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On Successive Minimal Bases of Division Points of Drinfeld Modules

Maozhou Huang

Abstract. We define successive minimal bases (SMBs) for the space of un-division

points of a Drinfeld Fq[t]-module over a local field, where u is a finite prime of Fq[t]

and n is a positive integer. These SMBs share similar properties to those of SMBs

of the lattices associated to Drinfeld modules. We study the relations between these

SMBs and those of the lattices. Finally, we apply the relations to study the explicit

wild ramification subgroup action on an SMB of the space of un-division points and

show a function field analogue of Szpiro’s conjecture for rank 2 Drinfeld modules under

a certain limited situation.

1. Introduction

1.1. Notations

Let us introduce the notation used throughout this paper. Put A := Fq[t], where Fq[t] is
the polynomial ring in t over the field Fq whose order is a power of a rational prime p.

Let F be a global function field which is a finite extension of the fraction field of A. Let

K be the completion of F at a prime w. We also let w denote the valuation associated

to K normalized so that w(K×) = Z. Fix Ksep (resp. Kalg) a separable (resp. algebraic)

closure of K. Let Cw denote the completion of Kalg. If w is an infinite prime, we also let

C∞ denote Cw.
Let ϕ be a rank r Drinfeld A-module over K. For an element a in A, let ϕ[a] be the

A/a-module of a-division points in Ksep. It is a free module of rank r. Fix a positive

integer n and a finite prime u of A, i.e., a monic irreducible polynomial u ∈ A. The main

research objects in this paper are successive minimal bases of ϕ[un] defined below. For

a ∈ A and x ∈ ϕ[un], write a ·ϕ x := ϕa(x) for the action of a on x.

If w is an infinite prime, let Λ denote the rank r A-lattice in C∞ and eϕ the exponential

function from C∞ to C∞ associated to ϕ via the uniformization. Here we have considered

Λ and the domain of eϕ as A-modules via the natural embedding A→ C∞.

If w is a finite prime, we assume throughout this paper that ϕ has stable reduction

over K and the reduction of ϕ has rank r′ ≤ r unless otherwise specified. Let ψ denote the
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rank r′ Drinfeld module over K having good reduction, Λ the rank r− r′ A-lattice in Cw,
and eϕ the exponential function from Cw to Cw associated to ϕ via the Tate uniformization

(see [6, Section 7] or Section 2.1). Here we consider Λ and the domain of eϕ as A-modules

via ψ, i.e., we have the action of a on ω to be a ·ψ ω := ψa(ω) for any a ∈ A and any ω in

Λ or Cw.
Let | − | denote one of the following functions.

(F1) If w is an infinite prime, we have the absolute value | − | on K which extends the

absolute value | − | = qdeg(−) on Fq((1t )). This absolute value may be extended to

C∞.

(F2) Assume that w is a finite prime of F . Following [8, Section 1], define a function | − |
on K by

for x ∈ K, |x| =


(−w(x))1/r′ if w(x) < 0,

−w(x)1/r′ if w(x) ≥ 0,

|0| = −∞ if x = 0.

We may extend this function to Cw. This function is not an absolute value. However,

the ultrametic inequality holds. For x ∈ Cw, we still call |x| the absolute value of x.

1.2. On SMBs of un-division points

The main definition is

Definition 1.1. Let |−| denote the function in (F1) or (F2). We call a family of elements

{λi}i=1,...,r an SMB (successive minimal basis) of ϕ[un] if for each i, the elements λ1, . . . , λi

in ϕ[un] satisfy

(1) λ1, . . . , λi are A/u
n-linearly independent;

(2) |λi| is minimal among the absolute values of elements λ in ϕ[un] such that λ1, . . . ,

λi−1, λ are A/un-linearly independent.

Here we have imitated the definition of SMBs of the lattices Λ (see [17, Section 4]

or [10, Section 3]). Let us remark that

Remark 1.2. (1) in the definition implies that {λ1, . . . , λr} is anA/un-basis (or a generating
set) of ϕ[un]. The condition (2) above can be replaced with “w(λi) is the largest among the

valuations of elements λ in ϕ[un] such that λ1, . . . , λi−1, λ are A/un-linearly independent”.

In Definition 2.8, we will extend the definition of SMBs of ϕ[un] to the case where ϕ does

not necessarily have stable reduction over K.
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If w is a finite prime, let u−nΛ denote the A-module consisting of all roots of ψun(X)−ω
for all ω ∈ Λ. For any infinite or finite prime w, by the uniformization or the Tate

uniformization of ϕ, we have an isomorphism of A/un-modules

Eϕ : u−nΛ/Λ→ ϕ[un]

induced by eϕ. Hence one may expect that there are relations between SMBs of ϕ[un] and

those of Λ.

Let |−| denote the absolute value in (F1) (resp. the function in (F2)) if w is an infinite

prime (resp. a finite prime). Put |un|∞ = qdeg(u
n).

Theorem 1.3. (1) Let w be an infinite prime.

� (see Theorem 3.3) Let {ωi}i=1,...,r be an SMB of Λ. Then the images eϕ(ωi/u
n)

for i = 1, . . . , r form an SMB of ϕ[un].

� (see Corollary 3.11(1)) Let l be a positive integer and {ηi}i=1,...,r an SMB of

ϕ[ul]. Let {λi}i=1,...,r be an SMB of ϕ[un]. Assume that n satisfies |un|∞ >

|ηr|/|η1|. Under this assumption, for each i = 1, . . . , r, the element λi has only

one preimage under eϕ, denoted logϕ(λi), with absolute value < |ω| for any

ω ∈ Λ\{0}. Then the family of elements {un logϕ(λi)}i=1,...,r ⊂ C∞ is an SMB

of Λ.

(2) Let w be a finite prime.

� (see Theorem 4.6) Let {ωi}i=1,...,r′ (resp. {ω0
i }i=r′+1,...,r) be an SMB of ψ[un]

(resp. Λ). Let ωi be a root of ψun(X)−ω0
i for i = r′+1, . . . , r. Then the images

eϕ(ωi) for i = 1, . . . , r form an SMB of ϕ[un].

� (see Corollary 4.12(1) and (2)) Let l be a positive integer and {ηi}i=1,...,r an

SMB of ϕ[ul]. Let {λi}i=1,...,r be an SMB of ϕ[un]. Assume that n satisfies

|un|∞ > |ηr|/|ηr′+1|. Under this assumption, for each i = 1, . . . , r, the element

λi has only one preimage, denoted logϕ(λi), with absolute value < |ω| for any

ω ∈ Λ \ {0}. Then the family of elements {logϕ(λi)}i=1,...,r′ ⊂ Cw (resp. {un ·ψ
logϕ(λi)}i=r′+1,...,r ⊂ Cw) is an SMB of ψ[un] (resp. of Λ).

It turns out that the SMBs of ϕ[un] have the following properties.

Proposition 1.4. Let {λi}i=1,...,r be an SMB of ϕ[un].

(1) (see Proposition 2.10) The sequence |λ1| ≤ |λ2| ≤ · · · ≤ |λr| associated to an SMB

of ϕ[un] is an invariant of ϕ[un], i.e., for any SMB {λ′i}i=1,...,r of ϕ[un], we have

|λ′i| = |λi| for all i.
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(2) (see Proposition 3.12 and 4.13) Assume that u is not divisible by the prime w, i.e.,

w(u) ≤ 0. Then we have ∣∣∣∣∣∑
i

ai ·ϕ λi

∣∣∣∣∣ = max
i

{
|ai ·ϕ λi|

}
for any ai ∈ A mod un.

(3) (see Proposition 2.13) There exists an SMB {λ′i}i=1,...,r of ϕ[u
n+1] such that u ·ϕλ′i =

λi for all i. The elements u ·ϕ λi for i = 1, . . . , r form an SMB of ϕ[un−1].

Here the properties (1) and (2) are similar to those of SMBs of lattices (see Propo-

sitions 2.4 and 2.5). We remark that (2) essentially follows from similar properties of

SMBs of lattices (see Proposition 2.5 or [17, Lemma 4.2]). We hope to know whether the

condition “w(u) ≤ 0” in (2) can be removed.

Let K(Λ) (resp. K(u−nΛ) and K(ϕ[un])) denote the extension of K generated by all

elements in Λ (resp. u−nΛ and ϕ[un]). By Theorem 1.3, we are able to show

Proposition 1.5. Let l be a positive integer and {ηi}i=1,...,r an SMB of ϕ[ul]. Let

{λi}i=1,...,r be an SMB of ϕ[un].

(1) (see Corollary 3.11(2)) If w is an infinite prime and n is large enough so that |un|∞ >

|ηr|/|η1|, then we have K(Λ) = K(ϕ[un]).

(2) (see Corollary 4.12(3)) If w is a finite prime and n is large enough so that |un|∞ >

|ηr|/|ηr′+1|, then we have K(u−nΛ) = K(ϕ[un]).

The claim (1) is an effective version of [12, Proposition 2.1].

1.3. An application to rank 2 Drinfeld modules

Let u be a finite prime of A. Let ϕ be a rank 2 Drinfeld A-module over K which does not

necessarily have stable reduction when w is finite. Let {λi}i=1,2 be an SMB of ϕ[un]. Let

j denote the j-invariant of ϕ. Assume

(1.1)

either
(
w(j) < w(t)q and p ∤ w(j)

)
, or w(j) ≥ w(t)q if w is infinite,

either
(
w(j) < 0 and p ∤ w(j)

)
, or w(j) ≥ 0 if w is finite.

For a positive integer n, letG(n)1 denote the wild ramification subgroup, i.e., the first lower

ramification subgroup, of Gal(K(ϕ[un])/K). In [1, Theorems 3.9 and 3.13, Lemmas 3.14

and 3.15], for u having degree 1 and any n, the action of G(n)1 on {λi}i=1,2 has been

studied assuming moreover q ̸= 2 when w is a finite prime. In Sections 5 and 6, we study

the action of G(n)1 on {λi}i=1,2 without requiring (deg(u) = 1) and (q ̸= 2 when w is

finite).
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Theorem 1.6. Let ϕ be a rank 2 Drinfeld A-module over K which does not necessarily

have stable reduction when w is finite. Let u be a finite prime of A with deg(u) = d. Let

{λi}i=1,2 be an SMB of ϕ[un].

(1) (see Theorem 5.9) Let w be an infinite prime. Assume w(j) < w(t)q and p ∤ w(j).
Let m be the integer such that w(j) ∈ (w(t)qm+1, w(t)qm). Put d = deg(u). Assume

n ≥ m/d.

� Any element in G(n)1 fixes λ1;

� Let A<m denote the subgroup of A consisting of elements with degree < m.

