
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 3, No. 3, pp. 357-366, September 1999

CO-SEMISIMPLE MODULES AND
GENERALIZED INJECTIVITY

Liu Zhongkui and Javed Ahsan

Abstract. Let F be a left Gabriel topology on a ring R and X be
a special class of left R-modules (for example, the class of all quasi-
continuous left R-modules in σ[M ], etc.). Suppose that all left R-modules
in X are F-injective. Then, it is proved in this paper that a left R-module
M is F-co-semisimple (that is, every F-cocritical left R-module C in
σ[M ] is dense in its M -injective hull) if and only if every F-torsionfree
F-finitely cogenerated left R-module N in σ[M ] is dense in its some
essential extensions which are in X . As a corollary we show that a left
R-module M is co-semisimple if and only if every finitely cogenerated left
R-module in σ[M ] is continuous (or quasi-continuous, or direct-injective,
etc.)

1. Introduction

Let R be a ring with identity and M a left R-module. A left R-module
U is called M -injective if for every submodule N of M and homomorphism
φ : N −→ U , φ can be lifted to a homomorphism ψ : M −→ U . A left
R-module M is called a co-semisimple module by Fuller [2] (and is called a
V-module by Ramamurthi [11] and Tominaga [12]) provided every submodule
of M is an intersection of maximal submodules. Fuller [2, Proposition 3.1]
and Hirano [4, Proposition 3.1] or Dung, Huynh, Smith and Wisbauer [1]
proved that M is co-semisimple if and only if every simple left R-module is
M -injective. Wisbauer [14] proved that M is co-semisimple if and only if every
finitely cogenerated left R-module in σ[M ] is M -injective. In this paper, we
characterize co-semisimple left R-modules via generalized injectivity of some
modules.
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Let F be a left Gabriel topology on R and M a left R-module. We call M a
F-co-semisimple module if every F-cocritical left R-module C in σ[M ] is dense
in its M -injective hull I(C). Let X be a special class of left R-modules (for
example, the class of all quasi-continuous left R-modules in σ[M ], or, the class
of all quasi-injective left R-modules in σ[M ], etc.). We show that if the left
Gabriel topology F is such that all left R-modules in X are F-injective, then
M is F-co-semisimple if and only if every F-torsionfree F-finitely cogenerated
left R-module N in σ[M ] is dense in its some essential extensions which are
in X .

As a corollary we show that a left R-module M is a co-semisimple module if
and only if every finitely cogenerated leftR-module in σ[M ] is continuous if and
only if every finitely cogenerated left R-module in σ[M ] is quasi-continuous if
and only if every finitely cogenerated left R-module in σ[M ] is direct-injective.

Page and Yousif in [10] proved that a finitely generated left R-module M
is a noetherian co-semisimple module if and only if every semisimple left R-
module is M -injective. In this paper we also show that a left R-module M
is a locally noetherian co-semisimple module if and only if every semisimple
left R-module ( in σ[M ] ) is M -injective if and only if every semisimple left
R-module ( in σ[M ] ) is the direct sum of a finitely cogenerated module and
an M -injective module if and only if every essential extension in σ[M ] of every
semisimple left R-module in σ[M ] is an X -module, where X is a specified class
of left R-modules.

2. Preliminaries

Let M be a left R-module. We say that a left R-module N is subgenerated
by M , or that M is a subgenerator for N , if N is isomorphic to a submodule
of an M -generated module. Following [14], we denote by σ[M ] the full sub-
category of R−Mod whose objects are all R-modules subgenerated by M . By
[14, 17.9], every module N in σ[M ] has an injective hull I(N) in σ[M ], which
is also called an M -injective hull of N . It is known that the M -injective hulls
of a left R-module in σ[M ] are unique up to isomorphism. In the following,
we always denote by I(N) the M -injective hull of N for any left R-module
N ∈ σ[M ].

Let X be a class of left R-modules such that if M ∈ X then any left
R-module isomorphic to M belongs to X . Any member of X is called an
X -module.

