immersion which produces the least possible amount
of tension from the ambient space at each point of the submanifold. Recently, many
interesting results on ideal immersions have been obtained by many mathematicians
(see [25] for details).

In this section, we present the results obtained in [33] concerning ideal La-
grangian isometric immersions into complex space forms.

Theorem 10.1. Every ideal Lagrangian submanifold of a complex space form
is a minimal submanifold.

For a Lagrangian immersion f : M → M̃n(4c), the first normal space at a
point p ∈ M is defined to be the image space, Imhp, of the second fundamental
form h at p. A Lagrangian immersion is said to have full first normal bundle if
the first normal space of M equals to the normal space at each point p ∈ M , i.e.,
Imh = T⊥M .

Theorem 10.2. If f : M → Cn is a Lagrangian immersion of a Riemannian
n-manifold into the complex Euclidean n-space C

n with full first normal bundle,
then f is an ideal Lagrangian immersion if and only if locally it is the product of
some minimal Lagrangian immersions with full first normal bundle.

It is known that there exist ample examples of ideal Lagrangian submanifolds
in complex projective and complex hyperbolic spaces. On the contrast, we have the
following two non-existence results.

Theorem 10.3. There do not exist ideal Lagrangian submanifolds in a complex
projective space with full first normal bundle.

Theorem 10.4. There do not exist ideal Lagrangian submanifolds in a complex
hyperbolic space with full first normal bundle..

A submanifold M in a Riemannian manifold N is called ruled if at each point
p ∈M , M contains a geodesic γP of N through p.
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Theorem 10.5. Let M be a Lagrangian submanifold of Cn such that Imhp �=
T⊥
p M at each point p ∈Mn. If M is ideal, then it is a ruled minimal submanifold.

Theorem 10.6. Let M be a Lagrangian submanifold of a complex space form
M̃n(4c) with c �= 0. If M is ideal, then it is ruled minimal submanifold.

11. (2)-IDEAL LAGRANGIAN SUBMANIFOLDS IN COMPLEX SPACE FORMS

A Lagrangian minimal submanifold in M̃n(4c) is called (2)-ideal if it satisfies
δ(2) = (n+1)(n−2)c/2. It was shown in [38] that there exists a minimal (2)-ideal
Lagrangian immersion ψ : S3 → CP 3(4) of S3 into the complex projective 3-space
CP 3(4) with constant scalar curvature, but not constant sectional curvature. This
nonstandard Lagrangian immersion ψ : S3 → CP 3(4) is called an exotic sphere in
CP 3. Because every minimal Lagrangian immersion of a (topological) 2-sphere in
CP 2 is known to be totally geodesic, n = 3 is the smallest dimension in which a
nontrivial minimal Lagrangian immersion of Sn into CPn can occur.

This exotic Lagrangian sphere ψ : S3 → CP 3(4) can be realized as follows:
Define two complex structures on C

4 by

I(v1, v2, v3, v4) = (iv1, iv2, iv3, iv4),
J(v1, v2, v3, v4) = (−v̄4, v̄3,−v̄2, v̄1).

(11.1)

Clearly, I is the standard complex structure. The corresponding Sasakian struc-
tures on S7(1) have characteristic vector fields ξ1 = −I(x) and ξ2 = −J(x). Since
we consider two complex structures on C4, we can consider two different Hopf fi-
brations πj : S7(1) → CP 3(4). The characteristic vector field ξj on S7 is vertical
for πj , j = 1, 2.

Now we consider the Calabi curve C3 of CP 1 into CP 3(4) of constant Gauss
curvature 4/3, given by

C3(z) =
[
1,
√

3z,
√

3z2, z3
]
.(11.2)

Since C3 is holomorphic with respect to I , there exists a circle bundle π : M3 →
CP 1 over CP 1 and an isometric minimal immersion I : M3 → S7(1) such that
π1(I) = C�(π). It can be verified that I is horizontal with respect to π2, such
that the immersion J : M3 → CP 3(4), defined by J = π2(I), gives rise to the
Lagrangian immersion ψ : S3 → CP 3(4).

In [38], Chen, Dillen, Verstraelen and Vrancken characterized this exotic 3-
sphere by applying the notion of (2)-ideal as follows.

Theorem 11.1. Let f : Mn → M̃n(4c), c ∈ {−1, 0, 1} and n ≥ 3 be a
Lagrangian immersion with constant scalar curvature. Then Mn is (2)-ideal if and
only if either
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(1) Mn is a totally geodesic immersion, or
(2) n = 3, c = 1 and x is locally congruent to the immersion ψ : S3 → CP 3.

We restrict ourselves to (2)-ideal Lagrangian submanifolds in CPn(4), which
therefore are minimal. We define for every p ∈M the kernel of the second funda-
mental form by

D(p) = {X ∈ TpM | ∀Y ∈ TpM : h(X, Y ) = 0}.(11.3)

If the dimension of D(p) is constant, then it follows from [20] that either M is
totally geodesic or that the distribution D is an (n − 2)-dimensional completely
integrable distribution.

There exist many (2)-ideal Lagrangian submanifolds which satisfy the following
two conditions:
(1) The dimension of D is constant (and hence it is a completely integrable

distribution).

(2) The distribution D⊥ is also integrable.

The following result from [35] classifies completely such Lagrangian submani-
folds.

Theorem 11.2. Let f : Mn → CPn(4) be a (2)-ideal Lagrangian immersion
such that the dimension of D is constant and D⊥ is an integrable distribution.
Then either f is totally geodesic or f has no totally geodesic points and, up to
holomorphic transformations, f(M) is contained in the image under the Hopf
fibration π : S2n+1(1) → CPn(4) of the image of one of the immersions described
in the next Proposition.