Then the map

G(n)1 → A<m ·ϕ λ1, σ 7→ σ(λ2)− λ2

is an isomorphism of groups.

(2) (see Corollary 6.4) Let w be a finite prime satisfying w ∤ u. Assume w(j) < 0 and

p ∤ w(j).

� Any element in G(n)1 fixes λ1;

� There is an isomorphism of groups

G(n)1 → A ·ϕ λ1, σ 7→ σ(λ2)− λ2.

Example 5.10 provides an instance where w is an infinite prime, w(j) < w(t)q, p | w(j),
and the extension K(ϕ[un])/K is not wildly ramified. Let us remark that (1) if w is an

infinite prime and w(j) ≥ w(t)q, the extension K(ϕ[un])/K is at worst tamely ramified

such that G(n)1 is a trivial group for any n ≥ 1; (2) if w is a finite prime and w(j) ≥ 0,

then ϕ has potentially good reduction at w such that the extension K(ϕ[un])/K is at worst

tamely ramified and the group G(n)1 is trivial for any n ≥ 1.

Let ϕ be a rank 2 Drinfeld A-module over F . With the assumptions on its j-invariant

in (1.1), we define and calculate the conductors of ϕ at each prime w of F using the u-adic

Tate module with u ∤ w. Finally, we show a function field analogue of Szpiro’s conjecture

in Theorem 6.6, which slightly generalizes [1, Theorem 4.3].

Motivated by [9, Proposition 3.2], we may expect that there are generalizations of

the results in Sections 5 and 6 to Drinfeld A-modules ϕ of rank r over K satisfying

ϕt(X) = tX+asX
qs+arX

qr ∈ K[X]. We have obtained a generalization of Proposition 5.1

for such ϕ (see Remark 5.2). There are difficulties in generalizing Theorem 1.6. We do

not further investigate the generalizations in the present paper. Some partial results will

appear in the author’s doctoral thesis [11]. For instance, the explicit action of the wild

ramification subgroup Gal(K(ϕ[t])/K)1 on an SMB {ξi}i=1,...,r of ϕ[t] has been worked

out in [11, Theorem 3.3.16] under certain limited situations.
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1.4. Contents

Except for Section 6.3, we consider Drinfeld A-modules over a localization K of a global

function field. In Section 2, we first review the basics of the SMB of lattices. The rest of

this section is devoted to the basics of SMBs of ϕ[un]. In Section 3, we mainly show the

infinite prime case of Theorem 1.3. For an element ωi of an SMB of the lattice Λ as in

Theorem 1.3(1) and an element ai in A with a limited degree, we describe the absolute

value of eϕ(aiωi) in Corollary 3.2(1). This is the key result of this section and its proof

is inspired by that of [10, Lemma 3.4]. Section 4 consists of finite prime analogues of the

results in Section 3. The analogue of Corollary 3.2(1) is Corollary 4.5(1).

In Section 5 (resp. Section 6), we apply the results in the previous sections to a rank 2

Drinfeld A-module ϕ over K with w being infinite (resp. finite). We first calculate the

valuations of elements of SMBs of Λ and ϕ[un] in Sections 5.1 and 6.1. In Section 5.2, we

calculate the conductors of ϕ in Lemma 5.5. Then we study the action of the wild ramifica-

tion subgroup of the Galois group Gal(K(ϕ[un])/K) on an SMB of ϕ[un] in Theorem 5.9.

Section 6.2 consists of finite prime analogues of the results in Section 5.2. In Section 6.3,

we obtain a function field analogue of Szpiro’s conjecture under certain assumptions.

In Appendix A, when w is an infinite prime, the conductor of a rank r Drinfeld A-

module over K is defined. In Appendix B, we calculate the Herbrand ψ-function of the

extension of K generated by the roots of a certain polynomial with degree being a power

of q.

2. Basics of SMBs

Let | − | denote the absolute value in (F1) (resp. the function in (F2)) if w is an infinite

prime (resp. a finite prime) defined in Section 1.1.

2.1. SMBs of lattices

In this subsection, we recall first the basics of SMBs of lattices and then the (Tate)

uniformization of Drinfeld A-modules. Consider C∞ as an A-module via the embedding

A → C∞. If w is a finite prime, consider Cw as an A-module via a Drinfeld A-module ψ

having good reduction of rank r′. The next lemma will be applied implicitly in this paper.

Lemma 2.1. (1) If w is an infinite prime, we have |aω| = |a| · |ω| for any a ∈ A and

ω ∈ C∞.

(2) (see [8, Section 1]) Let w be a finite prime. Then we have |a ·ψ ω| = |a|∞ · |ω|, i.e.,
w(a ·ψ ω) = |a|r

′
∞ ·w(ω) for any a ∈ A and any ω ∈ Cw having valuation < 0, where

|a|∞ = qdeg(a).
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Proof. (1) is clear. We show (2). Put g = r′ ·deg(a), a0 = a and
∑g

i=0 aiX
qi = ψa(X). As

the Drinfeld module ψ has good reduction, we have w(ai) ≥ 0 and w(ag) = 0. Hence the

assumption w(ω) < 0 implies that the valuation w(agω
qg) is the strictly smallest among

w(aiω
qi) for all i. As w(ag) = 0, we have w(agω

qg) = qgw(ω), i.e., |a ·ψ ω| = |a|∞ · |ω|.

Let L be an A-lattice of rank r in C∞ or an A-lattice of rank r in Cw such that each

nonzero element in the lattice has valuation < 0.

Definition 2.2. (see [17, Section 4] or [10, Section 3]) A family of elements {ωi}i=1,...,r

in L is called an SMB of L if for each i, the elements ω1, . . . , ωi satisfy

(1) ω1, . . . , ωi are A-linearly independent;

(2) |ωi| is minimal among the absolute values of elements ω in L such that ω1, . . . , ωi−1, ω

are A-linearly independent.

Remark 2.3. If elements λi for i = 1, . . . , r of ϕ[un] are A/un-linearly independent (cf. Def-

inition 1.1(1)), then {λi}i=1,...,r is an A/u
n-basis of ϕ[un]. On the other hand, if elements

ωi for i = 1, . . . , r of L are A-linearly independent, then {ωi}i=1,...,r is not necessarily an

A-basis of L.

Proposition 2.4. Let {ωi}i=1,...,r be a family of elements in L.

(1) This family is an SMB if and only if for each i, the elements ω1, . . . , ωi satisfy

� ω1, . . . , ωi are A-linearly independent;

� we have |ωi| = li, where

li = min
{
ρ ∈ R | the ball in C∞ or Cw around 0 of radius ρ contains

at least i elements in L which are A-linearly independent
}
.

(2) The sequence |ω1| ≤ |ω2| ≤ · · · ≤ |ωr| for an SMB {ωi}i=1,...,r is an invariant of L,

i.e., for any SMB {ω′
i}i=1,...,r of L, we have |ωi| = |ω′

i| for all i.

Proposition 2.5. Let {ωi}i=1,...,r be a family of elements in L so that |ω1| ≤ |ω2| ≤ · · · ≤
|ωr|. Then this family is an SMB of L if and only if

(1) ω1, . . . , ωr form an A-basis of L;

(2) we have
∣∣∑

i aiωi
∣∣ = maxi{|aiωi|} for any ai ∈ A.

Proof. This has been proved in [17, Lemma 4.2].



256 Maozhou Huang

For the subfield K of Cw, we say that L is Gal(Ksep/K)-invariant if each element in

the Galois group maps L into L. The following lemma concerns the extension generated

by elements ω in the lattice with |ω| being minimal.

Lemma 2.6. Let {ωi}i=1,...,r be an SMB of L such that |ω1| = · · · = |ωs| < |ωs+1| for
some positive integer s < r. Assume that

� the extension M/K generated by ωi for i = 1, . . . , s is separable;

� the lattice L is Gal(Ksep/K)-invariant.

(1) The extension M/K is Galois.

(2) The extension M/K is at worst tamely ramified.

Proof. We show (1). Let M̂ denote the Galois closure of M/K so that M̂ is exactly the

compositum of ςM for all ς ∈ Gal(M̂/K). We have M̂ =M . Indeed, if M̂/M is nontrivial,

there exists some element ς ∈ Gal(M̂/K) such that ς(ωj) /∈M for j to be one of 1, . . . , s.

Note that M contains the A-module
⊕

i=1,...,sAωi (here Aωi := {a ·ψ ωi | a ∈ A} if

the prime w is finite). As elements in L \
⊕

i=1,...,sAωi have strictly smaller valuations

than that of ωi for i = 1, . . . , s and Galois actions preserve valuations, this implies that

ς(ωj) /∈ L. If ς also denotes a preimage of ς under Gal(Ksep/K) → Gal(M̂/K), then

ς(ωj) /∈ L contradicts that L is Gal(Ksep/K)-invariant.

As for (2), we show thatM/K is tamely ramified. Assume the converse so that the wild

ramification subgroup Gal(M/K)1 is nontrivial. Let wM denote the normalized valuation

associated to M . For σ to be a nontrivial element in Gal(M/K)1, we have

1 ≤ wM (σ(ωi)ω
−1
i − 1)

for each i. We also have σ(ωj) − ωj ̸= 0 for j to be one of 1, . . . , s. Note that wM (ωj) is

the largest among the valuations of all nonzero elements in L. As σ(ωj) − ωj ∈ L (L is

Gal(Ksep/K)-invariant), we have

wM (σ(ωj)ω
−1
j − 1) = wM (σ(ωj)− ωj)− wM (ωj) ≤ 0.

This gives a contradiction.

Next, we recall the uniformization and the Tate uniformization. Let ϕ be a rank r

Drinfeld A-module over K. If w is an infinite prime, then the uniformization associates to

the Drinfeld module ϕ a Gal(Ksep/K)-invariant A-lattice Λ and an exponential function

eϕ on C∞ such that for each a ∈ A, the following diagram commutes, and its two rows

are short exact sequences

Λ �
�

//

a

��

C∞
eϕ
//

a

��

C∞

ϕa
��

Λ �
�

// C∞
eϕ
// C∞.
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Here the exponential function is explicitly

eϕ : C∞ → C∞, ω 7→ ω
∏

µ∈Λ\{0}

(1− ω/µ)

and the coefficients of ϕa(X) map to C∞ via the embeddingK ↪→ C∞. The commutativity

of the right square in the diagram means eϕ(aω) = a ·ϕ eϕ(ω) for any ω ∈ C∞.

Remark 2.7 (SMBs and isomorphic Drinfeld modules). For any b ∈ Ksep \ {0}, we have

the Drinfeld module bϕb−1 isomorphic to ϕ. The uniformization associates to bϕb−1 the

lattice bΛ. If the family {ωi}i=1,...,r is an SMB of Λ, then {bωi}i=1,...,r is an SMB of bΛ.