Definition 2.1. Let M be a left R-module and X a class of left R-modules
in σ[M ]. We call X an I-class in the category σ[M ] if it contains all M -injective
left R-modules in σ[M ] and for any N ∈ σ[M ], if there exists an M -injective
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left R-module L in σ[M ] such that N ≤ L and N ⊕ L is in X , then N is
L-injective.

If M = R, then any I-class in the category σ[M ] is called an I-class of left
R-modules.

Following [19], we call X an injectivity class in the category σ[M ] if it is
closed under direct summands, contains all quasi-injective left R-modules in
σ[M ] and N ⊕ I(N) ∈ X implies that N is M -injective. We claim that every
injectivity class in the category σ[M ] is an I-class. In fact, if X is an injectivity
class, then X contains all M -injective left R-modules in the category σ[M ].
Suppose that N is in σ[M ] and L an M -injective left R-module in σ[M ] such
that N ≤ L and N ⊕ L ∈ X . Then L is an injective object of the category
σ[M ]. Thus there exists a homomorphism g : I(N) −→ L such that g|N = τ ,
the natural inclusion map N −→ L. Now it follows that g : I(N) −→ L is a
monomorphism since N is essential in I(N). Thus we have L = I(N)⊕ P for
a left R-module P . Therefore N ⊕L = N ⊕ I(N)⊕ P ∈ X . Since X is closed
under direct summands, we obtain that N ⊕ I(N) ∈ X . Now it follows that
N is M -injective.

The following proposition gives some examples of I-classes.

Proposition 2.2. The class of all quasi-injective (respectively, continu-
ous, quasi-continuous, direct-injective, NCI, SQC, E-injective) left R-modules
in σ[M ] is an I-class.

Proof. It follows from [5, 9, 15, 17, 18] and [19].

Let F be a left Gabriel topology onR. The quotient category (R,F)−Mod,
associated with F , is the full subcategory of R − Mod whose objects are
the F-closed (i.e., F-torsionfree and F-injective) left R-modules, and it is a
Grothendieck category. The inclusion functor i : (R,F)−Mod −→ R−Mod
has a left adjoint a : R −Mod −→ (R,F) −Mod which is exact and assigns
to each M ∈ R−Mod its module of quotients MF .

3. F-co-Semisimple Modules

Definition 3.1. Let F be a left Gabriel topology on R, M a left R-module
and N in σ[M ].

(1) We say N is F-cocyclic in σ[M ] if there exists an F-cocritical left
R-module C ∈ σ[M ] such that

0 −→ NF −→ I(C)F
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is exact. N is called σ − F-cocyclic in σ[M ] if it is a finite direct sum of
F-cocyclic left R-modules in σ[M ].

(2) N is called F-finitely cogenerated in σ[M ] if there exist F-cocritical
left R-modules C1, . . . . . . , Cn in σ[M ] such that the sequence

0 −→ NF −→ ⊕ni=1I(Ci)F

is exact.

If M = R and F = {R}, then F-cocyclic modules in σ[M ] (resp. F-
finitely cogenerated modules in σ[M ] ) are precisely cocyclic (resp. finitely
cogenerated ) modules in the usual sense (see [14] and [7]).

Definition 3.2. Let M be a left R-module and F a left Gabriel topology
on R. We call M an F-co-semisimple module if every F-cocritical left R-
module C in σ[M ] is dense in its M -injective hull I(C).

Note that if F = {R}, then the F-co-semisimple left R-modules are pre-
cisely the co-semisimple left R-modules. On the other hand, if F is a perfect
Gabriel topology, then the inclusion functor j : (R,F)−Mod −→ RF −Mod
is an equivalence; hence, for every left R-module M , M is F-co-semisimple if
and only if MF is co-semisimple. If F is a left Gabriel topology on R such that
for every left R-module N in σ[M ], NF is an injective object of (R,F)−Mod,
then M is an F-co-semisimple module. In particular, If F is a left Gabriel
topology on R such that (R,F) −Mod is a spectral category (that is, every
object is injective), then clearly every left R-module M is F-co-semisimple.
Thus, if G denotes the left Goldie topology, then every left R-module M is
G-co-semisimple.