Proposition 11.3. Let S2n+1(1) be the unit hypersphere of C
n+1 and consider

the orthogonal decomposition Cn+1 = C3 ⊕ J(En−2) ⊕ En−2. Let f : M2 →
S5(1) ⊂ C

3 be a minimal, isometric, C-totally real immersion and consider the
hypersphere Sn−3(1) in En−2. Then

F : (0, π/2)×cos tM
2 ×sin t S

n−3(1) → S2n+1(1) : (t, p, q) �→ cos tf(p) + sin tq

is a minimal, (2)-ideal isometric and C-totally real immersion. Moreover, if f has
no totally geodesic points, then the dimension of D is exactly n− 2. Finally, if we
extend F to a map F̃ : (−π/2, π/2)×M2 × Sn−3(1) → S2n+1(1) : (t, p, q) �→
cos tf(p) + sin tq. Then F̃ fails to be immersive at t = 0, but the image of F̃ is
an immersed minimal C-totally real submanifold. If f is not totally geodesic, then
this image can not be extended further.
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In [1], Blair, Dillen, Verstraelen and Vrancken constructed further examples
of (2)-ideal submanifolds in complex projective spaces by using Calabi curves in
complex projective spaces. The classification of (2)-ideal Lagrangian submanifolds
in CP 3 was obtained in [3].

A Riemannian n-manifoldM whose Ricci tensor has an eigenvalue of multiplic-
ity at least n−1 is called quasi-Einstein. Montealegre and Vrancken [80] determined
all minimal Lagrangian quasi-Einstein submanifolds in CP 3 with δ(2) �= 2.

Consider the complex (m + 1)-dimensional space C
m+1
1 endowed with the

pseudo Euclidean metric g0 = −dz0dz̄0 +
∑m

j=1 dzjdz̄j, where z̄k denotes the
complex conjugate of zk. On C

m+1
1 , we define F (z, w) = −z0w̄0 +

∑m
k=1 zkw̄k.

Put H2m+1
1 = {z = (z0, z1, · · · , zm) ∈ C

m+1
1 |〈z, z〉 = −1}, where 〈 , 〉 de-

notes the inner product on C
n+1
1 induced from g0. Then H2m+1

1 is a real hypersur-
face of Cm+1 whose tangent space at z ∈ H2m+1

1 is given by

TzH
2m+1
1 =

{
w ∈ C

m+1 |Re F (z, w) = 0
}
.(11.4)

It is known that H2m+1
1 together with the induced metric g is a pseudo Riemannian

manifold of constant sectional curvature −1, which is known as the anti de Sitter
space time.

We put H1
1 = {λ ∈ C | λλ̄ = 1}. Then we have an H1

1 -action on H
2m+1
1

given by z �→ λz. At each point z in H2m+1
1 , the vector iz is tangent to the

flow of the action. Since g0 is Hermitian, we have Re g0(iz, iz) = −1. Note
that the orbit is given by z̃(t) = eitz and dz̃(t)/dt = iz̃(t). Thus the orbit lies
in the negative-definite plane spanned by z and iz. The quotient space H2m+1

1 /∼,
under the identification induced from the action, is the complex hyperbolic space
CHm(−4) with constant holomorphic sectional curvature −4. The almost complex
structure J on CHm(−4) is induced from the canonical almost complex structure
J on C

m+1
1 via the totally geodesic fibration

π : H2m+1
1 → CHm(−4).(11.5)

A submanifoldM of a Kähler manifold M̃ is called a CR-submanifold if there
exists on M a differentiable holomorphic distribution F such that its orthogonal
complement F⊥ ⊂ TM is a totally real distribution.

The following result from [30] shows that the basic inequality (3.4) holds for
arbitrary n-dimensional submanifolds in complex hyperbolic n-space as well.

Theorem 11.4. LetM be an arbitrary n-dimensional submanifold of a complex
hyperbolic space CHm(4c) of constant holomorphic sectional curvature 4c < 0.
Then for any k-tuple (n1, . . . , nk) ∈ S(n) we have

δ(n1, . . . , nk) ≤ b(n1, . . . , nk)|H |2 + a(n1, . . . , nk)c,(11.6)

with the equality holding at a point p ∈M if and only if
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(a) n1, . . . , nk are even,
(b) L1, . . . , Lk at p are complex subspaces of Tp(CHm),
(c) the complementary orthogonal subspace of L1⊕· · ·⊕Lk in TpM is a totally

real subspace,
(d) with respect to a suitable orthonormal basis e1, . . . , en of TpM such that

Lj is spanned by en1+···+nj−1+1, . . . , en1+···+nj for j = 1, . . . , k, the shape
operators of M take the form of (3.5) with (3.6).
In particular, if the equality case of (11.6) holds identically, then M is a
CR-submanifold.

For Lagrangian submanifolds in complex hyperbolic space, Chen and Vrancken
[49] prove the following.

Theorem 11.5. Let F : Mn → CHn(−4) be a (2)-ideal Lagrangian immersion
without geodesic points. Assume that the orthogonal complement of the nullity
distribution is integrable. Then, every point p of an open dense subset of Mn has
a neighborhood Up such that either
( i ) F (t, u, v) = π(cosh t(ψ(u), 0, · · · , 0) + sinh t(0, 0, 0, φ(v))), where

φ : (v1, · · · , vn−3) �→ φ(v)

describes the standard totally real (n−3)-sphere Sn−3 in En−2 ⊂ Cn−2 and
ψ : (u1, u2) �→ ψ(u) describes a minimal horizontal immersion in H5

1 , or
( ii ) F (t, u, v) = π(cosh t(φ(v), 0, 0, 0))− sinh t(0, · · · , 0, ψ(u))), where