If w is a finite prime, assume that ϕ has stable reduction over K and the reduction of

ϕ has rank r′ < r. According to [6, Section 7], there are the following data associated to

ϕ:

(1) A rank r′ Drinfeld A-module ψ over K has good reduction;

(2) A Gal(Ksep/K)-invariant A-lattice Λ has rank r − r′ with the A action induced by

ψ. Each element of Λ has valuation < 0.

(3) An analytic entire surjective homomorphism

eϕ : Cw → Cw, ω 7→ ω
∏

µ∈Λ\{0}

(1− ω/µ)

such that for each a ∈ A, the following diagram commutes, and its two rows are

short exact sequences

Λ �
�

//

ψa
��

Cw
eϕ
//

ψa
��

Cw
ϕa
��

Λ �
�

// Cw
eϕ
// Cw.

The commutativity of the right square means eϕ(a ·ψ ω) = a ·ϕ eϕ(ω) for any ω ∈ Cw.

We call these data the Tate uniformization of ϕ.

2.2. SMBs of the module of un-division points

In this subsection, let ϕ be a rank r Drinfeld A-module over K which does not necessarily

have stable reduction. Using Remark 1.2, we may extend Definition 1.1.

Definition 2.8 (Extending Definition 1.1). Let n be a positive integer and u a finite

prime of A. A family of elements {λi}i=1,...,r is an SMB of ϕ[un] if for each i, the elements

λ1, . . . , λi in ϕ[u
n] satisfy
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(1) λ1, . . . , λi are A/u
n-linearly independent;

(2) w(λi) is the largest among the valuations of elements λ in ϕ[un] such that λ1, . . . ,

λi−1, λ are A/un-linearly independent.

Remark 2.9. For any b ∈ Ksep \ {0}, a family {λi}i=1,...,r is an SMB of ϕ[un] if and only

if the family {bλi}i=1,...,r is an SMB of bϕb−1[un]. Especially, this holds when w is a finite

prime and b is an element in some tamely ramified extension L of K so that bϕb−1 has

stable reduction over L.

The rest of this subsection is concerned with two basic properties of SMBs of ϕ[un].

Proposition 2.10. (cf. Proposition 2.4) Let {λi}i=1,...,r be a family of elements in ϕ[un].

(1) This family is an SMB if and only if for each i, the elements λ1, . . . , λi satisfy

� λ1, . . . , λi are A/u
n-linearly independent;

� we have w(λi) = li, where

li = max
{
ρ ∈ R | the ball {λ ∈ Ksep | w(λ) ≥ ρ} contains at least i elements

in ϕ[un] which are A/un-linearly independent
}
.

(2) The sequence w(λ1) ≥ w(λ2) ≥ · · · ≥ w(λr) for an SMB {λi}i=1,...,r is an invariant

of ϕ[un].

Assume that ϕ has stable reduction when w is finite. Then the sequence |λ1| ≤ |λ2| ≤
· · · ≤ |λr| for an SMB {λi}i=1,...,r is an invariant of ϕ[un].

Proof of Proposition 2.10. (2) straightforwardly follows from (1). We then show (1). The

“⇐” is straightforward. For “⇒”, the first dot in (1) is the same as Definition 2.8(1).

Clearly, we have li ≥ w(λi) for all i and l1 = w(λ1). Then we proceed by induction. We

fix any i, assume lj = w(λj) for j < i, and show li = w(λi). We assume li > w(λi)

and find a contradiction. There exist elements η1, . . . , ηi ∈ ϕ[un] such that η1, . . . , ηi are

A/un-linearly independent and w(ηj) ≥ li > w(λi) for j = 1, . . . , i.

Put ηj := un−1 ·ϕ ηj for j ≤ i and λj := un−1 ·ϕ λj for j < i. We claim that there is

some k such that ηk and λ1, . . . , λi−1 are A/u-linearly independent. Assume the inverse.

Then we have equations

bl ·ϕ ηl +
i−1∑
j=1

al,j ·ϕ λj = 0

for all l = 1, . . . , i, where al,j ∈ A mod u and bl ∈ A mod u with bl ̸≡ 0 mod u for each

l. For each l, we obtain

ηl = −
i−1∑
j=1

al,j/bl ·ϕ λj ,
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where each al,j/bl ∈ A mod u satisfies bl(al,j/bl) ≡ al,j mod u. Hence λ1, . . . , λi−1 gen-

erate an i-dimensional A/u-vector space, which is absurd.

Next, we claim that ηk and λ1, . . . , λi−1 are A/un-linearly independent. Assume the

inverse and we have

(2.1) ck ·ϕ ηk +
i−1∑
j=1

aj ·ϕ λj = 0,

where each aj ∈ A mod un and ck ∈ A mod un with ck ̸≡ 0 mod un. We may write

ck = c′ku
m with m < n and c′k ∈ A not divisible by u. Then we have um | aj for all j < i,

for otherwise, by (2.1), we have
∑i−1

j=1 aju
n−m ·ϕ λj = 0 with aju

n−m ̸≡ 0 mod un for

some j. We may write aj = a′ju
m for a′j ∈ A. Hence we have by (2.1),

0 = cku
n−1−m ·ϕ ηk +

i−1∑
j=1

aju
n−1−m ·ϕ λj = c′k ·ϕ ηk +

i−1∑
j=1

a′j ·ϕ λj

with c′k ∈ A not divisible by u. This contradicts that ηk and λ1, . . . , λi−1 are A/u-linearly

independent. We have obtained A/un-linearly independent elements λ1, . . . , λi−1, ηk such

that w(ηk) ≥ li > w(λi). This contradicts Definition 2.8(2).

In the remainder of this subsection, we construct an SMB of ϕ[un] for any positive

integer n.

Lemma 2.11. Let {λi}i=1,...,r be an SMB of ϕ[un]. For each i and a ∈ A with a ̸≡ 0

mod un, the element λi has the largest valuation among the roots λ of ϕa(X)−a ·ϕ λi such
that λ ∈ ϕ[un].

Proof. Let λ be a root of ϕa(X) − a ·ϕ λi such that λ ∈ ϕ[un]. Assume w(λ) > w(λi).

It suffices to show that λ1, . . . , λi−1, λ are A/un-linearly independent because this implies

that the inequality w(λ) > w(λi) contradicts Definition 2.8(2). Assume that there exist

bj ∈ A mod un with bi ̸≡ 0 such that bi ·ϕ λ +
∑

j<i bj ·ϕ λj = 0. Let c be the minimal

common multiple of a and bi such that c = b′ibi = a′a for some b′i and a
′ ∈ A. Consider

the equation b′i ·ϕ
(
bi ·ϕ λ+

∑
j<i bj ·ϕ λj

)
= 0. Since b′ibi ·ϕ λ = a′a ·ϕ λ = a′a ·ϕ λi = c ·ϕ λi,

we have

(2.2) c ·ϕ λi +
∑
j<i

b′ibj ·ϕ λj = 0.

We have un ∤ c, for otherwise one of a or bi is divisible by un. Hence the nonzero coefficients

in the equation (2.2) contradict that λ1, . . . , λi are A/u
n-linearly independent.

Corollary 2.12. With the notation in the lemma, for each i and a ∈ A being a power of

u, the element λi has the largest valuation among the roots of ϕa(X)− a ·ϕ λi.
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Proposition 2.13. Let {λi}i=1,...,r be an SMB of ϕ[un].

(1) For each i, let λ′i be a root of ϕu(X)−λi having the largest valuation. Then {λ′i}i=1,...,r

is an SMB of ϕ[un+1].

(2) The family of elements {u ·ϕ λi}i=1,...,r is an SMB of ϕ[un−1].

Proof. (1) We check Definition 2.8(1) using induction on i. The base case is clear. Assume

λ′1, . . . , λ
′
i−1 are A/un+1-linearly independent. Assume conversely that there are aj ∈ A

mod un+1 with ai ̸≡ 0 such that
∑i

j=1 aj ·ϕ λ′j = 0. For j = 1, . . . , i, since u ·ϕ λ′j = λj and

λ1, . . . , λi are A/u
n-linearly independent, we have uaj ≡ 0 mod un+1 and hence un | aj .

There are bj ∈ A with bi ̸≡ 0 mod u such that aj = bju
n for all j. Hence

0 =
i∑

j=1

aj ·ϕ λ′j =
i∑

j=1

bju
n−1 ·ϕ λj

with biu
n−1 not divisible by un, which is absurd.

As for Definition 2.8(2), we show w(λ′i) ≥ w(λ) for each λ ∈ ϕ[un+1] such that

λ′1, . . . , λ
′
i−1, λ are A/un+1-linearly independent. Notice u ·ϕ λ ∈ ϕ[un] and that the ele-

ments λ1, . . . , λi−1, u ·ϕ λ are A/un-linearly independent. We have w(λi) ≥ w(u ·ϕ λ) as

{λi}i=1,...,r is an SMB of ϕ[un]. Note that w(λ′i) is the largest among the valuations of

roots of ϕu(X)−λi. By comparing the Newton polygons of ϕu(X)−λi and ϕu(X)−u ·ϕλ,
we have w(λ′i) ≥ w(λ).

(2) It is straightforward to check Definition 2.8(1). Let λ be an element of ϕ[un−1] such

that u·ϕλ1, . . . , u·ϕλi−1, λ are A/un−1-linearly independent. To show w(u·ϕλi) ≥ w(λ), we
assume conversely w(u·ϕλi) < w(λ). By comparing the Newton polygons of ϕu(X)−u·ϕλi
and ϕu(X) − λ, there is a root λ′ of ϕu(X) − λ such that w(λ′) > w(λi). We have

λ′ ∈ ϕ[un] as all roots of ϕu(X)−λ belong to ϕ[un]. Similar to the proof of (1), one shows

that λ1, . . . , λi−1, λ
′ are A/un-linearly independent. Hence the inequality w(λ′) > w(λi)

contradicts that {λi}i=1,...,r is an SMB of ϕ[un].

We can find an SMB of ϕ[u] in the following way. Put

λ1,1 := an element in ϕ[u] \ {0} with the largest valuation,

λi,1 := an element in ϕ[u] \
⊕
j<i

(A/u) ·ϕ λj,1 with the largest valuation(2.3)

for i = 2, 3, . . . , r. Since A/u is a field, the elements λi,1 for i = 1, . . . , r are A/u-linearly

independent and form an SMB of ϕ[u]. Applying the proposition, we have

Corollary 2.14. Let {λi,1}i=1,...,r be an SMB of ϕ[u] defined above. Inductively, let λi,j

be a root of ϕu(X)− λi,j−1 having the largest valuation for each i and each integer j ≥ 2.

