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HOPF BIFURCATION ANALYSIS FOR A PREDATOR-PREY
SYSTEM OF HOLLING AND LESLIE TYPE

Sze-Bi Hsu and Tzy-Wei Hwang

Abstract. In this paper we study the Hopf bifurcation for the Holling-
Tanner model, a well-known predator-prey model in mathematical ecol-
ogy. We show that for some parameter ranges, the Hopf bifurcation is
subcritical and thus the system may have multiple limit cycles.

1. INTRODUCTION

In this paper we shall study the possibilities of multiple limit cycles for the
following Holling-Tanner model [4], [5]:

dr _ (1_I>_mx
a7 K) Atz?

L) By (1-1)
dt Sy Y

z(0) >0, y(0) >0,

where r,m, s, h, A, K > 0.

The predator-prey system (1.1) assumes that the prey grows logistically
with intrinsic growth rate r and carrying capacity K in the absence of preda-
tion. The predator consumes the prey according to Holling type-II functional
response and grows logistically with intrinsic rate s and carrying capacity pro-
portional to the population size of the prey. The Holling-Tanner model is an
important and interesting model of predator-prey system in both biological
and mathematical sense [7], [9]. In [2] we studied the global asymptotic sta-
bility when the interior equilibrium (z*,y*) is locally asymptotically stable.
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Also in [3] we proved the uniqueness of limit cycles when (z*,y*) is an unsta-
ble spiral. From these studies we see the possibility that (z*,y*) may not be
globally asymptotically stable when it is locally asymptotically stable. While
in [8] the extensive numerical studies on the system (1.1) showed the equilib-
rium (z*,y*) is either globally asymptotically stable or gives rise to a globally
asymptotically stable limit cycle, there can also exist a range of parameters
wherein multiple stable states occur. These stable states consist of a focus
and a limit cycle, separated from each other in the phase phane by an unsta-
ble limit cycle. In this paper we shall apply the Andronov-Hopf Bifurcation
Theorem [6] to show that for some parameter range the Hopf bifurcation is
subcritical, i.e., there exists a small-amplitude repelling periodic orbit enclos-
ing a stable equilibrium and hence there are multiple limit cycles.

2. PRELIMINARY RESULTS

In this section we summarize some basic results in [2]. First we write the
system (1.1) in a nondimensional form. Let

s a2l o my(t)
t=rt, Z(t)= % g(t) = K
0 =s/r, ﬂ:ﬂ, a=A/K.
m
Then (1.1) takes the form
dr T
E_x(l_x)_a—}—xy’
(2.1) dy _ (_ y)
g =ylo-02),

z(0) >0, y(0) > 0.

Obviously from (2.1), there exists a unique positive equilibrium E* = (z*,y*).
Let

(2.2) P(x) =22+ (a+ 9 — 1)z + ad.

Lemma 2.1. ([2]) The equilibrium E* = (z*,y*) of (2.1) is locally asymp-
totically stable if P(x*) > 0 and E* is an unstable focus if P(x*) < 0.

We note from (2.2) that P(x) > 0 for all > 0 if and only if

(2.3) a+6>1
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or
(2.4) a+6<1 and (1—a—6)*—8ad <O0.
If
(2.5) a+d6<1 and (1—a—4)*>—8ad >0,

then P(z) = 2(x — ay)(z — aw), where

1
a1:4[1—a—5—\/(1—a—6)2—8a5},

1
a2:4[1—a—5+\/(1—a—5)2—8a5},

0<C¥1<CV2<1.

37

For the case (2.5), the local asymptotic stability of E* can be reformulated

as
(2.6) ay < 2" <1
or
(2.7) 0<z"<m

and the instability condition for E* is

(28) o < ¥ < 9.

For fixed a, 0 > 0 satisfying (2.5), the conditions (2.6), (2.7), and (2.8) can

be expressed explicitly in terms of the parameter 3 in the following:

(2.6)’ B> s,
(27)/ 0 < ﬁ < ﬂla
(2.8)' B < B < B,
where
ooy .
(2.9) B, = i=1,2.