φ : (v1, · · · , vn−3) �→ φ(v)

describes the standard totally real hyperbolic space Hn−3
1 in En−2

1 ⊂ C
n−2
1

and ψ : (u1, u2) �→ ψ(u) describes a minimal horizontal immersion in S5(1),
or

(iii) F (t, u, v) = π((cosh t,− sinh t, 0, · · · , 0)+(e−t/2)z(u, v)(1,−1, 0, · · · , 0)+
(e−t/2)(0, 0, w1(u), w2(u), v1, · · · , vn−3)), where

w : D ⊂ R
2 → C

2 : (u1, u2) �→ (w1(u1, u2), w2(u1, u2))

is a minimal Lagrangian immersion and z is a complex-valued function de-
termined by the condition that

2(z + z̄) = w1w̄1 + w2w̄2 +
n−3∑
i=1

v2
i ,

and by the condition that its imaginary part depends only on u and satisfies
the following system of differential equations :
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(z − z̄)u1 =
1
2
{w1(w̄1)u1 +w2(w̄2)u1 − w̄1(w1)u1 − w̄2(w2)u1},

(z − z̄)u2 =
1
2
{w1(w̄1)u2 + w2(w̄2)u2 − w̄1(w1)u2 − w̄2(w2)u2},

where π : H2m+1
1 → CHm(−4) is the projection defined in section 2.

Theorem 11.6. Let f : M3 → CH3(−4) be a Lagrangian immersion satisfying
the basic equality and p ∈ M3. If the immersion has no totally geodesic points
and the distributionD⊥ is nowhere integrable, then there exist coordinates (u, v, t)
defined in a neighborhood D× I of p and functions h : D → R : (u, v) �→ h(u, v)
and k : D → R : (u, v) �→ k(u, v) satisfying

Δh = e−2k/3 sin(2h),(11.7)

and

Δk = −3e−2k/3(cos(2h) + 2e2k),(11.8)

where Δ = ∂2/∂u2 + ∂2/∂v2. Moreover, the induced metric can be expressed by〈
∂

∂t
,
∂

∂t

〉
= 1,

〈
∂

∂u
,
∂

∂v

〉
= −huhv〈

∂

∂t
,
∂

∂u

〉
= hv ,

〈
∂

∂u
,
∂

∂u

〉
= e−2k/3(cos2 h + sinh2 t) + h2

v ,〈
∂

∂t
,
∂

∂v

〉
= −hu,

〈
∂

∂v
,
∂

∂v

〉
= e−2k/3(cos2 h+ sinh2 t) + h2

u,

(11.9)

and the tensor T = −Jh induced from the second fundamental form satisfies

T

(
∂

∂u
,
∂

∂t

)
= T

(
∂

∂v
,
∂

∂t

)
= T

(
∂

∂t
,
∂

∂t

)
= 0,

T

(
∂

∂u
,
∂

∂u

)
= e2k/3

(
1 − 2 cos2 h cosh2 t

sinh2 t+ cos2 h

)(
∂

∂u
− hv

∂

∂t

)

−1
2
e2k/3

sin 2h sinh2t
sinh2 t+ cos2 h

(
∂

∂v
+ hu

∂

∂t

)
,

T

(
∂

∂v
,
∂

∂v

)
= −e2k/3

(
1 − 2 cos2 h cosh2 t

sinh2 t+ cos2 h

)(
∂

∂u
− hv

∂

∂t

)
,

+
1
2
e2k/3

sin 2h sinh2t
sinh2 t+ cos2 h

(
∂

∂v
+ hu

∂

∂t

)
,

T

(
∂

∂u
,
∂

∂v

)
= −1

2
e2k/3

sin 2h sinh2t
sinh2 t+ cos2 h

(
∂

∂u
− hv

∂

∂t

)
,

−e2k/3
(

1 − 2 cos2 h cosh2 t

sinh2 t+ cos2 h

)(
∂

∂v
+ hu

∂

∂t

)
.

(11.10)
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Conversely, let h, k be any solutions of (11.7) and (11.8) on an open set D of
R

2. We define on M = D × R a metric by (11.9) and a tensor T by (11.10). Let

M0 =
{
(x, t) ∈M3 | h(x) �= 1

2
(2k + 1)π ∈ Z or t �= 0

}

and let M1 be a simply connected component of M0. Then, up to rigid motions,
there exists a unique (2)-ideal Lagrangian immersion F : M1 → CH3(−4) with
nonintegrable distribution D and the second fundamental form h = JT .

Theorems 11.5 and 11.6 together completely determine (2)-ideal Lagrangian
submanifolds in complex hyperbolic 3-space.

12. LAGRANGIAN H-UMBILICAL SUBMANIFOLDS

It was proved in [47] that there do not exist totally umbilical Lagrangian sub-
manifolds in complex space forms except totally geodesic ones. Thus, it is natural to
look for the “simplest” Lagrangian submanifolds next to totally geodesic ones. As a
result, the following notion of LagrangianH-umbilical submanifolds was introduced
in [23].

A non-totally geodesic Lagrangian submanifold M of a Kähler manifold is
called a Lagrangian H-umbilical submanifold if its second fundamental form takes
the following simple form:

h(e1, e1) = λJe1, h(e2, e2) = · · · = h(en, en) = μJe1,

h(e1, ej) = μJej , h(ej , ek) = 0, j �= k, j, k = 2, . . . , n
(12.1)

for some suitable functions λ and μ with respect to some suitable orthonormal local
frame field.

Clearly, a non-minimal Lagrangian H-umbilical submanifold satisfies the fol-
lowing two conditions:

(a) JH is an eigenvector of the shape operator AH and
(b) the restriction of AH to (JH)⊥ is proportional to the identity map.
In fact, Lagrangian H-umbilical submanifolds are the simplest Lagrangian sub-

manifolds satisfying both conditions (a) and (b). In this way, Lagrangian H-
umbilical submanifolds are regarded as the “simplest” Lagrangian submanifolds
next to the totally geodesic ones.