Then for each positive integer n, we have that {λi,n}i=1,...,r is an SMB of ϕ[un].
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3. Relations between SMBs, the infinite prime case

Let w denote an infinite prime, | − | the absolute value in (F1) and {ωi}i=1,...,r an SMB

of Λ throughout this section. For a positive integer n and a finite prime u of A, we study

the relations between SMBs of Λ and those of ϕ[un].

Lemma 3.1. Let a be an element in A. For ω =
∑

j ajωj ∈ Λ with aj ∈ A, let i be an

index so that |aiωi| = |ω|, i.e., |aiωi| = maxj{|ajωj |}. Assume deg(ai) < deg(a). Then

we have ∣∣∣eϕ (ω
a

)∣∣∣ = ∣∣∣eϕ (aiωi
a

)∣∣∣ .
Proof. We have

eϕ

(ω
a

)
=
ω

a

∏
µ∈Λ\{0}

(
1− ω

aµ

)
.

Its absolute value is ∣∣∣ω
a

∣∣∣ · ∏
µ∈Λ\{0}
|aµ|≤|ω|

∣∣∣∣1− ω

aµ

∣∣∣∣ .
For µ ∈ Λ satisfying |aµ| < |ω|, we have by the ultrametric inequality∣∣∣∣1− ω

aµ

∣∣∣∣ = ∣∣∣∣ ωaµ
∣∣∣∣ = ∣∣∣∣aiωiaµ

∣∣∣∣ = ∣∣∣∣1− aiωi
aµ

∣∣∣∣ .
Next, for µ ∈ Λ satisfying |aµ| = |ω| = |aiωi|, we show∣∣∣∣1− ω

aµ

∣∣∣∣ = ∣∣∣∣1− aiωi
aµ

∣∣∣∣ = 1.

It suffices to show

|ω − aµ| = |ω| and |aiωi − aµ| = |aiωi|.

Since |ai| < |a|, we have µ belonging to
⊕

j<iAωj , for otherwise we have |aµ| ≥ |aωi| >
|aiωi| by Proposition 2.5(2). Applying Proposition 2.5(2) to |ω − aµ| and |aiωi − aµ|, we
obtain the desired equalities.

Corollary 3.2. Let a be an element in A.

(1) For any i = 1, . . . , r and any ai ∈ A satisfying deg(ai) < deg(a), we have∣∣∣eϕ (aiωi
a

)∣∣∣ = ∣∣∣aiωi
a

∣∣∣ · ∏
µ∈Λ\{0}

|aµ|<|aiωi|

|aiωi|/|aµ|.

(2) For any positive integers i, j ≤ r, let ai and aj be elements in A with degrees strictly

smaller than that of a. Assume |ajωj | ≤ |aiωi|. Then∣∣∣eϕ (ajωj
a

)∣∣∣ ≤ ∣∣∣eϕ (aiωi
a

)∣∣∣ .
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(3) With the notation in the lemma, we have∣∣∣eϕ (ω
a

)∣∣∣ = max
j

{∣∣∣aj ·ϕ eϕ (ωj
a

)∣∣∣} .
(4) For any positive integer i ≤ r and b ∈ A satisfying deg(b) < deg(a), we have

|b| ·
∣∣∣eϕ (ωi

a

)∣∣∣ ≤ ∣∣∣b ·ϕ eϕ (ωi
a

)∣∣∣ .
Proof. (1) has been shown in the proof of the lemma. As for (2), by the assumption, we

have

(3.1)
{
µ ∈ Λ | |aµ| < |ajωj |

}
⊂
{
µ ∈ Λ | |aµ| < |aiωi|

}
.

If µ satisfies |aµ| < |ajωj |, we have |ajωj |/|aµ| ≤ |aiωi|/|aµ|. Combining this inequality

and (3.1), we have the desired inequality by (1). For (3), as a ·ϕ eϕ(ω) = eϕ(aω) for any

a ∈ A and any ω ∈ C∞, it remains to show∣∣∣eϕ (ω
a

)∣∣∣ = max
j

{∣∣∣eϕ (ajωj
a

)∣∣∣} .
This equality follows from Lemma 3.1 and (2). As for (4), note |ωi| < |bωi|. One can show

(4) similar to the proof of (2).

Theorem 3.3. For any finite prime u of A and any positive integer n, the family of

elements {eϕ(ωi/un)}i=1,...,r is an SMB of ϕ[un].

Proof. Put λi = eϕ(ωi/u
n) for all i. Note that ω1/u

n, . . . , ωr/u
n are A/un-linearly inde-

pendent as elements in u−nΛ/Λ. By the A/un-module isomorphism Eϕ : u−nΛ/Λ→ ϕ[un]

induced by eϕ, we have that λ1, . . . , λr are A/u
n-linearly independent.

Fix a positive integer i ≤ r. To check Definition 1.1(2), we show that |λi| is minimal

among the absolute values of elements in ϕ[un]\
⊕

j<i(A/u
n) ·ϕ λj (in ϕ[un]\{0} if i = 1).

Put λ =
∑

j aj ·ϕ λj with aj ∈ A mod un such that there is ak ̸≡ 0 for some k ≥ i. We

show |λi| ≤ |λ|. Without loss of generality, we assume that deg(aj) < deg(un) for any j.

Let l be an index so that |alωl| =
∣∣∑

j ajωj
∣∣. By Corollary 3.2(3), we have

|λ| =
∣∣al ·ϕ λl∣∣.

As |akωk| ≤ |alωl|, Corollary 3.2(2) implies∣∣∣eϕ (akωk
un

)∣∣∣ ≤ ∣∣∣eϕ (alωl
un

)∣∣∣ ,
hence |ak ·ϕ λk| ≤ |al ·ϕ λl|. As |ωi| ≤ |ωk|, Corollary 3.2(2) also implies |λi| ≤ |λk|. By

Corollary 3.2(4), we have |ak| · |λk| ≤ |ak ·ϕ λk|. Combining the equality and inequalities,

we have

|λi| ≤ |λk| ≤ |ak| · |λk| ≤ |ak ·ϕ λk| ≤ |al ·ϕ λl| = |λ|.
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Remark 3.4. We have shown in the above proof that |λ1| is minimal among the absolute

values of nonzero elements in ϕ[un]. Let {λ′i}i=1,...,r be an SMB of ϕ[un]. By Theorem 3.8

below, we know that there exists an SMB {ω′
i}i=1,...,r of Λ such that eϕ(ω

′
i/u

n) = λ′i for

all i. Hence λ′1 has the minimal absolute value among elements in ϕ[un] \ {0}.

Corollary 3.5. Let {λi}i=1,...,r be an SMB of ϕ[un].

(1) If n is large enough so that |un| ≥ |ωr|/|ω1|, then for i = 1, . . . , r, we have |λi|·|un| =
|ωi|.

(2) For any positive integer n, we have |λr|/|λ1| ≥ |ωr|/|ω1|.

(3) If n is large enough so that |un| > |ωr|/|ω1|, then we have |λi| < |ω1| for i = 1, . . . , r.

Proof. We show (1). Fix i to be one of 1, . . . , r. Corollary 3.2(1) implies

(3.2)
∣∣∣eϕ ( ωi

un

)∣∣∣ = ∣∣∣ ωi
un

∣∣∣ · ∏
µ∈Λ\{0}
|unµ|<|ωi|

|ωi|/|unµ|.

For any µ ∈ Λ, we have

|unµ| ≥ |unω1| ≥ |ωr| ≥ |ωi|

by the hypothesis. Hence (3.2) implies∣∣∣eϕ ( ωi
un

)∣∣∣ = ∣∣∣ ωi
un

∣∣∣ .
By Theorem 3.3, the family {eϕ(ωi/un)}i=1,...,r is an SMB of ϕ[un]. Hence we have

(3.3) |λi| =
∣∣∣eϕ ( ωi

un

)∣∣∣ for any i

by Proposition 2.10(2). (1) follows. Notice that (3.2) implies∣∣∣eϕ (ω1

un

)∣∣∣ = ∣∣∣ω1

un

∣∣∣ and
∣∣∣eϕ ( ωi

un

)∣∣∣ ≥ ∣∣∣ ωi
un

∣∣∣ for any i.

(2) follows from (3.3). Since we know |λr| = |ωr|/|un| by (1), we have

|λi| ≤ |λr| = |ωr|/|un| < |ωr|/(|ωr|/|ω1|) = |ω1|

and (3) follows.

Remark 3.6. By Corollary 3.5(1) and (2), we have |λi| · |un| = |ωi| if n is large enough so

that |un| ≥ |λr|/|λ1|.
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Put B := {ω ∈ C∞ | |ω| < |ω1|}. Since B ∩ Λ = ∅, the exponential function eϕ is

injective on B. For any ω ∈ C∞, we have

(3.4) |eϕ(ω)| = |ω| ·
∏

µ∈Λ\{0}
|µ|≤|ω|

∣∣∣∣1− ω

µ

∣∣∣∣ .
Hence |eϕ(ω)| = |ω| for ω ∈ B. This implies eϕ(B) ⊂ B. Put C := eϕ(B). There

is an inverse logϕ : C → B of eϕ defined by a power series with coefficients in K and

eϕ : B ⇄ C : logϕ are inverse to each other.

Lemma 3.7. (1) We have C = B.

(2) We have the following maps which are inverse to each other

eϕ : B ∩ L⇄ B ∩ ϕ[un] : logϕ,

where

L :=

{∑
i

ai(ωi/u
n)
∣∣∣ ai ∈ A with deg(ai) < deg(un)

}
is a set of representatives of all elements in u−nΛ/Λ.

(3) For any λ ∈ B ∩ ϕ[un], we have | logϕ(λ)| = |λ|.

Proof. We show (1) using a property of the image of the open disk B under the power

series eϕ. Let ci be elements in C∞ so that∑
i≥1

ciω
i := ω

∏
µ∈Λ\{0}

(1− ω/µ) = eϕ(ω).

We first calculate the minimal integer d such that |cd||ωd1 | is maximal among |ci||ωi1| for
all i, i.e., d is the Weierstrass degree of eϕ on B. Clearly c1 = 1. As |ω1/µ| ≤ 1 for any

µ ∈ Λ \ {0}, we have the following inequalities

|ci||ωi1| ≤ sup
µj∈Λ\{0}

|ω1| ·
∣∣∣∣ i−1∏
j=1

ω1/µj

∣∣∣∣
 ≤ |ω1| = |c1||ω1|

for integers i ≥ 2. Hence d = 1. By [2, Theorem 3.15], we have C = eϕ(B) = B.

As we have bijections eϕ : B → B and eϕ : L → ϕ[un], (2) follows. As for (3), by (2),

we have logϕ(λ) ∈ B∩L and eϕ(logϕ(λ)) = λ. Hence we have | logϕ(λ)| = |λ| by (3.4).