(1—a)(a+a;)’

We summarize the stability results from [2].

Theorem 2.2. ([2])
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(i) Let (2.3) or (2.4) hold. Then the equilibrium E* = (x*,y*) is globally
asymptotically stable in the interior of the first quadrant.

(ii) Let (2.5) and (2.6) hold. Then the conclusion of (i) holds.

(iii) Let (2.5) hold. For > 0 sufficiently small, x* = x*(3) is sufficiently
close to zero and (2.7) holds. Furthermore, the conclusion of (i) holds
for B > 0 sufficiently small.

(iv) Let (2.8) hold. Then there exists a limit cycle for (2.1).

We note that in Theorem 2.2 (iv) the existence of a limit cycle follows directly
from the Poincaré-Bendixson Theorem. The system (2.1) is persistent [1].
In fact we can construct a compact positively invariant region [5]. So the
Poincaré-Bendixson Theorem is applicable.

Let

(2.10) u=yl(z), l(z)= (1 — w>5 .

x
Then we reduce (2.1) to the following system:

dz T U
@ = o Wy
(2.11) du u®f

a *
dt — zl(x)(1—2)(a+2) <$+ x*) (@ =),
xz(0) >0, u(0)>0.

Consider the prey-isocline of (2.11):

(2.12) u=h(x)=(1-z)(a+z)l(z).
From [2], if (2.5) holds then it follows that
(2.13) W () = —e(jj)P(x) _ —%f”) (2 — 1) — o).

Thus the prey-isocline u = h(x) has two humps, namely, a local maximum
at £ = ay and a local minimum at x = «;. Obviously from (2.12), (2.10),
(2.13), we have h(1) =0, lir(r)1+ h(x) = +oo and h'(z) > 0 for oy < z < ay and

h'(x) < 0 for z € (0,a;)U(az,1). Now we rewrite (2.11) in the following form

& = (@) [hla) — o] = Flaw),
(2.14) du _ 2 _
= plap? = G,

z(0) >0, wu(0) >0,
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where
T 1

T ata x)’
p

* .
W) = i a—at) (r+ 2)
and h(x),{(z) are defined in (2.12), (2.10) respectively.

o(z)

3. MuLTtiPLE LiMIT CYCLES

In Section 1 we mentioned that in [8] the numerical studies indicate that
for system (1.1) there exists a range of parameters wherein multiple stable
states occur. These stable states consist of a stable focus and a stable limit
cycle, separated from each other in the phase plane by an unstable limit cycle.
In this section we shall justify the phenomena by means of the Andronov-Hopf
Bifurcation Theorem.

For the sake of completeness in the following, we state the Andronov-Hopf
Bifurcation Theorem [6, p. 224].

Consider a one-parameter family of differential equations

(%) &= f(z,p) = fulz)
with 2 € R? satisfying the following assumptions:
(I) The origin is a fixed point for all values p near 0 : f(0,u) = 0.

(IT) The eigenvalues of D f,(0) are a(p) £i3(p) with «(0) =0, 5(0) = o # 0
and o' (0) # 0, so that the eigenvalues are crossing the imaginary axis.

Suppose there is a change of basis on R? such that

’

() z = A(p)z + F(z, p1)
with
_ [ alw) —B(n)
Alw) = ( (1) a() )
and

Fle, 1) = Bl(x1, 2, 1) + B (1, 9, 1) + O(|z]*)
i B§($17x2aﬂ)+B§(III1,CII2,'LL)—{—O(|33|4) ’

where Bf(xl, Zo, ) is a homogeneous polynomial of degree j in x; and z,. Let
C3(0, 1) = cos B3 (cos b, sinf, ) + sin B3 (cos 0, sin 6, i),
D3(0, 1) = —sin OB (cos 0, sin 6, ) + cos  B2(cos 0, sin b, 1),
Dy(0, ) = —sin0B;3(cos 0, sin 0, 1) + cos B3 (cos b, sin b, p).
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Assume
(III) K # 0 where

1
o

K /0 - (04(9, 0) — 5003(9, 0)Ds (6, 0)> do.