There exist ample examples of Lagrangian H-umbilical submanifolds in a com-
plex space form. The simplest examples are obtained by using the notion of complex
extensors introduced in [24].

Given an immersion G : M → Em of a manifold into Euclidean m-space Em

and a unit speed curve F : I → C in the complex plane, we may extend the
immersion G : M → E

m to an immersion of I × M into C
m by utilizing the
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tensor product of F and G. We call this extension the complex extensor of G via
F . The Whitney sphere is a nice example of complex extensor of the ordinary unit
hypersphere.

The following result given in [24] provides us ample examples of H-umbilical
Lagrangian submanifolds.

Theorem 12.1. Let ι : Sn−1 → En be the inclusion of the unit hypersphere of
E
n (centered at the origin). Then every complex extensor of ι via a unit speed curve

F in C is a Lagrangian H-umbilical submanifold of Cn, unless F (s) = (s + a)c
for some real number a and some unit complex number c.

For a real number b > 0, let F : R → C denote the unit speed curve given by

F (s) =
e2bsi + 1

2bi
.(12.2)

With respect to the induced metric, the complex extensor φ = F ⊗ ι of the unit
hypersphere of En via this F is a Lagrangian isometric immersion of an open portion
of an n-sphere Sn(b2) of sectional curvature b2 into C

n. This isometric Lagrangian
immersion of a punctured Sn(b2) is called a Lagrangian pseudo-sphere.

The following theorem from [24] determines H-umbilical Lagrangian subman-
ifolds in complex Euclidean space.

Theorem 12.2. Let n ≥ 3 and L : M → C
n be a Lagrangian H-umbilical

isometric immersion. Then we have:

(i) If M is of constant sectional curvature, then either M is flat or, up to rigid
motions of C

n, L is a Lagrangian pseudo-sphere.

(ii) If M contains no open subset of constant sectional curvature, then, up to
rigid motions of C

n, L is a complex extensor of the unit hypersphere of E
n.

A unit speed curve z = z(s) in S2n−1 ⊂ C
n is called a Legendre curve if its

tangent vector z′(s) is perpendicular to Jξ, where J is the complex structure and ξ
the unit normal vector field of S2n−1 in C

n. A Legendre curve z : I → S2n−1 ⊂ C
n

is called special Legendre if it satisfies

z′′(s) = iλ(s)z′(s)− z(s) −
n∑
j=3

aj(s)Pj(s),(12.3)

for some parallel normal vector fields P3, . . . , Pn along the curve.
Clearly, every Legendre curve in S3 is a special Legendre curve. The following

result from [28] shows that special Legendre curves in S2n−1 do exist abundantly
for each n ≥ 3.
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Theorem 12.3. Let n be an integer ≥ 2. Then, for any given n− 1 functions
λ, a3, . . . , an defined on an open interval I with λ > 0, there exists a special
Legendre curve z : I → S2n−1 ⊂ Cn which satisfies (12.3) for some parallel
orthonormal normal vector fields P3, . . . , Pn along the curve z.

Example 12.1. Let λ, a3, . . . , an be n − 1 real numbers with λ > 0. Put

γ = 1 +
n∑
j=3

a2
j , μ =

(
λ2 + 4γ

)1/2
,(12.4)

z(s) =
μ− λ

2μγ

(
2γ

μ− λ
, 1, a3, . . . , an

)
e(λ+μ)is/2

+
λ+ μ

2μγ

(
− 2γ
λ+ μ

, 1, a3, . . . , an

)
e(λ−μ)is/2

−1
γ

(0, 1− γ, a3, . . . , an),

(12.5)

c3 = (0, a3,−1, 0, . . . , 0), · · · , cn = (0, an, 0, . . . , 0,−1).(12.6)

Then z = z(s) is a unit speed special Legendre curve in S2n−1 ⊂ C
n satisfying

z′′(s) = iλz′(s) − z(s) −
n∑
j=3

ajPj(s),(12.7)

where

Pj(s) = ajz(s) − cj, j = 3, . . . , n,(12.8)

are the associated orthonormal parallel normal vector fields.
By a Lagrangian cylinder in Cn we mean a Lagrangian submanifold which

is a cylinder over a curve whose rulings are (n − 1)-planes parallel to a fixed
(n− 1)-plane.

The following result from [28] provides the explicit description of flat La-
grangian H-umbilical submanifolds in the complex Euclidean space.

Theorem 12.4. Let n ≥ 2 and λ, b, a3, . . . , an be n functions defined on an
open interval I with λ nowhere zero and let z : I → S2n−1 ⊂ C

n be a special
Legendre curve satisfying (12.3). Put

f(t, u2, . . . , un) = b(t) + u2 +
n∑
j=3

aj(t)uj.(12.9)
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Denote by M̂n(0) the twisted product manifold f I × En−1 with twisted product
metric given by

g = f2dt2 + du2
2 + · · ·+ du2

n.(12.10)

Then M̂n(0) is a flat Riemannian n-manifold and

L(t, u2, . . . , un) = u2z(t) +
n∑
j=3

ujPj(t) +
∫ t

b(t)z′(t)dt(12.11)

defines a Lagrangian H-umbilical isometric immersion L : M̂n(0) → Cn.
Conversely, up to rigid motions ofCn, locally every flat LagrangianH-umbilical

submanifold in Cn without totally geodesic points is either a Lagrangian cylinder
over a curve or a Lagrangian submanifold obtained in the way described above.

Lagrangian H-umbilical submanifolds in nonflat complex space forms have
been classified in [23]. In particular, it was proved that “except some exceptional
cases”, Lagrangian H-umbilical submanifolds of CPn and of CHn are obtained
from Legendre curves in S3 or in H3

1 via warped products.