Let {λi}i=1,...,r denote an SMB of ϕ[un]. Assume that the positive integer n is large

enough so that |un| > |ωr|/|ω1|. By Corollary 3.5(3) and Lemma 3.7(1), for each i, we

have λi ∈ B ∩ ϕ[un] = C ∩ ϕ[un] and we put ω′
i := logϕ(λi).
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Theorem 3.8. The family {unω′
i}i=1,...,r is an SMB of Λ.

We need a lemma in the proof.

Lemma 3.9. Let {ηi}i=1,...,r be a family of elements in u−nΛ. It is an SMB of u−nΛ if

and only if {unηi}i=1,...,r is an SMB of Λ.

Proof. For any ai ∈ A, we have∣∣∣∣∣∑
i

aiu
nηi

∣∣∣∣∣ = |un| ·
∣∣∣∣∣∑
i

aiηi

∣∣∣∣∣ .
Then the lemma follows from Proposition 2.5.

Proof of Theorem 3.8. By Lemma 3.9, it suffices to show that the family of elements

{ω′
i}i=1,...,r is an SMB of u−nΛ. To check the first dot in Proposition 2.4(1), we show that

ω′
1, . . . , ω

′
r are A-linearly independent. Assume that there exist nonzero ai ∈ A such that∑

i aiω
′
i = 0. We may assume un ∤ ai for some i, for otherwise we divide both sides of

the equation
∑

i aiω
′
i = 0 by some power of u. Note that the map eϕ is A/un-linear. As

some ai satisfies ai ̸≡ 0 mod un and λ1, . . . , λr are A/un-linearly independent, we have

eϕ
(∑

i aiω
′
i

)
=
∑

i ai ·ϕ λi ̸= 0. This is absurd.

Next, we check the second dot in Proposition 2.4(1). Let l1 ≤ l2 ≤ · · · ≤ lr be the

invariant of u−nΛ as in Proposition 2.4(2). Fix i to be a positive integer ≤ r. It suffices

to show li = |ω′
i|. We have li ≤ |ω′

i|. Let us assume li < |ω′
i|. As λi ∈ B ∩ ϕ[un], we

have |ω′
i| = |λi| by Lemma 3.7(3). Hence li < |ω′

i| = |λi| < |ω1|. By Proposition 2.4(1),

there is an SMB {ηj}j=1,...,r of u−nΛ such that |ηi| = li < |ω1|. As |ηi| < |ω1|, we know

|eϕ(ηi)| = |ηi| from (3.4). We have

|eϕ(ηi)| = |ηi| = li < |ω′
i| = |λi|

and hence |eϕ(ηi)| < |λi|. On the other hand, note that {unηj}j=1,...,r is an SMB of Λ by

Lemma 3.9. By Theorem 3.3, the elements eϕ(ηj) for j = 1, . . . , r form an SMB of ϕ[un].

By Proposition 2.10(2), this contradicts |eϕ(ηi)| < |λi|.

Finally, we give applications of Theorems 3.3 and 3.8.

Proposition 3.10. If n is large enough so that |un| > |ωr|/|ω1|, then we have

K(Λ) = K(ϕ[un]),

where K(Λ) (resp. K(ϕ[un])) is the extension of K generated by all elements in Λ (resp. in

ϕ[un]).
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Proof. (cf. the proof of [12, Proposition 2.1]) Note that eϕ is given by a power series

with coefficients in K. For any x ∈ Ksep, we have eϕ(x) ∈ K(x) since the field K(x) is

complete. Since the exponential map eϕ induces a bijection u−nΛ/Λ → ϕ[un], for any λ

in ϕ[un], there exists ω ∈ u−nΛ such that eϕ(ω) = λ. This implies K(λ) ⊂ K(ω) and

K(ϕ[un]) ⊂ K(Λ).

Note that logϕ is given by a power series with coefficients in K. For any y ∈ C ∩Ksep,

we similarly have logϕ(y) ∈ K(y). Let {λi}i=1,...,r be an SMB of ϕ[un]. As |un| > |ωr|/|ω1|,
by Theorem 3.8, the elements unω′

i for i = 1, . . . , r form an SMB of Λ, where ω′
i = logϕ(λi).

Since K(ω′
i) ⊂ K(λi) for each i, we have K(Λ) ⊂ K(ϕ[un]).

Combining Corollary 3.5(2), Theorem 3.8 and Proposition 3.10, we have

Corollary 3.11. Let l be a positive integer and {ηi}i=1,...,r an SMB of ϕ[ul]. Let {λi}i=1,...,r

be an SMB of ϕ[un]. If n is large enough so that |un| > |ηr|/|η1|, then we have

(1) the family {un logϕ(λi)}i=1,...,r is an SMB of Λ;

(2) K(Λ) = K(ϕ[un]).

Proposition 3.12. Let {λi}i=1,...,r be an SMB of ϕ[un]. We have∣∣∣∣∣∑
i

ai ·ϕ λi

∣∣∣∣∣ = max
i

{
|ai ·ϕ λi|

}
for any ai ∈ A mod un.

Proof. Without loss of generality, we assume deg(ai) < deg(un) for all i. Assume first

that n is large enough so that |un| > |λr|/|λ1| (see Corollary 3.5(2)). By Theorem 3.8, the

elements unω′
i for i = 1, . . . , r form an SMB of Λ, where ω′

i = logϕ(λi). By Corollary 3.2(3),

we have ∣∣∣∣∣eϕ
(∑

i

aiω
′
i

)∣∣∣∣∣ = max
i

{
|ai ·ϕ eϕ(ω′

i)|
}
.

As eϕ
(∑

i aiω
′
i

)
=
∑

i ai ·ϕ λi, the claim follows.

For any n, let n′ be an integer ≥ n so that |un′ | > |λr|/|λ1|. By Proposition 2.13(1),

there is an SMB {λ′i}i=1,...,r of ϕ[u
n′
] such that un

′−n ·ϕ λ′i = λi for all i. Then the desired

equation for {λi}i=1,...,r follows from that for {λ′i}i=1,...,r.

Proposition 3.13. (cf. Lemma 2.6) Let {λi}i=1,...,r be an SMB of ϕ[un] such that |λ1| =
· · · = |λs| < |λs+1| for some positive integer s.

(1) The extension of K generated by λ1, . . . , λs is at worst tamely ramified.
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(2) For an element σ in the wild ramification subgroup Gal(K(ϕ[un])/K)1, we have

σ(λj) = λj for j = 1, . . . , s.

Proof. (2) straightforwardly follows from (1). We show (1). Let n′ be an integer satisfying

n′ ≥ n and |un′ | > |λr|/|λ1|. By Proposition 2.13(1), we know that there exists an

SMB {λ′i}i=1,...,r of ϕ[un
′
] such that un

′−n ·ϕ λ′i = λi for all i. By Corollary 2.12, we

have |λ′1| = · · · = |λ′s| < |λ′s+1|. By Corollary 3.11(1), we know that there exists an

SMB {ωi}i=1,...,r of Λ such that eϕ(ωi/u
n′
) = λ′i for all i. Corollary 3.5 implies that

|ω1| = · · · = |ωs| < |ωs+1|. As eϕ(ωi/un) = λi, we have K(λi) ⊂ K(ωi) for all i. Then the

result follows from Lemma 2.6.

4. Relations between SMBs, the finite prime case

Throughout this section, let w denote a finite prime and assume that ϕ has stable reduction

over K. Assume that the reduction of ϕ has rank r′ < r unless otherwise specified. Let

{ω0
i }i=r′+1,...,r be an SMB of Λ. Let | − | denote the function in (F2) in Section 1.1 and

put |a|∞ := qdeg(a) for any a ∈ A. For a positive integer n and a finite prime u of A, we

study the relations between SMBs of ψ[un], those of Λ, and those of ϕ[un].

First, we are concerned with the valuations of the elements in the A-module u−nΛ,

i.e., the roots of ψun(X)− ω for all ω ∈ Λ.

Lemma 4.1. Let a be an element in A.

(1) Each root of ψa(X) has valuation ≥ 0. Moreover, all nonzero roots of ψa(X) have

valuation = 0 if and only if w(a) = 0.

(2) For a nonzero element ω ∈ Λ, each root of ψa(X)− ω has valuation < 0.

(3) An element ω ∈ a−1Λ belongs to ψ[a] if and only if it has valuation ≥ 0.

Proof. Put g := r′ · deg(a), a0 := a,
∑g

i=0 aiX
qi := ψa(X) and Pi = (qi, w(ai)) for

i = 0, . . . , g. As w(ai) ≥ 0 and w(ag) = 0, the segments in the Newton polygon of ψa(X)

have slopes ≤ 0. If w(a0) = 0, then the Newton polygon of ψa(X) consists of exactly

one segment P0Pg which has slope 0. Hence each root of ψa(X) has valuation = 0. If

w(a0) > 0, then the left-most segment in the Newton polygon of ψa(X) has negative slope.

Hence some nonzero root of ψa(X) has valuation > 0.

As for (2), put Q := (0, w(ω)). As w(ω) < 0, w(ai) ≥ 0 for all i, and w(ag) = 0,

the Newton polygon of ψa(X) − ω consists of exactly one segment QPg whose slope is

−w(ω)/qg > 0. Hence (2) follows. From (1) and (2), we know (3).
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Fix a root ωi of ψun(X) − ω0
i for i = r′ + 1, . . . , r. The elements ωr′+1, . . . , ωr are

A-linearly independent. For all ai ∈ A, we have

|un|∞ ·

∣∣∣∣∣
r∑

i=r′+1

ai ·ψ ωi

∣∣∣∣∣ =
∣∣∣∣∣

r∑
i=r′+1

aiu
n ·ψ ωi

∣∣∣∣∣ =
∣∣∣∣∣

r∑
i=r′+1

ai ·ψ ω0
i

∣∣∣∣∣ .
Hence, by Proposition 2.5, we have

(4.1)

∣∣∣∣∣
r∑

i=r′+1

ai ·ψ ωi

∣∣∣∣∣ = max
i=r′+1,...,r

{
|ai ·ψ ωi|

}
for any ai ∈ A.

In the remainder of this section, let {ωi}i=1,...,r′ be an SMB of ψ[un] and ωr′+1, . . . , ωr

be elements in u−nΛ defined as above. The family {ωi}i=1,...,r form an A/un-basis of

u−nΛ/Λ. Next, we study the relations between {ωi}i=1,...,r and SMBs of ϕ[un].

Lemma 4.2. (1) For all ai ∈ A, we have∣∣∣∣∣∑
i

ai ·ψ ωi

∣∣∣∣∣ =

∣∣∑

i≤r′ ai ·ψ ωi
∣∣ ≤ 0 all ai = 0 for i > r′,∣∣∑

i>r′ ai ·ψ ωi
∣∣ > 0 some ai ̸= 0 for i > r′.