Andronov-Hopf Bifurcation Theorem. Make assumptions (I), (I1)
on the differential equation

(a)

(b)

xl = f(x,,u). (*)

Then there exists €y such that for 0 < e < €, there are (i) differentiable
functions p(€) and T(€) with T(0) = 21/ B, 1(0) =0 and ' (0) = 0 and
(ii) a T'(€)-periodic function of t, x*(t,€), that is a solution of (%) for the
parameter value p = u(e) and with initial conditions in polar coordinates
given by r*(0,€) = € and 0*(0,¢) = 0. In fact, for allt, r*(t,e) = e+0(e).
(Uniqueness) Furthermore, there are g > 0 and dg > 0 such that any
T-periodic solution x(t) of (x) with |u| < po, |T — 27/Bs| < do and
|z(t)| < b0, must be x*(t, 1) up to a phase shift, i.e., v(t +to) = x*(t, )
where u = u(|x(ty)|) and to is chosen so that the polar angle 6 is zero
for x(ty), O(ty) = 0.

If we also make assumption (III), then not only 1’ (0) = 0 but also
w (0) = —2K # 0. Furthermore, the periodic solution is attracting if
K < 0 and is repelling if K > 0.

In the following, we shall study the Hopf bifurcation of the system (1.1)
or equivalently system (2.14) with (3 as the bifurcation papameter. It is inter-
esting to note that from Theorem 2.2 (iii) the equilibrium (z*,y*) of (1.1) or
(x*,u*) of (2.14) is globally asympototically stable for 8 > 0 sufficiently small.
We shall restrict our attention to the bifurcation phenomenon as (3 is near (3,
where (3 is defined in (2.9). We note that x* = z*(/3) is a function of § and

lim z*(8) = as.
Jing 2*(8) = o

Now we return to system (2.14):

(2.14)

X o @) lhw) ],
du 5
T = P(z)u,

where
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(3.1) h(z) = (1 - z)(z + a)l(z),
vw) = (o =) (o4 5)
Rewrite
_ B (@-a)(@+ )
_ I6; {(1 —z')(a+z) (1 —x)(a—i—x)]
(3.2) h(z) x x
B {y* B (1—x)(a+x)}
h(x) [z* x
1
= h@) [6 — Bq(z)]
where .
o(z) = ( —:c)m(a—i-x)
Let

L) = ([ U8ac) . ale.0) = 70

H(z, ) = h(z)L(x, B), ¥(z,B) = (x)h(x) =6 — Bq(x).

From (3.2), (3.3), it is easy to verify that the change of variable V = uL(z, 3)
reduces (2.14) to the following system

(3.3)

% — &2, 8) [H(z, B) — V] = F(a,V, B),
(3.4) v
— = V@, B)V = G(z,V. ),

and the unique equilibrium (z*, V*) of (3.4) satisfies

(3.5) H(z", 0) = h(z") = V", W(z",0) = - Bq(«") = 0.
We also note that from (3.3), (3.1), we have

(3.6) H(z, B)®(x, 8) = h(z)p(z) = (1 - x).

41
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Differentiating (3.6) with respect to x three times yields

H (z,8)®(x, 8) + H(z, B)® (2, 8) = —22 + 1,

(3.7) H'(z,8)®(x, 8) + 2H (x,8)® (x,8) + H(z,3)®" (x,8) = —2

H" (z, 3)®(z, 8) + 3H " (z,8)® (z, B) + 3H (x, 3)®" (x, B)
+H (z, 3)®" (x, ) = 0.