13. LAGRANGIAN CATENOID AND ITS CHARACTERIZATIONS

The Lagrangian catenoid is defined by

M0 =
{
(x, y) ∈ Cn = En × En : |x|y = |y|x,

Im (|x|+ i|y|)n = 1, |y| < |x| tan
π

n

}
.

(13.1)

Besides being a minimal Lagrangian submanifold of C
n, M0 is invariant under

the diagonal action of SO(n) on Cn = En × En.
Castro and Urbano obtained in [15] the following characterizations of La-

grangian catenoid.

Theorem 13.1. Let f : M → Cn be a minimal nonflat Lagrangian immersion
of an n-manifoldM . Then M is foliated by pieces of round (n− 1)-spheres of C

n

if and only if, up to dilations, f is congruent to an open subset of the Lagrangian
catenoid.

Theorem 13.2. Let f : M → C
n be a minimal nonflat complex immersion of a

complex n-dimensional Kähler manifoldM . Then M is foliated by pieces of round
(2n − 1)-spheres of Cm if and only if n = 1 and, up to dilations, f is congruent
to an open subset of the Lagrangian catenoid.
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Castro [10] proved the following characterization of Lagrangian catenoid.

Theorem 13.3. The Lagrangian catenoid is the only nonflat Lagrangian surface
of revolution in C

2.

14. WHITNEY SPHERE AND LAGRANGIAN SUBMANIFOLDS WITH
CONFORMAL MASLOV FORM

A Lagrangian submanifold of a Kähler manifold is said to have conformal
Maslov form if JH is a conformal vector field [96, 97]. The Whitney sphere is a
nice example of Lagrangian submanifold with conformal Maslov form.

Ros and Urbano [97] studied Lagrangian submanifolds with conformal Maslov
form and obtained the following results.

Theorem 14.1. The Whitney sphere is the only compact Lagrangian submani-
fold in Cn with conformal Maslov form and null first Betti number β1.

Theorem 14.2. The Whitney sphere is the only compact Lagrangian submani-
fold in Cn with conformal Maslov form such that Ric(JH) ≥ 0.

Theorem 14.3. Let f be a Lagrangian immersion of a compact n-manifoldM
into C

n with conformal Maslov form. If H has zeros on M, then f is congruent
to the Whitney sphere.

Ros and Urbano [97] also determined all the compact Lagrangian submanifolds
of Cn with conformal Maslov form and with first Betti number one.

15. INDEX AND STABILITY OF LAGRANGIAN SUBMANIFOLDS

The stability of minimal Lagrangian submanifolds of a Kähler manifold was
first investigated by Chen, Leung and Nagano in 1980. In particular, they proved
that the second variational formula of a compact Lagrangian submanifold M in a
Kähler manifold M̃ is given by

V ′′(ξ) =
∫
M

{
1
2
‖dX#‖2 + (δX#)2 − R̃ic(X,X)

}
dV,(15.1)

where JX = ξ, X# is the dual 1-form of X on M , δ is the codifferential operator,
and R̃ic is the Ricci tensor of M̃ .

By applying (15.1), Chen, Leung and Nagano studied in 1980 the index and
stability of Lagrangian minimal submanifolds in Kähler manifolds. They obtained
the following (see [18, 34]).

Theorem 15.1. Let f : M → M̃ be a compact Lagrangian minimal submani-
fold of a Kaehler manifold M̃ .
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(1) If M̃ has positive Ricci curvature, then the index of f satisfies i(f) ≥ β1(M),
where β1(M) denotes the first Betti number of M . In particular, if the
first cohomology group of M is nontrivial, i.e., H1(M ; R) �= 0, then M is
unstable;

(2) If M̃ has nonpositive Ricci curvature, then M is stable.

Oh [89] introduced the notion of Hamiltonian deformations in Kähler manifolds.
He considered normal variations V along a minimal Lagrangian submanifold M
such that the 1-form αV = 〈JV, · 〉 is exact and called such variations Hamiltonian
variations.

A minimal Lagrangian submanifold is called Hamiltonian stable if the second
variation is nonnegative in the class of Hamiltonian variations.

Oh established in [89] the following Hamiltonian stability criterion for La-
grangian submanifolds in Einstein-Kähler manifolds.

Theorem 15.2. Let M̃ be an Einstein-Kähler manifold with Ric = cg, where
c is a constant. Then a minimal Lagrangian submanifold M of M̃ is locally
Hamiltonian stable if and only if λ1(M) ≥ c, where λ1(M) is the first nonzero
eigenvalue of the Laplacian acting on C∞(M).

The Lagrangian totally geodesic RPn(1) in CPn(4) is unstable in the usual
sense. In contrast, Oh’s result implies the following.

Theorem 15.3. Let M̃ be an Einstein-Käehler manifold of complex dimension
n with Ricci curvature (n+1)c. Then a minimal Lagrangian submanifoldM in M̃
is Hamiltonian stable if and only if λ1 ≥ (n+ 1)c/2, where λ1 the first eigenvalue
of Laplacian acting on C∞(M).

For example, Theorem 15.3 implies that the Lagrangian totally geodesicRPn(1)
is Hamiltonian stable in CPn(4).

Castro and Urbano [14] constructed a family of unstable Hamiltonian minimal
Lagrangian tori in C

2 and characterized them as the only Hamiltonian-minimal
Lagrangian tori in C2 admitting a one-parameter group of isometries. Chang [16]
proved that a compact Hamiltonian stable minimal surface in CP 2 with m(λ1) ≤ 6
is either flat or totally geodesic, where m(λ1) denotes the multiplicity of λ1.

Takeuchi [104] proved the following result by applying the Chen-Leung-Nagano
algorithm for stability of totally geodesic submanifolds in symmetric spaces (cf.
[104] and [34, p.296]).