(2) Let ai be elements in A for i = 1, . . . , r. Assume either w(u) = 0, or some ai is

nonzero for i > r′. Then we have∣∣∣∣∣∑
i

ai ·ψ ωi

∣∣∣∣∣ = max
i

{
|ai ·ψ ωi|

}
.

Proof. (1) Since
∑

i≤r′ ai ·ψ ωi ∈ ψ[un], we have
∣∣∑

i≤r′ ai ·ψ ωi
∣∣ ≤ 0 by Lemma 4.1(3).

Since un ·ψ ωi for all i = r′+1, . . . , r are elements in Λ, we have |un|∞ · |ωi| > 0 and hence

|ai|∞ · |ωi| > 0 if ai is nonzero. Hence, by (4.1) and the ultrametric inequality, we have∣∣∑
i ai ·ψ ωi

∣∣ = ∣∣∑i>r′ ai ·ψ ωi
∣∣ > 0 if some ai for i > r′ is nonzero. (1) follows.

(2) If some ai ̸= 0 for i > r′, the desired equality follows from (1) and (4.1). By

Lemma 4.1(1), the assumption w(u) = 0 implies that the elements in ψ[un] have valuation

0. Hence
∣∣∑

i≤r′ ai ·ψ ωi
∣∣ = 0 and |ai ·ψ ωi| = 0 for all i ≤ r′. The desired equality similarly

follows.

Recall for any ω ∈ Cw, we have

eϕ(ω) = ω
∏

µ∈Λ\{0}

(
1− ω

µ

)
.

Its valuation is

(4.2) w(eϕ(ω)) = w(ω) +
∑

µ∈Λ\{0}
w(µ)≥w(ω)

w

(
1− ω

µ

)
.

For certain ω =
∑

i ai ·ψ ωi ∈ u−nΛ, we are to calculate |eϕ(ω)|.
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Lemma 4.3. If ω =
∑

i≤r′ ai ·ψ ωi with ai ∈ A mod un, we have

|eϕ(ω)| = |ω|.

Proof. By (4.2), it suffices to show w(1 − ω/µ) = 0 for each µ ∈ Λ. Notice w(ω) ≥ 0 by

Lemma 4.2(1). Since w(µ) < 0 for any µ ∈ Λ, we have w(1−ω/µ) = 0 by the ultrametric

inequality.

Lemma 4.4. (cf. Lemma 3.1) For ω =
∑

j aj ·ψ ωj ∈ u−nΛ, assume some aj for j > r′

is nonzero. Let i be an integer > r′ such that |ω| = |ai ·ψ ωi| = maxj{|aj ·ψ ωj |} (by

Lemma 4.2(2)). Assume deg(ai) < deg(un). Then we have

|eϕ(ω)| = |eϕ(ai ·ψ ωi)|.

Proof. By (4.2), it suffices to show

w

(
1− ω

µ

)
= w

(
1−

ai ·ψ ωi
µ

)
for each µ ∈ Λ with w(µ) ≥ w(ω). If w(µ) > w(ω), then we have by the ultrametric

inequality that

w

(
1− ω

µ

)
= w

(
ω

µ

)
= w

(
ai ·ψ ωi
µ

)
= w

(
1−

ai ·ψ ωi
µ

)
.

Next, we show

w

(
1− ω

µ

)
= w

(
1−

ai ·ψ ωi
µ

)
= 0

if w(µ) = w(ω) = w(ai ·ψ ωi). It suffices to show

w(ω − µ) = w(ω) and w(ai ·ψ ωi − µ) = w(ai ·ψ ωi).

As deg(ai) < deg(un), we have

|ω| = |ai ·ψ ωi| = |ai|∞ · |ωi| < |un|∞ · |ωi| = |ω0
i |

and hence |µ| = |ω| < |ω0
i |. This implies µ ∈

⊕i−1
j=r′+1A ·ψ ω0

j , for otherwise we have

|µ| ≥ |ω0
i | by Proposition 2.5(2). Applying Lemma 4.2(2) to |ω − µ| and |ai ·ψ ωi − µ|, we

obtain the desired equalities.

Corollary 4.5. (cf. Corollary 3.2)

(1) With the notation in Lemma 4.4, we have

w(eϕ(ω)) = w(ω) +
∑

µ∈Λ\{0}
w(µ)>w(ω)

(w(ω)− w(µ)).
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Particularly, for any i = 1, . . . , r and any ai ∈ A \ {0} satisfying deg(ai) < deg(un),

we have

w(eϕ(ai ·ψ ωi)) = w(ai ·ψ ωi) +
∑

µ∈Λ\{0}
w(µ)>w(ai·ψωi)

(w(ai ·ψ ωi)− w(µ)).

(2) For any positive integers i, j ≤ r, let ai and aj be elements in A with degree strictly

smaller than that of a. Assume |aj ·ψ ωj | ≤ |ai ·ψ ωi|. Then

|eϕ(aj ·ψ ωj)| ≤ |eϕ(ai ·ψ ωi)|.

(3) With the notation in Lemma 4.4, we have

|eϕ(ω)| = max
j

{
|aj ·ϕ eϕ(ωj)|

}
.

(4) For any positive integer i = r′ + 1, . . . , r and b ∈ A satisfying deg(b) < deg(a), we

have

|b|∞ · |eϕ(ωi)| ≤ |b ·ϕ eϕ(ωi)|.

Proof. If i ≤ r′, then we have w(eϕ(ai ·ψ ωi)) = w(ai ·ψ ωi) by Lemma 4.3. The rest of (1)

has been shown in Lemma 4.4. Similar to the proof of Corollary 3.2(2) (resp. (3)), the

claim (2) (resp. (3)) follows from (1) (resp. Lemma 4.4 and (2)).

We show (4). Note b ·ϕ eϕ(ωi) = eϕ(b ·ψ ωi). By (1), the desired inequality in (4) is

equivalent to

(4.3)

|b|r′∞ ·

w(ωi) + ∑
µ∈Λ\{0}

w(µ)>w(ωi)

(w(ωi)− w(µ))

 ≥ w(b ·ψ ωi) + ∑
µ∈Λ\{0}

w(µ)>w(b·ψωi)

(w(b ·ψ ωi)−w(µ)).

By Lemma 2.1(2), we may write the left in this inequality to be

w(b ·ψ ωi) +
∑

µ∈Λ\{0}
w(µ)>w(ωi)

(w(b ·ψ ωi)− w(b ·ψ µ)).

Then (4.3) follows from the inclusion{
b ·ψ µ ∈ b ·ψ Λ | w(b ·ψ µ) > w(b ·ψ ωi)

}
⊂ {µ ∈ Λ | w(µ) > w(b ·ψ ωi)}.

Theorem 4.6. (cf. Theorem 3.3) For any finite prime u of A and any positive integer

n, let {ωi}i=1,...,r be the elements in u−nΛ defined before Lemma 4.2. Then the family of

elements {eϕ(ωi)}i=1,...,r is an SMB of ϕ[un].
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Proof. Put λi := eϕ(ωi) for all i. Since ω1, . . . , ωr form an A/un-basis of u−nΛ/Λ, their

images under the A/un-module isomorphism Eϕ : u−nΛ/Λ → ϕ[un] are A/un-linearly in-

dependent.

We check Definition 1.1(2). Fix a positive integer i ≤ r. For λ =
∑

j aj ·ϕ λj with aj ∈
A mod un such that λ1, . . . , λi−1, λ are A/un-linearly independent, we show |λi| ≤ |λ|.
Without loss of generality, we assume deg(aj) < deg(un) for any j.

Assume first i ≤ r′. If aj = 0 for all j > r′, the desired inequality follows from

{ωj}j=1,...,r′ being an SMB of ψ[un] and Lemma 4.3. If aj ̸= 0 mod un for some j > r′,

we can apply Corollary 4.5(1), and we have
∣∣∑

j aj ·ψ ωj
∣∣ ≤ ∣∣∑

j aj ·ϕ λj
∣∣. We know∣∣∑

j aj ·ψ ωj
∣∣ > 0 from Lemma 4.2(1). By Lemmas 4.2(1) and 4.3, we have |λi| = |ωi| ≤ 0.

Hence

|λi| = |ωi| ≤ 0 <

∣∣∣∣∑
j

aj ·ψ ωj
∣∣∣∣ ≤ ∣∣∣∣∑

j

aj ·ϕ λj
∣∣∣∣.

As for the case i ≥ r′ + 1, note that there is ak ̸= 0 for some k ≥ i as λ1, . . . , λi−1, λ

are A/un-linearly independent. Similar to the proof of Theorem 3.3, one can apply Corol-

lary 4.5(2), (3) and (4) to show the inequality |λi| ≤ |λ|.

Corollary 4.7. (cf. Corollary 3.5) Let {λi}i=1,...,r be an SMB of ϕ[un].

(1) If n is large enough so that |un|∞ ≥ |ω0
r |/|ω0

r′+1|, then for i = 1, . . . , r, we have

|λi| = |ωi|.

(2) For any positive integer n, we have |λr|/|λr′+1| ≥ |ω0
r |/|ω0

r′+1|.

(3) If n is large enough so that |un|∞ > |ω0
r |/|ω0

r′+1|, then we have |λi| < |ω0
r′+1| for

i = 1, . . . , r.

Proof. The equation |λi| = |ωi| for i = 1, . . . , r′ follows from Lemma 4.3. Similar to the

proof of Corollary 3.5, one can apply Corollary 4.5(1), Theorem 4.6 and Proposition 2.10(2)

to show the rest of the lemma.

Put B := {ω ∈ Cw | |ω| < |ω0
r′+1|}. Since B ∩ Λ = ∅, the exponential function eϕ

is injective on B. By (4.2), we have |eϕ(ω)| = |ω| for ω ∈ B. This implies eϕ(B) ⊂ B.

Put C := eϕ(B). There is an inverse logϕ : C → B of eϕ defined by a power series with

coefficients in K and eϕ : B ⇄ C : logϕ are inverse to each other.

Lemma 4.8. (cf. Lemma 3.7)

(1) We have C ∩ ϕ[un] = B ∩ ϕ[un].

(2) We have the following maps which are inverse to each other

eϕ : B ∩ L⇄ B ∩ ϕ[un] : logϕ,
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where

L :=

{∑
i

ai ·ψ ωi
∣∣∣ ai ∈ A with deg(ai) < deg(un)

}
is a set of representatives of all elements in u−nΛ/Λ.

(3) For any λ ∈ B ∩ ϕ[un], we have | logϕ(λ)| = |λ|.