From (3.4), (3.5), (3,7) and (3.8), the Taylor’s formulas of F(z,V,f) and
G(z,V,[3) about (z*,V*) are:

(3.8)

F(l‘, V7 ﬁ) :(I)(w*vﬂ)H/(x*aﬁ)(x - SL'*) - <I>(:v*,ﬁ)(V - V*)
1

- [(2- 0@ BHE D) (-2
,2<I>'($*,5)(x )V - V*)}
(3.9)
+1 [0 @, B, B - a)?
=30 (" B)(x — "V = V)|
+O0 (|(x —z*,V = V)|
and
G(z,V,B) =V (z*, B)H (z*, B)(z — z*)
+% [ (z*, B)H (z*, B)(x — x*)?
+2\I/,(1-*”3)(x _ x*)(v . V*)}
(3.10) 1
T3 [‘1’ (z*, B)H(z*, B)(z — *)?
+3\I/,/ ([E*’ ﬁ)(w _ :L.*)Q(V B V*)}
+O (|(z — ",V = V*)|4).
Let
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From (3.4), (3.9) and (3.10), we have

211 ! V(t)
) Z2(1) 12 z(t) HOT
where
0 @(w*jﬁ)Hl(x 7ﬁ) ) _q)<$*7ﬁ)
TO) l V(e HH@E B, 0 ] |
1 _ —2—(I)”($ ,B)H(I‘ 7/8) ) —2(1)/(.% 75)
708 l Vi HHEE) . 20 (@0 ]
and

qj”’ (x*7 ﬁ)H(x*7 ﬁ) Y 3111” (x*7 /8>

From (3.3) and (3.6), it is easy to establish the following lemma whose proof
we omit.

Lemma 3.1: (i) ¥'(z ﬁ)

1) = l ~"(a", f)H (2", 5) . 3% (", ) ] |

—5q( ), W(x,8) =—pq (z),
=) <0, ¢'(2)= 2% >0

(ii) (2, 5)H ( B) = p(a)h'(z) + ¥(w, §).

AII

Assume |3 — 31| < 1 or equivalently |z* — ;| < 1. Let
1 7
NB) = L (a B (o)

p(B) = ®(x*, B)H (", B)¥ (27, 8) — A?(ﬂ)

Then the eigenvalues of the matrix J©(3) are A(8) £ +/p(B)i. Since z*(3,) =
aq, from Lemma 3.1 and (3.6) it follows that )\(ﬂl) =0 and

(3.12) p(B1) = —ai(1 — ay)piq (on) > 0.

Hence the eigenvalues of J((3) are crossing the imaginary axis as 3 = 3. In
order to reduce (3.11) to the standard form

(x
A(B)

%), we introduce

1
0 U'(z*,B)H(z*,5)//p(B

(3.13) M(B) =

%

43



44 Sze-Bi Hsu and Tzy-Wei Hwang

Set
(3.14) 8(3) = det M(8) = v (2", B)H (z", B)
p(B)
Then
1 —_— 208
(3.15) M~Y(3) = [ 8(8)\/p(8) } .
0w

A direct computation gives

M (B) T (5)M(8) = [ i ] ,

Moy Mao2

where
mi = @(x*’lg)Hl(x*’ﬁ) _ 0(6;‘%\11/(1'*75)}](1.*’6)7
iy = 222 (XB)H (o, 6) = V' (@, B)H (", B))~ 550 (a°, B)- H (", ),

v (z*,0)H (z",B)
0(8) )

— _ B (¥ *
Moo = me(ﬂ)\p (:L‘ ,B)H(ZL‘ 7ﬁ)
From (3.14), it follows that
mi = 2M(B) — A(B) = A(B),
iz = 2E2N(9) — A ((0) + X)) - S = — /()

p(B)

Mo = Q(B;?é;% =/ p(B),
Moo = % -0(8)Vp(B) = A(B).

Hence we have

moy =

(3.16) M= (B)JOB)M(B) = [

Introduce
. Zl(t) o -1 f(t)
Z@—[zz(w]‘M “)[m)]'

Then (3.11) takes the form
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<1+ AB) 2)
2 () = NO@)a(t) + ~——Y L ND(B)z(1)
(3.17) . NG 2 i
- ( o 5)22> N (8)z()
+0 (|=(8)]").
where

NOB) = MY(B)JNB)M(B), i=1,2.
In order to evaluate the number K in assumption (III), we have to compute

N@(B,) fori=0,1,2.