Theorem 15.4. Let M̃ be a Hermitian symmetric space of compact type and
M a compact totally geodesic Lagrangian submanifold of M̃ . Then M is a stable
submanifold in the usual sense if and only if M is simply connected.
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An immersed Lagrangian submanifold M in a Kähler manifold M̃ is called
Lagrangian stationary if the volume is stationary under Lagrangian variations. It is
known that a closed immersed Lagrangian submanifold in a Kähler-Einstein mani-
fold is stationary if and only if it is Lagrangian stationary. The question if any cycle
realized by Lagrangian submanifolds in a Kähler-Einstein manifold is homologous
to an integral cycle that is minimal and Lagrangian had been investigated in [102].

16. LAGRANGIAN IMMERSIONS AND MASLOV CLASS

Let Ω denote the canonical symplectic form on C
n defined by

Ω(X, Y ) = 〈JX, Y 〉.(16.1)

Consider the Grassmannian L(Cn) of all Lagrangian vector subspaces of Cn. L(Cn)
can be identified with the symmetric space U(n)/O(n) in a natural way.

U(n)/O(n) is a bundle over the circle S1 in C1 with the projection

det2 : U(n)/O(n) → S1,(16.2)

where det2 is the square of the determinant.
For a Lagrangian submanifold M in Cn, the Gauss map takes the values in

L(Cn) which yields the following sequence:

M
G−→ L(Cn) ∼= U(n)/O(n) det2−→ S1.(16.3)

If ds denotes the volume form of S1, then mM = (det2 ◦G)∗(ds) is a closed
1-form on M . The cohomology class [mM ] ∈ H1(M ; Z) is called the Maslov class
of the Lagrangian submanifold M .

Morvan [83] proved that the Maslov form mM and the mean curvature vector
of a Lagrangian submanifoldM in C

n are related by

mM(X) =
1
π
〈J �H,X〉, X ∈ TM.(16.4)

Hence, if a Lagrangian submanifold M in C
n is minimal, then its Maslov class is

trivial.
Let ξ be a normal vector field of a Lagrangian submanifold M of a Kähler

manifold M̃ . Denote by αξ the 1-form on M defined by

αξ(X) = Ω(ξ, X) = 〈Jξ, X〉, X ∈ TM,(16.5)

where Ω is the Kähler form of M̃ .
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Chen and Morvan [43] introduced the notion of harmonic deformations in Kähler
manifolds: A normal vector field ξ of a Lagrangian submanifold M is called har-
monic if the 1-form αξ associated with ξ is a harmonic 1-form. A normal variation
of a Lagrangian submanifold in a Kähler manifold is called harmonic if its varia-
tional vector field is harmonic.

A Lagrangian submanifoldM of a Kähler manifold is called harmonic minimal
if it is a critical point of the volume functional in the class of harmonic variations.

Chen and Morvan [43] proved the following.

Theorem 16.1. The Maslov class of a Lagrangian submanifold of an Einstein-
Kähler manifold vanishes if and only if it is harmonic minimal.

This theorem provides a solution to a problem proposed by Le Khong Van and
Fomenko [71], because it establishes a relationship between calculus of variations
and Maslov class.

Theorem 16.1 implies the following [43].

Theorem 16.2. A closed curve γ in a Kähler manifold M̃ with dimR M̃ = 2 is
harmonic minimal if and only if it has zero total curvature, that is,

∫
γ κ(s)ds = 0.

The following theorems follow from Theorems 16.1, 16.2, and Gauss-Bonnet’s
formula.

Theorem 16.3. If M̃ is a Kähler surface with nonpositive Gauss curvature,
then every harmonic minimal closed curve in M̃ has self-intersection points.

Theorem 16.4. If M̃ is a Kähler surface diffeomorphic to a 2-sphere, then an
embedded closed curve C in M̃ is harmonic minimal if and only if C divides M̃
into two regions with equal total Gauss curvature.

17. LAGRANGIAN SUBMANIFOLDS AND FINITE TYPE THEORY

Let (M, g) be a compact Riemannian n-manifold. Then the eigenvalues of the
Laplacian Δ form a discrete infinite sequence: 0 = λ0 < λ1 < λ2 < . . .↗ ∞. Let

Vk = {f ∈ C∞(M) : Δf = λkf}

be the eigenspace of Δ associated with eigenvalue λk. Then each Vk is finite-
dimensional. Define an inner product ( , ) on C∞(M) by (f, h) =

∫
M fh dV . Then∑∞

k=0 Vk is dense in C
∞(M) (in L2-sense). If we denote by ⊕̂Vk the completion

of
∑
Vk, we have C∞(M) = ⊕̂kVk.
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For each function f ∈ C∞(M), let ft denote the projection of f onto the
subspace Vt. We have the spectral resolution (or decomposition): f =

∑∞
t=0 ft (in

L2-sense).
Because V0 is 1-dimensional, there is a positive integer p ≥ 1 such that fp �= 0

and f − f0 =
∑

t≥p ft, where f0 ∈ V0 is a constant. If there are infinite many ft’s
which are nonzero, put q = +∞; otherwise, there is an integer q ≥ p such that
fq �= 0 and f − f0 =

∑q
t=p ft.

If x : M → E
m is an isometric immersion of a compact Riemannian n-manifold

M into Em, for each coordinate function xA we have xA = (xA)0 +
∑qA

t=pA
(xA)t.

We put

p = inf
A
{pA} and q = sup

A
{qA},(17.1)

where A ranges over all A such xA − (xA)0 �= 0. Both p and q are well-defined
geometric invariants such that p is a positive integer and q is either+∞ or an integer
≥ p. Consequently, we have the spectral decomposition of x in vector form:

x = x0 +
q∑
t=p

xt,(17.2)

which is called the spectral resolution (or decomposition) of the immersion x. Put
T (x) = {t ∈ Z : xt �= constant map}. The immersion x or the submanifold M is
said to be of k-type if T (x) contains exactly k elements (cf. [19] for details).