Following the strategy of the proof of Lemma 3.7(1), we can show Lemma 4.8(1)

alternatively.

Proof of Lemma 4.8. (1) We know C ∩ ϕ[un] ⊂ B ∩ ϕ[un], which implies #B ∩ ϕ[un] ≥
#C ∩ ϕ[un], where #B ∩ ϕ[un] denotes the cardinality of the set B ∩ ϕ[un]. We show

#C ∩ ϕ[un] ≥ #B ∩ L ≥ #B ∩ ϕ[un] ≥ #C ∩ ϕ[un].

As eϕ is injective on L, we have #B ∩L ≤ #C ∩ ϕ[un] and it remains to show #B ∩L ≥
#B ∩ ϕ[un].

Put Bc := {ω ∈ Cw | |ω| ≥ |ω0
r′+1|}, which is complementary to B in Cw. For any

ω =
∑

j aj ·ψ ωj ∈ Bc ∩ L, there exists aj ̸= 0 for some j > r′, for otherwise we have

|ω| ≤ 0 < |ω0
r′+1| by Lemma 4.2(1). By Corollary 4.5(1), we have

|eϕ(ω)| ≥ |ω| ≥ |ω0
r′+1|.

Hence eϕ(B
c ∩L) ⊂ Bc ∩ ϕ[un]. As eϕ is injective on L, we have #Bc ∩L ≤ #Bc ∩ ϕ[un].

This implies #B ∩ L ≥ #B ∩ ϕ[un], as desired.
(2) The map eϕ : B ∩ L → B ∩ ϕ[un] is injective and is also surjective as #B ∩ L =

#B ∩ ϕ[un]. Hence (2) follows.

(3) By (2), we have logϕ(λ) ∈ B ∩ L and eϕ(logϕ(λ)) = λ. Hence (3) follows from

Lemma 4.3 and Corollary 4.5(1).

Lemma 4.9. Let {λi}i=1,...,r be an SMB of ϕ[un]. We have w(λi) ≥ 0 for i ≤ r′ and

w(λi) < 0 for i > r′.

Proof. For a positive integer j, let {λi,j}i=1,...,r be an SMB of ϕ[uj ] as in Corollary 2.14.

By Proposition 2.10(2), we have w(λi) = w(λi,n) for all i. It suffices to show w(λr′,n) ≥ 0

and w(λr′+1,n) < 0.

We first show w(λr′,1) ≥ 0 and w(λr′+1,1) < 0. Put d := deg(u), u0 := u,
∑rd

i=0 uiX
qi :=

ϕu(X) and Pi := (qi, w(ui)) for i = 0, . . . , rd. As ϕ has stable reduction, we have w(ui) ≥ 0

for all i, w(ur′d) = 0, and w(ui) > 0 for all i > r′d. Hence the point Pr′d is a vertex of the

Newton polygon of ϕu(X). The segments on the left (resp. right) of Pr′d have slopes ≤ 0

(resp. slopes > 0). Hence there are exactly qr
′d roots with valuations ≥ 0. Here 0 ∈ ϕ[u]

is considered to have valuation > 0.
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We show w(λr′,1) ≥ 0 and w(λr′+1,1) < 0 by induction. By (2.3), we have w(λ1,1) ≥ 0.

Fix a positive integer k ≤ r′ and assume w(λi,1) ≥ 0 for i < k. Then the elements λi,1

for i < k generate an A/u-vector subspace of ϕ[u] containing q(k−1)d elements. Since ϕ

has stable reduction, for any a ∈ A, all coefficients of ϕa(X) have valuation ≥ 0. By

the ultrametric inequality, we have w(a ·ϕ λi,1) ≥ 0 for any a ∈ A mod u and i < k.

Hence all the elements in the vector subspace have valuations ≥ 0. Since q(k−1)d < qr
′d,

there are elements in ϕ[u] \
⊕

i<k(A/u) ·ϕ λi,1 having valuation ≥ 0. By (2.3), we have

w(λk,1) ≥ 0. For k = r′ + 1, we have the same inductive hypothesis as above. However,

since q(k−1)d = qr
′d, each element in ϕ[u] \

⊕
i<k(A/u) ·ϕ λi,1 has valuation < 0 and hence

w(λr′+1,1) < 0.

Next, we show w(λr′,n) ≥ 0 (resp. w(λr′+1,n) < 0) by induction. Assume w(λr′,j−1) ≥ 0

(resp. w(λr′+1,j−1) < 0). By Corollary 2.14, the element λr′,j (resp. λr′+1,j) is a root of

ϕu(X)− λr′,j−1 (resp. ϕu(X)− λr′+1,j−1) having the largest valuation. By the induction

hypothesis and the valuations of the coefficients of ϕu(X), the left-most segment in the

Newton polygon of ϕu(X) − λr′,j−1 (resp. ϕu(X) − λr′+1,j−1) has slope ≤ 0 (resp. > 0).

Hence we have w(λr′,j) ≥ 0 and w(λr′+1,j) < 0.

Let {λi}i=1,...,r denote an SMB of ϕ[un]. Assume that the positive integer n is large

enough so that |un|∞ > |ω0
r |/|ω0

r′+1|. By Corollary 4.7(3) and Lemma 4.8(1), for each i,

we have λi ∈ B ∩ ϕ[un] = C ∩ ϕ[un] and we put ω′
i := logϕ(λi).

Theorem 4.10. (cf. Theorem 3.8)

(1) The family of elements {ω′
i}i=1,...,r′ is an SMB of ψ[un].

(2) The family of elements {un ·ψ ω′
i}i=r′+1,...,r is an SMB of Λ.

Proof. (1) To check Definition 1.1(1), we show that the elements ω′
i for i ≤ r′ belong to

ψ[un] and are A/un-linearly independent. By Lemma 4.8(3) and Lemma 4.9, we have

w(ω′
i) = w(λi) ≥ 0 for i ≤ r′. By Lemma 4.1(3), this implies that ω′

i ∈ ψ[un] for

i ≤ r′. Note that Eϕ : u−nΛ/Λ → ϕ[un] is an A/un-module isomorphism induced by eϕ

and eϕ(ω
′
i) = λi. If

∑
i≤r′ ai ·ψω′

i = 0 with ai ∈ A mod un, then we have
∑

i≤r′ ai ·ϕλi = 0.

This implies ai ≡ 0 mod un and hence the desired linear independence.

As {λi}i=1,...,r is an SMB of ϕ[un], we can straightforwardly check Definition 1.1(2)

using Lemma 4.3.

(2) Similar to (1), we can apply Lemmas 4.9, 4.8(3), 4.1(3) to show ω′
i /∈ ψ[un] such

that un ·ψ ω′
i for i > r′ belong to Λ. We check the two dots in Proposition 2.4(1). Let us

show that ω′
r′+1, . . . , ω

′
r are A-linearly independent first. If there exist ai ∈ A such that∑

i>r′ ai ·ψ ω′
i = 0, we can show ai ≡ 0 mod un for all i similar to (1). Assume ai ̸= 0

for some i. Let m be the integer such that um | ai for all i > r′ and um+1 ∤ ai for some
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i. Then there exist bi ∈ A such that ai = biu
m for all i > r′ and bi ̸≡ 0 mod u for some

i. Hence
∑

i>r′ bi ·ψ ω′
i is a root of ψum(X) and we denote this root by ω. On the other

hand,

un ·ψ ω =
∑
i>r′

bi ·ψ
(
un ·ψ ω′

i

)
∈ Λ.

Since Λ∩ ψ[um] = 0, we have un ·ψ ω = 0 and hence ω ∈ ψ[un]. By (1), there exist bi ∈ A
mod un for i ≤ r′ such that ω =

∑
i≤r′ bi ·ψ ω′

i. This equality implies

0 = eϕ

∑
i>r′

bi ·ψ ω′
i −
∑
i≤r′

bi ·ψ ω′
i

 =
∑
i>r′

bi ·ϕ λi −
∑
i≤r′

bi ·ϕ λi.

As some bi ̸≡ 0 mod un, this is absurd.

Finally, we check the second dot in Proposition 2.4(1). Let lr′+1 ≤ · · · ≤ lr denote

the invariant of Λ as in Proposition 2.4(2). Fix i to be a positive integer satisfying

r′ < i ≤ r. It suffices to show li = |un ·ψ ω′
i|. We have li ≤ |un ·ψ ω′

i|. Let us assume

li < |un ·ψ ω′
i|. Since λi ∈ B ∩ ϕ[un], we have |ω′

i| = |λi| by Lemma 4.8(3). Hence

li/|un|∞ < |ω′
i| = |λi| < |ω0

r′+1|. By Proposition 2.4, there is an SMB {η0j }j=r′+1,...,r of Λ

such that |η0i | = li. Let ηj be a root of ψun(X)−η0j for all j (cf. the definition of ωj before

Lemma 4.2). As |ηi| = li/|un|∞ < |ω0
r′+1|, we have |eϕ(ηi)| = |ηi| by (4.2). This implies

|eϕ(ηi)| = |ηi| = li/|un|∞ < |ω′
i| = |λi|.

By Theorem 4.6, the elements eϕ(ω
′
j) for j = 1, . . . , r′ and eϕ(ηj) for j = r′+1, . . . , r form

an SMB of ϕ[un]. By Proposition 2.10(2), this contradicts |eϕ(ηi)| < |λi|.

Proposition 4.11. (cf. Proposition 3.10) If n is large enough so that |un|∞ ≥ |ω0
r |/|ω0

r′+1|,
then we have

K(u−nΛ) = K(ϕ[un]),

where K(u−nΛ) (resp. K(ϕ[un])) is the extension of K generated by all elements in u−nΛ

(resp. in ϕ[un]).

Proof. Note that eϕ is given by a power series with coefficients in K and it induces an

isomorphism Eϕ : u−nΛ/Λ→ ϕ[un]. Similar to the proof of Proposition 3.10, one can show

K(ϕ[un]) ⊂ K(u−nΛ).

Note that logϕ is given by a power series with coefficients in K. For any y ∈ C ∩Ksep,

we have logϕ(y) ∈ K(y). Let {λi}i=1,...,r be an SMB of ϕ[un]. As |un|∞ > |ω0
r |/|ω0

r′+1|,
by Theorem 4.10, the families {ω′

i}i=1,...,r′ and {un ·ψ ω′
i}i=r′+1,...,r are respectively an

SMB of ψ[un] and Λ, where ω′
i = logϕ(λi). Since K(ω′

i) ⊂ K(λi) for each i, it suffices to

show that ω′
i for all i form a generating set of u−nΛ. For any ω ∈ u−nΛ, it is a root of

ψun(X) − un ·ψ ω. Note un ·ψ ω ∈ Λ. Since {un ·ψ ω′
i}i=r′+1,...,r is an SMB of Λ, we have
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un ·ψ ω =
∑

i>r′ ai ·ψ (un ·ψ ω′
i) for some ai ∈ A. Hence

∑
i>r′ ai ·ψ ω′

i is also a root of

ψun(X) − un ·ψ ω. Since {ω′
i}i=1,...,r′ is an SMB of ψ[un], we have

∑
i>r′ ai ·ψ ω′

i − ω =∑
i≤r′ ai ·ψ ω′

i for some ai ∈ A mod un and the claim follows.