Lemma 3.2.
(1) qj,(alaﬂl)H(al,ﬂl) = _/qu/(al)h<al) = —63((()[%)}1(041).
(i) @(au,B1) = (),

’

(I),l<a17ﬁl> =@ (al)a
H (alyﬁl) = 0

(iii) (I)(Oél,@)H”(ahﬂl) =-2- ‘PH(Oﬁ)h(al) - /qul(al)'
(iv) @ (an, B)H(on, 1) = = (p(@)h' (@) | +B1q" (@) =¢ () H (a1, B1).

T=71

Proof When 3 = (3;, we have *(3,) = a;. Since h'(ay) = 0, from (3.2)
and (3.3) a direct computation shows

Y(a) =0,
(3.18) L(alaﬁl) =1,
(o _ 7»5(041) o
L (aq,0) = (o) =0.

Parts (i) and (ii) follow directly from (3.18), (3.3) and Lemma 3.1 (i).
From (3.7) and (ii) we have

(3.19) ®(ay, ) H (a1, B1) = =2 = (ay, S1)H (o, ).

Since

(2, 8)H(x, B) = (®(z, 8)H (x,3)) — ®(x, B)H (x,)
(3:20) = (p(@)h(@)) = (p(@)h (@) + h(z)(=))
¢ (@)h(x) - U(x, B),

45
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we have

(3.21) @' (2, 8)H(z, B)+® (z,B)H (z,8) = ¢ (z)h(z)+¢ (2)h (z)+ B4 (2).

Part (iii) follows directly from (3.19), (3.21) and part (ii).
From (3.6), (3.20) and Lemma 3.1 (i), we have

(9@, )H(x,8)) =—('¢)" +Bq ()
or
(3.22) O H+20H +dH =—(h'¢) +pq .

Set § = [, and * = o in (3.22). Then from part (i) we complete the proof
of part (iv). [

In the following we compute the matrices N (3,), i = 0,1,2. From (3.16)
and (3.12), we have

(329 vEe I)Zl . g(ﬁl)l'

From (3.13), (3.14) and Lemma 3.2 (i), we have 6(3;) > 0 and

1, 0

A direct computation together with Lemmas 3.1 and 3.2 yields

NO(B) = —2 - 90" (o, f)H(ar, f1) —2 (?41751)9(51) ]
_1(51)\1' (a1, B1)H (ay, Br) 2V (ay, £1)
(3 24) (O‘é? 5}2 )(O(‘lvgl) ) _2@/(0‘1)0(51)
: = —0B1q (a1)h /
I 9(@) ) —201q (041)
def i Th1  Th2
i Tl21 722

and
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[ _(I)/”(Oébﬁl)H(alyﬁl) _3‘1)”(041751)9(51)
2 —_ s
N = U (an, B1)H (a1, ) ~381¢" (n)
(3.25) i 0(61) o
d;f [ Wy Wiz
| Wa Wy |
From (xx) and (3.17), (3.24) and (3.25), we have
- 1 -
Bl(z1, 22) 521(771121 + 11222)
oo [Hew) [ |
BQ (21722) I 521(7]2121 —I-T]QQZQ) |
-2 i
B3 (21, 29) E(wuzl +winz)
o [Be]o]E
SV %(wmzl + Waa2)

In order to evaluate the number K in the assumption (III) we need to compute
the following functions C3(0), D3(f) and C,(6). From the Andronov-Hopf
Bifurcation Theorem, we have

C3(0) = cos B3 (cos 0, sin 6) + sin # B3 (cos 0, sin §),
D3(0) = —sin 0B} (cos 0, sin §) + cos 0 B2(cos 0, sin ),

C4(0) = cos B3 (cos b, sin @) + sin @ B2(cos 6, sin §),

and

1 2 1 1 2m
3.28 K=— Cy(0)df) — ——— — Cs3(0)D3(0)d6.
(3.28) 3r ), a0~ s o [ CODs

From (3.26) and (3.27), a direct computation shows

Cy(0) = é cos® 6 [wy; cos® 0 + (wig + way ) cos O sin 6 + wa sin” 4],

1 /2 1
%A C4(0)d0 = ZS(gwll + wgz),

(3:29) C5(0) = % cos 0 [111 cos® @ + (12 + 121) sin 0 cos 6 + nye sin® 0],

D3(0) = % 08 0 [121 cos® @ + (122 — 1m11) sin @ cos § — myosin” 0] .