Theorem 3.3. Let M be a left R-module and F a left Gabriel topology
on R. If X is an I-class in the category σ[M ] such that every X -module is
F-injective, then the following conditions are equivalent.

(1) M is F-co-semisimple.

(2) Every F-torsionfree and F-finitely cogenerated left R-module in σ[M ] is
dense in its some essential extensions which are X -modules.

(3) Every F-torsionfree and σ − F-cocyclic left R-module in σ[M ] is dense
in its some essential extensions which are X -modules.

(4) For every F-torsionfree and F-finitely cogenerated left R-module N in
σ[M ], there exists an X -module L with essential submodule N such that
RadF (L) = 0.
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(5) For every F-torsionfree and σ − F-cocyclic left R-module N in σ[M ],
there exists an X -module L with essential submodule N such that
RadF (L) = 0.

Proof. (1) =⇒ (2). Let left R-module N ∈ σ[M ] be F-torsionfree and
F-finitely cogenerated in σ[M ]. Then there exist F-cocritical left R-modules
C1, . . . . . . , Cm ∈ σ[M ] such that

0 −→ NF
g−→ ⊕mi=1 I(Ci)F .

Consider the following diagram

NF
τ−→ I(N)F

g ↓

⊕mi=1I(Ci)F

It is clear that ⊕mi=1I(Ci) ∈ σ[M ] is M -injective. Thus ⊕mi=1I(Ci) is an
X -module since X is an I-class in the category σ[M ], and so is F-injective
by assumption. It is easy to see that ⊕mi=1I(Ci) is F-torsionfree. Thus
⊕mi=1I(Ci) is F-closed. This implies that i((⊕mi=1I(Ci))F ) ' ⊕mi=1I(Ci). Thus
i((⊕mi=1I(Ci))F ) is M -injective. Similar argument gives that i(I(N)F ) '
I(N) ∈ σ[M ]. Thus i(NF ) ∈ σ[M ]. Now, by [14, 16.3], there exists a ho-
momorphism f : i(I(N)F ) −→ i((⊕mi=1I(Ci))F ) such that i(g) = fi(τ). Thus
we have g = a(f)τ . Since N is essential in I(N) and N is F-torsionfree,
by [3, Lemma 0.1], it follows that NF is an essential subobject of I(N)F .
Thus a(f) : I(N)F −→ ⊕mi=1I(Ci)F is a monomorphism. Since M is F-
co-semisimple, we have (Ci)F = I(Ci)F , i = 1, . . . . . . ,m. Thus I(N)F is
isomorphic to a subobject of semisimple object ⊕mi=1(Ci)F of (R,F) −Mod.
Hence I(N)F is semisimple. This implies that NF = I(N)F . Clearly I(N) is
an X -module since it is M -injective.

(2) =⇒ (3). Let N be an F-torsionfree and σ−F-cocyclic left R-module in
σ[M ]. Then N = ⊕ni=1Ni, where N1, . . . . . . , Nn are F-cocyclic left R-modules
in σ[M ]. Thus there exist F-cocritical left R-modules C1, . . . . . . , Cn ∈ σ[M ]
such that the sequence

0 −→ NF −→ ⊕ni=1 I(Ci)F

is exact. Thus N is F-finitely cogenerated in σ[M ].
(3) =⇒ (1). Let N be an F-cocritical left R-module in σ[M ]. Then N

is F-torsionfree and NF is a simple object of (R,F) −Mod. Since I(N) is
M -injective, it is easy to see that I(N) is F-closed. Thus i(I(N)F ) ' I(N) ∈
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σ[M ]; and hence i(NF ), a submodule of i(I(N)F ), is in σ[M ]. Since the
sequence

0 −→ (i(NF ))F −→ (i(I(N)F ))F

is exact, and (i(I(N)F ))F ' I(N)F , we see that i(NF ) is F-cocyclic in σ[M ].
It is easy to see that i(I(N)F ) ∈ σ[M ] is F-cocyclic, too. Thus i(NF ) ⊕
i(I(N)F ) is σ−F-cocyclic. Clearly i(NF )⊕ i(I(N)F ) is F-torsionfree. Thus,
by condition (3), there exists an X -module L such that i(NF ) ⊕ i(I(N)F ) is
an essential submodule of L and (i(NF )⊕ i(I(N)F ))F = LF . Thus we get

LF ' NF ⊕ I(N)F .