For an n-dimensional submanifold M of Em, the Gauss map of M is defined
by

ν : M → G(n,m− n)(17.3)

which maps a point u ∈M into the n-dimensional linear subspace of Em obtained
by parallel displacement of the tangent space TuM of M at u. Here G(n,m− n)
denotes the Grassmann manifold consisting of linear n-subspaces of Em. One may
define the type number for Gauss map exactly in the same way as for immersions.

The following result of Chen, Morvan and Nore [44] provides a direct relation-
ship between type number and topology for Lagrangian submanifolds of complex
Euclidean space.

Theorem 17.1. Let M be a compact orientable Lagrangian submanifold of
C
n. If the type number of the Gauss map of M is ≤ n/2, then M has zero Euler
number and zero self-intersection number.

Let ψ1 : CPn(4) → Em denote the first standard embedding of CPn(4) into
Euclidean space.
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The following result provides a simple relationship between type number and
Lagrangian submanifolds of CPn .

Theorem 17.2. Let f : M → CPn(4) be a compact Lagrangian submanifold of
CPn(4). IfM has parallel mean curvature vector in CPn(4), then the composition
ψ1 ◦ f : M → CPn(4) → E

m is of 1-type.

Theorem 17.2 was first proved by Ros in [95] when f is a minimal Lagrangian
immersion. It was then extended to Lagrangian immersions with parallel mean
curvature vector by Dimitric [58].

18. LAGRANGIAN SUBMANIFOLDS OF THE NEARLY KÄHLER SIX-SPHERE

Calabi [7] proved that every oriented submanifoldM6 of the hyperplane Im O
of the imaginary octonions carries a U(3)-structure (that is, an almost Hermitian
structure). For instance, let S6 ⊂ ImO be the sphere of unit imaginary vectors;
then the right multiplication by u ∈ S6 induces a linear transformation Ju : O → O
which is orthogonal and satisfies (Ju)2 = −I . The operator Ju preserves the 2-
plane spanned by 1 and u and therefore preserves its orthogonal 6-plane which may
be identified with TuS6. Thus Ju induces an almost complex structure on TuS6

which is compatible with the inner product induced by the inner product of O and
S6 has an almost complex structure.

The almost complex structure J on S6 is a nearly Kähler structure in the sense
that the (2,1)-tensor field G on S6, defined by G(X, Y ) = (∇̃XJ)(Y ), is skew-
symmetric, where ∇̃ denotes the Riemannian connection on S6.

The group of automorphisms of this nearly Kähler structure is the exceptional
simple Lie group G2 which acts transitively on S6 as a group of isometries.

A 3-dimensional submanifold M of the nearly Kähler S6 is called Lagrangian
if the almost complex structure J on the nearly Kähler 6-sphere carries each tangent
space TxM, x ∈M, onto the corresponding normal space T⊥

x M .
The following result of Ejiri [59] is fundamental for the study of Lagrangian

submanifold in the nearly Kähler six-sphere.

Theorem 18.1. Lagrangian submanifolds in the nearly Kähler S6 are minimal
and orientable.

Ejiri [59] also proved the following.

Theorem 18.2. If a Lagrangian submanifoldM in the nearly Kähler S6 has
constant sectional curvature, then M is either totally geodesic or has constant
curvature 1/16.

The first nonhomogeneous examples of Lagrangian submanifolds in the nearly
Kähler 6-sphere were described in [61].
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Dillen, Opozda, Verstraelen and Vrancken [55] proved the following.

Theorem 18.2. If M is a compact Lagrangian submanifold of S6 with K >

1/16, then M is a totally geodesic submanifold.
Mashimo [77] classified the G2-equivariant Lagrangian submanifolds of the

nearly Kähler six-sphere. It turns out that there are five models and every equivariant
Lagrangian submanifold in the nearly Kähler six-sphere is G2-congruent to one of
the five models.

These five models can be distinguished by the following curvature properties:
(1) M3 is totally geodesic (δ(2) = 2),
(2) M3 has constant curvature 1/16 (δ(2) = 1/8),
(3) the curvature of M3 satisfies 1/16 ≤ K ≤ 21/16 (δ(2) = 11/8),
(4) the curvature of M3 satisfies −7/3 ≤ K ≤ 1 (δ(2) = 2),
(5) the curvature of M3 satisfies −1 ≤ K ≤ 1 (δ(2) = 2),

where δ(2) is the invariant introduced by Chen (cf. Section 3).
Dillen, Verstraelen and Vrancken [56] characterized models (1), (2) and (3) as

the only compact Lagrangian submanifolds in S6 whose sectional curvatures satisfy
K ≥ 1/16. They also obtained an explicit expression for the Lagrangian subman-
ifold of constant curvature 1/16 in terms of harmonic homogeneous polynomials
of degree 6. Using these formulas, it follows that the immersion has degree 24.
Further, they also obtained an explicit expression for model (3).

It follows from Theorems 3.1 and 18.1 that the invariant δ(2) always satisfies
δ(2) ≤ 2 for every Lagrangian submanifold of the nearly Kähler S6. Notice that
the models (1), (4) and (5) satisfy the equality δ(2) = 2 identically.

Chen, Dillen, Verstraelen and Vrancken [36] are able to characterize models (1),
(4) and (5) by applying the invariant δ(2) as follows.

Theorem 18.3. Models (1), (4) and (5) of Mashimo’s list are the only La-
grangian submanifolds of the nearly Kähler S6 with constant scalar curvature that
satisfy the equality δ(2) = 2.

Many further examples of Lagrangian submanifolds in the nearly Kähler S6

satisfying the equality δ(2) = 2 have been constructed in [36, 37].
Deszcz, Dillen, Verstraelen and Vrancken [54] studied quasi-Einstein space and

proved the following.