47
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Compute
1 1
(3.30) C3(0)Ds(0) = 1 cos® OA(0) = g(l + cos 20)A(6),
where
A(0) = [n1cos? 0+ (g + na1) cos Osin @ + 1o sin® 0]
+[121 cos2 0 + (122 — m11) sin @ cos § — 1,5 sin® 0]
1
= 2 [m1(1 + cos20) + (712 + 121) sin 20 + 192 (1 — cos 20)]
“[1m21(1 + cos20) + (122 — m11) sin 20 — 112 (1 — cos 26)]
1
= = [(11 + M22) + (12 + M21) sin 26 + (911 — M22) cos 20]
4
(3.31) “[(M21 — m2) + (N22 — M11) sin 20 + (N12 + 121) cos 20
= % [Co + Cisin 260 + Cy cos 20 + Cy sin® 20 + C, sin 26 cos 260
+C5 cos? 20|
1 1-— 4
= Z |:CO + Cl sin 260 + CQ cos 260 + Cg <02089>
+ Y a0 1 o (1 + COSMH
2 2
with
Co = (M1 + 722)(N21 — Mi2),
C3 = —C5 = (M2 + m21)(M22 — M11)s
Co = 2(n1m21 + N22Miz)-
From (3.30) and (3.31) we have
27 1 27 1 27
(3.32) / Cy(0)Ds(0)d0 = / AB)0 + / cos 20A(8)d6,
0 0 0
27 C
(3.33) A(0)do = 40 2T = g (M1 4+ m22) (M1 — Mi2)
0

2m 2m 02
/ cos 20A(0)df = / Vi cos® 20d6
0 0

3.34
(3.34) c, _
— ZZ.or="=L

3 5 (M1M21 + M22M12).
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From (3.28)—(3.30) and (3.32)—(3.34), it follows that

1 1
(311)11 + ’w22) —_ —

(3.35) K= % o0

) (111 (2021 — M12) + N22Ma1].

By the definitions of w;j,7;;,4,7 = 1,2, in (3.24) and (3.25), it follows that

K = —5{ [ @80 H(an 0 + 6 (0]
1 a " a . _/qu”(al)h(al)
(3.36) VZGy l(b( 1’51)H/( n) ( 6(1) )
+® (a1, B1)H (a1, 1) (c1)0(B1)
20 (& g (a1)h(a)
i (£ttt}
From (3.14) and Lemma 3.2 (i), we have
(3.37) Bi7q (a)gq (an)h(en) _Biq ().

vV P(B1)0(51)

From (3.12) and (3.14) we have

®(ay, B1)H (a1, B1)¢ (01)0(3)
p(B1)

From (3.14) and Lemma 3.2 (i) we have

(3.38) = H' (a1, 51)¢ (n).

. ‘I’(ah ﬁl)Hu (041, /61)/61(]” (al)h(al)

Vv p(81)0(5B1)

= ®(ay, 51)H”(a1751)2/((§11)

From (3.36), (3.37), (3.38), (3.39) and Lemma 3.2 (ii), (iii), it follows that
—16K = " (o, Bu)H (o, 1) + ¢ (an)H (on, )

" q//(al)
+®(aq, 51)H (alvﬂl)q,(al)

+61q ()

=71

(3.39)

~—

(-2 ¢ @hlan) - o (o)) L

49
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S O ey

" q (a1)
-2 — h .
+ (=2 = ¢"(ar)h(a)) (o)
Since (¢h)” = —2 and h'(a;) = 0, it follows that —2 — ¢ (a1)h(a;y) =

@(a1)h" (oq). Hence

(340) 16K = 1" (an)p(on) + 26 () (o) = ()l () ((zll)) |

Now we are in a position to derive a criterion determining K > 0 and K < 0.
From (3.1) and (2.13), we have

where

P(z) = 2(z — on) (@ — ), () = (1 ”)5 .