Clearly L is F-closed since it is F-torsionfree and F-injective. Thus

i(NF )⊕ i(I(N)F ) ' i(LF ) ' L.

This implies that i(NF ) ⊕ i(I(N)F ) is an X -module. From the definition
of I-classes it follows that i(NF ) is i(I(N)F )-injective. Thus there exists a
homomorphism f : i(I(N)F ) −→ i(NF ) such that f |i(NF ) = 1. This implies
that there exists a left R-module H such that i(I(N)F ) = i(NF ) ⊕H. Thus
I(N)F = NF ⊕ a(H). But NF is essential in I(N)F since N is essential in
I(N). Thus NF = I(N)F and we are done.

(2) =⇒ (4). Let the left R-module N ∈ σ[M ] be F-torsionfree and F-
finitely cogenerated in σ[M ]. By (2), there exists an essential extension L of
N such that L is an X -module and N is dense in L. By [3, Proposition 1.2],
we have

(RadF (L))F = Rad(LF ) = Rad(NF ).

Since N is F-finitely cogenerated in σ[M ], there exist F-cocritical left R-
modules C1, . . . . . . , Cn in σ[M ] such that the following sequence is exact:

0 −→ NF −→ ⊕ni=1I(Ci)F .

By the results proved above, M is F-co-semisimple when condition (2) holds.
Therefore every F-cocritical left R-module in σ[M ] is dense in its M -injective
hull. It follows that I(Ci)F = (Ci)F , i = 1, . . . . . . , n. Thus we have

Rad(⊕ni=1I(Ci)F ) = ⊕ni=1Rad(I(Ci)F ) = 0,

which implies that Rad(NF ) = 0. Thus RadF (L) = t(RadF (L)), where t
is a left exact radical corresponding to the Gabriel topology F . This means
that RadF (L) is an F-torsion module. On the other hand, RadF (L) is an F-
saturated submodule of L, and so is F-torsionfree. Therefore we get RadF (L) =
0, as required.
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(4) =⇒ (5). It is similar to the implication (2) =⇒ (3).
(5) =⇒ (3). Let N be an F-torsionfree and σ − F-cocyclic left R-module

in σ[M ]. Then there exists an essential extension L of N such that L is an
X -module and RadF (L) = 0. It is enough to show that N is dense in L. By [3,
Proposition 1.3], it follows that L is cogenerated by the class of F-cocritical left
R-modules. Since N is σ−F-cocyclic in σ[M ], as the implication (2) =⇒ (3),
we see N is F-finitely cogenerated in σ[M ]. Thus there exist F-cocritical left
R-modules C1, . . . . . . , Cn such that the sequence

0 −→ NF −→ ⊕ni=1I(Ci)F

is exact. By analogy with the implication (1) =⇒ (2), we obtain that I(N)F
is isomorphic to a subobject of ⊕ni=1I(Ci)F . By [14, 17.10], it follows that
I(N) ' I(L) since N is essential in L. Thus I(N)F ' I(L)F , which implies
that LF can be embedded to ⊕ni=1I(Ci)F . This means that L is F-finitely
cogenerated in σ[M ]. Thus clearly L is F-finitely cogenerated in R−Mod. By
[3, Proposition 1.7], every family of F-torsionfree modules which cogenerates L
does cogenerate it finitely. Thus there exist finite F-cocritical left R-modules
D1, . . . . . . , Dk such that the sequence 0 −→ L −→ ⊕ki=1Di is exact, which
implies that the sequence 0 −→ LF −→ ⊕ki=1(Di)F is exact. This means
that LF is a semisimple object of (R,F)−Mod. On the other hand, N is an
essential submodule of L and so NF is essential in LF by [3, Lemma 0.1]. It
is then easy to see that NF = LF ; in other words, N is dense in L and we are
done.