Theorem 18.4. Lagrangian submanifolds of the nearly Kähler 6-sphere satis-
fying δ(2) = 2 are quasi-Einstein.

Theorem 18.5. Let f : M → S6 be a Lagrangian immersion of a 3-dimensional
quasi-Einstein manifold. Then either δ(2) = 2 or there exists an open dense subset
V of M such that each point p ∈ V has a neighborhoodW such that either
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(1) f(W ) = ψγ(UN ), where N is a superminimal linearly full almost complex
curve in S6, UN is the unit tangent bundle of N, and ψγ : UN → S6 with
cos2 γ = 5/9 is defined by

ψγ(v) = cos γφ+ sinγv × α(v, v)
‖α(v, v)‖,

α being the second fundamental form of the surface φ : N → S6, or
(2) f(W ) is an open portion of the quasi-Einstein submanifold ψ̃(S3) ⊂ S6

defined in [56].

The complete classification of Lagrangian submanifolds in the nearly Kähler
six-sphere satisfying the equality δ(2) = 2 was established by Dillen and Vrancken
[57]. More precisely, they proved the following.

Theorem 18.6.
(1) Let φ : N1 → CP 2(4) be a holomorphic curve in CP 2(4), PN1 the circle

bundle over N1 induced by the Hopf fibration π : S5(1) → CP 2(4), and ψ
the isometric immersion such that the following diagram commutes:

PN1
ψ−→ S5

↓ ↓π

N1
φ−→ CP 2(4)

Then, there exists a totally geodesic embedding i of S5 into the nearly Kähler
6-sphere such that the immersion i ◦ ψ : PN1 → S6 is a 3-dimensional
Lagrangian immersion in S6 satisfying equality δ(2) = 2.

(2) Let φ̄ : N2 → S6 be an almost complex curve (with second fundamental form
h) without totally geodesic points. Denote by UN2 the unit tangent bundle
over N2 and define a map

ψ̄ : UN2 → S6 : v �→ φ̄�(v)×
h(v, v)

‖h(v, v)‖.(18.1)

Then ψ̄ is a (possibly branched) Lagrangian immersion into S6 satisfying
equality δ(2) = 2. Moreover, the immersion is linearly full in S6.

(3) Let φ̄ : N2 → S6 be a (branched) almost complex immersion. Then, SN2 is a
3-dimensional (possibly branched) Lagrangian submanifold of S6 satisfying
equality δ(2) = 2.
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(4) Let f : M → S6 be a Lagrangian immersion which is not linearly full in S6.
Then M automatically satisfies equality δ(2) = 2 and there exists a totally
geodesic S5, and a holomorphic immersion φ : N1 → CP 2(4) such that f
is congruent to ψ, which is obtained from φ as in (1).

(5) Let f : M → S6 be a linearly full Lagrangian immersion of a 3-dimensional
manifold satisfying equality δ(2) = 2. Let p be a non totally geodesic point
of M . Then there exists a (possibly branched) almost complex curve φ̄ :
N2 → S6 such that f is locally around p congruent to ψ̄, which is obtained
from φ̄ as in (3).

Let f : S → S6 be an almost complex curve without totally geodesic points.
Define

F : T1S → S6(1) : v �→ h(v, v)
‖h(v, v)‖,(18.2)

where T1S denotes the unit tangent bundle of S.

Vrancken [109] studied locally symmetric Lagrangian submanifolds in S6 and
obtained the following.

Theorem 18.7. A locally symmetric Lagrangian submanifold of the nearly
Kähler S6 has constant curvature 1 or 1/16.

Vrancken [110] also investigated Lagrangian isometric immersions which admit
a unit length Killing vector field and showed the following.

Theorem 18.8.
(1) F given by (18.2) defines a Lagrangian immersion if and only if f is super-

minimal, and

(2) If ψ : M → S6(1) is a Lagrangian immersion which admits a unit length
Killing vector field whose integral curves are great circles. Then there exists
an open dense subset U ofM such that each point p of U has a neighborhood
V such that ψ : V → S6 satisfies δ(2) = 2, or ψ : V → S6 is obtained as
in statement (1).

Li [73] studied Ricci pinching problem for Lagrangian submanifolds in nearly
Kähler S6 and proved the following.

Theorem 18.9. If the Ricci tensor of a compact Lagrangian submanifold in the
nearly Kähler S6 satisfies Ric≥ (53/64) g, then either Ric = 2g or the submanifold
is totally geodesic.
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Let M be an n-dimensional submanifold of a Riemannian m-manifold. The
normal scalar curvature ρ⊥ is defined by

ρ⊥ =
2

n(n − 1)

√√√√ n∑
i<j=1

m−n∑
r<s=1

〈R⊥(ei, ej)ξr, ξs〉2,(18.3)

where {e1, · · · , en} and {ξ1, · · · , ξm−n} are orthonormal bases of the tangent and
the normal spaces at the point p, respectively, and R⊥ is curvature tensor of the
normal bundle.

de Smet, Dillen, Verstraelen and Vrancken [52] obtained the following.

Theorem 18.10. Let f : M → S6(1) be a Lagrangian immersion. Then we
have :
(1) The normal scalar curvature ρ⊥ and the normalized scalar curvature ρ of M

satisfy ρ+ ρ⊥ ≤ 1.
(2) f is (2)-ideal if and only if ρ+ ρ⊥ = 1 holds identically.

Deshmukh [53] proved that the index of the Jacobi operator on a compact
Lagrangian submanifoldM in the nearly Kähler S6 is ≥ 3+β1. Using the theory of
calibrations, Palmer [93] gave estimates for the nullity and Morse index of compact
Lagrangian submanifolds in the nearly Kähler six-sphere.
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