Then a direct computation yields

2 fa )t (o) = 2 0 S0 o) ()

ey e PO i @) |
" _2 1 E(O{l) ! z ,
— 2 P VT2
Sp(al)h (al) a—+ o + a+ao o (041) <€($)> T=0 ’
v q (o) 1 ' “
h — P — v -
p(az) (al)q’(al) a+ a (o) ai(a+af)
Then K > 0 iff

/

P (a;) (o —a®) > aq(a+ ) (a+af)
(3.41) 2(a1 — ag) (o —a®) > aq(a+ i) (a+ i) .

From (2.5), for fixed 0 < a < 1, we have

0<d0<0"(a)=14+3a—4/8a(l+a).
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Claim: For fived a,0 < a < 1, there exists a unique 5 = 5(@),0 <0<
0*(a), such that g(d) = 0, where

9(6) = 2(a1(6) — ax(9)) (af(d) — a?)
—a1(9) (a+ a1(9)) (a+ ai(d)), 0<d<d*(a).

We note that with a fixed a, 0 < a < 1,

[1—@—5 \/1—a— —8a(5},

[l—a—5+\/1—a—5)2—8a5}.

a; = ai(0) =

ay = a(0) =

»M»—ﬂ »Mr—‘

Since ay, ap are roots of P(x) = 0, where P(x) is defined in (2.2) as
P(x) =22+ (a+ 3 — 1)z + ad,

we have a )
J— a J—
041(6) + OéQ((S) = 72 .
Differentiating both sides of P(a4(d)) = 0 and P(ay(d)) = 0 with respect to ¢
yields

L (et @)
)= 5@ () "

and (a4 au(d)
%) = @) — o)

Since lims g a;(9) = 0 and lims ¢ az(a) = 1_7“, it follows that
g(0+) = a*(1 —a) > 0.

On the other hand, lims_. 5+ (q) (a1 (5) — a2(5)) = 0 implies g(6*(a)—) < 0. Hence
for fixed a, 0 < a < 1, there exists 6, 0 < § < 6*(a 1), such that g(S) = 0. For
the uniqueness of 4, it suffices to show that if g(6) = 0 then ¢'() < 0. A
direct computation shows

g(0) = 6((8) = az(8)) a3(9)a’(9)
+2 (a1(8) = 03(8) ) (ad(9) - a?)
~a(9)(a+ a1(9)) (a + a?(5))
—ay1(8)a(8) [a + 2a04 (6) + 3a3(6)] .

o1
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If g(8) = 0 then o3(8) — a2 < 0. It is easy to verify that ¢'(§) < 0. Thus we
complete the proof of the claim. [

Summarizing the above results, from the Andronov-Hopf Bifurcation The-
orem, we have

Theorem 3.3.

(i) K>0for0<a<1and0 <8< é(a). The periodic solution of Hopf
bifurcation of (3.1) is repelling with 5(e) < (i,|e|] < €9,€ # 0, i.e., the
Hopf bifurcation is subcritical.

(i) K <0 for0 <a <1 andd(a) < § < 6*(a). The periodic solution of
Hopf bifurcation of (3.1) is attracting with 3(g) > (1, |e| < €, # 0, i.e.
the Hopf bifurcation is supercritical.

Now we are in a position to discuss the possibility of multiple limit cycles.
When the parameters a,d satisfy 0 < a < 1,0 < § < S(a), we have K > 0.
Then for g < 1, 8 near (3, there exists a small-amplitude repelling periodic
orbit enclosing a stable equilibrium (2*,u*). Since the solution of (2.14) is
positively invariant in a compact region away from the z and u axes (see [5, p.
76]), obviously we have another limit cycle solution I's s with large amplitude.
This explains the phenomenon of outbreaking in [8] obtained by numerical
simulations.
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