The following corollary generalizes a corresponding result of [7].

Corollary 3.4. Let F be a left Gabriel topology on R. If X is an I-class
of left R-modules such that every X -module is F-injective, then the following
conditions are equivalent.

(1) R is an F-V-ring.

(2) Every F-torsionfree and F-finitely cogenerated left R-module is dense in
its some essential extensions which are X -modules.

(3) Every F-torsionfree and σ−F-cocyclic left R-module is dense in its some
essential extensions which are X -modules.

(4) For every F-torsionfree and F-finitely cogenerated left R-module M ,
there exists an X -module L with essential submodule M such that
RadF (L) = 0.

(5) For every F-torsionfree and σ−F-cocyclic left R-module M , there exists
an X -module L with essential submodule M such that RadF (L) = 0.
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Corollary 3.5. Let M be a left R-module and X an I-class in the category
σ[M ]. Then the following assertions are equivalent.

(1) M is co-semisimple.
(2) Every finitely cogenerated left R-module in σ[M ] is an X -module.
(3) Every σ-cocyclic left R-module in σ[M ] is an X -module.

For M = R, Corollary 3.5 gives characterizations of left V-rings by gener-
alized injectivity.

Page and Yousif in [10] proved that a finitely generated left R-module M
is a noetherian co-semisimple module if and only if every semisimple left R-
module is M -injective. Recall that a left R-module M is locally noetherian if
every finitely generated submodule of M is noetherian. We have

Proposition 3.6. Let M be a left R-module and X an I-class in the
category σ[M ]. Then the following conditions are equivalent.

(1) M is a locally noetherian co-semisimple left R-module.
(2) Every semisimple left R-module ( in σ[M ] ) is M -injective.
(3) Every semisimple left R-module ( in σ[M ] ) is the direct sum of a finitely

cogenerated left R-module and an M -injective module.
(4) For every semisimple left R-module N in σ[M ], every essential extension

in σ[M ] of N is an X -module.
(5) For every semisimple left R-module N in σ[M ], every submodule of an

essential extension in σ[M ] of N is an X -module.

If X is closed under direct summands, then the following are also equiv-
alent.

(6) For every semisimple left R-module N in σ[M ], every essential extension
in σ[M ] of N is the direct sum of a finitely cogenerated module and an
X -module.

(7) For every semisimple left R-module N in σ[M ], every submodule of an
essential extension in σ[M ] of N is the direct sum of a finitely cogener-
ated module and an X -module.

Proof. The equivalence of (1), (2) and (3) is proved in [8].
(4) =⇒ (2). Let N be a semisimple left R-module in σ[M ]. Then N⊕I(N)

is an essential extension of N⊕N . Thus N⊕I(N) is an X -module by condition
(4), which implies that N is I(N)-injective by the definition of I-class. Now it
is easy to see that N = I(N) is M -injective.

(2) =⇒ (5). Let N be a semisimple left R-modules in σ[M ] and L a
submodule of an essential extension D in σ[M ] of N . Then N is M -injective
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by (2). Thus N is D-injective by [14, 16.3]. Now it is easy to see that N = D
and thus D is semisimple and M -injective. Therefore L, a direct summand of
D, is M -injective. Since X contains all M -injective left R-modules in σ[M ], it
follows that every submodule of an essential extension in σ[M ] of a semisimple
left R-module in σ[M ] is an X -module.

The implications (5) =⇒ (4), (7) =⇒ (6) and (5) =⇒ (7) are clear.
(6) =⇒ (4). Note that the class of semisimple left R-modules is closed

under direct sums. It is easy to see that every direct sum of essential exten-
sions in σ[M ] of semisimple left R-modules in σ[M ] is essential extension of a
semisimple module. Now, by analogy with the proof of the main result of [6],
we see that every essential extension in σ[M ] of a semisimple left R-module
in σ[M ] is an X -module.
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