Combining Corollary 4.7(2), Theorem 4.10 and Proposition 4.11, we have

Corollary 4.12. (cf. Corollary 3.11) Let l be a positive integer and {ηi}i=1,...,r an SMB of

ϕ[ul]. Let {λi}i=1,...,r be an SMB of ϕ[un]. If n is large enough so that |un|∞ > |ηr|/|ηr′+1|,
then we have

(1) the family {logϕ(λi)}i=1,...,r′ is an SMB of ψ[un];

(2) the family {un ·ψ logϕ(λi)}i=r′+1,...,r is an SMB of Λ;

(3) K(u−nΛ) = K(ϕ[un]).

Proposition 4.13. (cf. Proposition 3.12) Assume w(u) = 0, i.e., u is not divisible by the

prime w. Let {λi}i=1,...,r be an SMB of ϕ[un]. Then we have∣∣∣∣∣∑
i

ai ·ϕ λi

∣∣∣∣∣ = max
i

{
|ai ·ϕ λi|

}
for any ai ∈ A mod un.

Proof. Assume first that n is large enough so that |un|∞ > |ω0
r |/|ω0

r′+1|. By Theorem 4.10,

the families {ω′
i}i=1,...,r′ and {un ·ψ ω′

i}i=r′+1,...,r are respectively an SMB of ψ[un] and Λ,

where ω′
i = logϕ(λi). Without loss of generality, we assume deg(ai) < deg(un). Assume

that ai is nonzero for some i > r′. By Corollary 4.5(3), we have∣∣∣∣∣eϕ
(∑

i

ai ·ψ ω′
i

)∣∣∣∣∣ = max
i

{
|ai ·ϕ eϕ(ω′

i)|
}
.

As eϕ
(∑

i ai ·ψω′
i

)
=
∑

i ai ·ϕλi, the claim follows. If ai = 0 for all i > r′, then
∑

i≤r′ ai ·ψω′
i

belongs to ψ[un]. By Lemma 4.1(1), we have
∣∣∑

i≤r′ ai ·ψ ω′
i

∣∣ = 0 if some ai ̸= 0 and

|ai ·ψ ω′
i| = 0 for all i ≤ r′ if ai ̸= 0. The desired equality follows from Lemma 4.3. Similar

to the proof of Proposition 3.12, the case where n is arbitrary follows from the case where

n is large enough.

Proposition 4.14. (cf. Proposition 3.13) Let u be a finite prime of A not divisible by the

prime w. Let {λi}i=1,...,r be an SMB of ϕ[un] so that |λ1| = · · · = |λs| < |λs+1| for some

positive integer s.

(1) The extension of K generated by λ1, . . . , λs is unramified.
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(2) For an element σ in the ramification subgroup Gal(K(ϕ[un])/K)0, we have σ(λj) =

λj for j = 1, . . . , s.

Proof. (2) straightforwardly follows from (1). We show (1). Notice w(u) = 0. Following

the proof of Lemma 4.9, we know that s = r′ and 0 = w(λ1) = · · · = w(λr′) > w(λr′+1).

Let n′ be an integer satisfying n′ ≥ n and |un′ |∞ > |λr|/|λr′+1|. By Proposition 2.13(1),

we know that there exists an SMB {λ′i}i=1,...,r of ϕ[u
n′
] such that un

′−n ·ϕ λ′i = λi for all i.

By Corollary 4.12, with ω′
i = logϕ(λ

′
i) for all i, we have that the families {ω′

i}i=1,...,r′ and

{un′ ·ψ ω′
i}i=r′+1,...,r are respectively an SMB of ψ[un

′
] and an SMB of Λ. As eϕ(u

n′−n ·ψ
ω′
i) = λi, we have K(λi) ⊂ K(un

′−n ·ψ ω′
i) for all i. Note that {un′−n ·ψ ω′

i}i=1,...,r′ is

an SMB of ψ[un] by Proposition 2.13(2). By [14, Theorem 6.3.1] (initially proved by

Takahashi), the extension of K generated by the elements in ψ[un] is unramified. The

result follows.

We assumed above that each Drinfeld module has stable reduction over K. For a

Drinfeld A-module ϕ over K which does not have stable reduction, it turns out that ϕ is

isomorphic to a Drinfeld module having stable reduction over an at worst tamely ramified

subextension of K(ϕ[u])/K with u not divisible by w.

Proposition 4.15. Let ϕ be a rank r Drinfeld A-module over K which does not necessarily

have stable reduction. Let u be a finite prime of A with w ∤ u. Let r′ be the positive

integer ≤ r so that ϕ is isomorphic to a Drinfeld module having stable reduction over

some extension of K and the reduction has rank r′ ≤ r. Let {λi}i=1,...,r be an SMB of

ϕ[u]. Then bϕb−1 has stable reduction over K(λ1) for b = λ−1
1 and the extension K(λ1)/K

is at worst tamely ramified.

Proof. Assume r′ < r. Put tX +
∑r

i=1 aiX
qi := ϕt(X). Let M be a tamely ramified

extension of K of degree qr
′ − 1. Let b be an element in M with valuation w(b) =

w(ar′ )

qr′−1
. Then bϕb−1 has stable reduction over M . The family {bλi}i=1,...,r is an SMB of

bϕb−1[u] (see Remark 2.9). By Proposition 4.14, the extension M(λ1)/M = M(bλ1)/M

is unramified. Hence M(λ1)/K is tamely ramified and its subextension K(λ1)/K is at

worst tamely ramified.

Following the proof of Lemma 4.9, we know that w(bλi) = 0 for i = 1, . . . , r′. Hence

w(λ1) = −w(ar′ )

qr′−1
and we may take b to be λ−1

1 .

As for the case r′ = r, for a tamely ramified extensionM/K of degree qr−1 and b ∈M
with w(b) = w(ar)

qr−1 , we have that bϕb
−1 has good reduction overM . By [14, Theorem 6.3.1],

the extensionM(bλ1)/M is unramified. The result for the case r′ = r follows similarly.
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5. Applications to rank 2 Drinfeld modules, infinite prime case

Throughout this section, let w be an infinite prime, u a finite prime of A having degree

d, and n a positive integer. Let ϕ be a rank 2 Drinfeld A-module over K determined by

ϕt(X) = tX + a1X
q + a2X

q2 ∈ K[X]. Let j denote the j-invariant aq+1
1 /a2 of ϕ. Put

w0 := w(t), w1 := w(a1) and w2 := w(a2). For each positive integer j, let {ξi,j}i=1,2 be an

SMB of ϕ[tj ] obtained as in Corollary 2.14.

5.1. The valuations of SMBs

Our goal is to determine the valuations of elements of SMBs of the lattice Λ and the

module ϕ[un] in terms of w0, w1 and w2. If w(j) < w0q, let m be the integer satisfying

w(j) ∈ (w0q
m+1, w0q

m]. By [1, Lemma 2.1], we have

w(ξ1,n) = −
(
w0(n− 1) +

w1 − w0

q − 1

)
for n ≥ 1 and

w(ξ2,n) =

−
w2+w1(qn−q−1)

(q−1)qn , 0 < n ≤ m;

−
(
w0(n−m) + w2+w1(qm−q−1)

(q−1)qm

)
, n ≥ m.

Now the condition |tn| ≥ |ξ2,n|/|ξ1,n| in Remark 3.6 reads −w0n ≥ −w(ξ2,n)+w(ξ1,n). For
n ≥ m, this inequality is equivalent to

−w0n ≥ −w0(m− 1) +
w0

q − 1
− w(j)

(q − 1)qm
.

For any n ≥ m, the inequality |tn| ≥ |ξ2,n|/|ξ1,n| holds. If w(j) ≥ w0q, by [1, Proposi-

tion 2.4], we have

w(ξ1,n) = w(ξ2,n) = −
(
w0(n− 1) +

w2 − w0

q2 − 1

)
.

Hence the condition |tn| ≥ |ξ2,n|/|ξ1,n| is fulfilled for any positive integer n.

Proposition 5.1. Let {ωi}i=1,2 be an SMB of Λ and {λi}i=1,2 an SMB of ϕ[un].

(1) If w(j) < w0q and m is the integer so that w(j) ∈ (w0q
m+1, w0q

m], we have

w(ω1) = w0 +
w0

q − 1
− w1

q − 1
,

w(ω2) = w0m+
w(j)

(q − 1)qm
− w1

q − 1
.

For n ≥ m/d, we have |un| > |ω2|/|ω1|, w(λ1) = w(ξ1,nd) and w(λ2) = w(ξ2,nd).
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(2) If w(j) ≥ w0q, we have

w(ω1) = w(ω2) = w0 +
w0

q2 − 1
− w2

q2 − 1
.

For n ≥ 1, we have w(λ1) = w(λ2) = w(ξ1,nd) = w(ξ2,nd).

We note that the valuations w(ω1) and w(ω2) above have been obtained by Chen–Lee

in [5, Theorem 3.1 and Corollary 3.1]. One may also recover the rank r = 2 case of

Gekeler’s formula [9, Proposition 3.2] (see also [14, Proposition 5.5.8]).

Proof of Proposition 5.1. The claims of w(ω1) and w(ω2) follow from Remark 3.6, Corol-

lary 3.5(1), and the arguments before the proposition. Then the claims of w(λ1) and

w(λ2) are proved by Corollary 3.5(1).

Remark 5.2. Let r be a positive integer and ϕ a rank r Drinfeld A-module overK such that

ϕt(X) = tX + asX
qs + arX

qr ∈ K[X]. Here s is an positive integer < r. Let {ωi}i=1,...,r

be an SMB of Λ (associated to ϕ) and {λi}i=1,...,r an SMB of ϕ[un] for u and n as above.

Put

j := a
qr−1
q−1
s /a

qs−1
q−1
r .

We obtain the following generalization of Proposition 5.1. Its proof is similar to [1,

Lemma 2.1 and Proposition 2.4] and Proposition 5.1:

(1) If w(j) < w0q
s qr−s−1

q−1 and m is the integer such that

w(j) ∈
(
w0q

(m+1)s q
r−s − 1

q − 1
, w0q

ms q
r−s − 1

q − 1

]
,

we have

w(ωi) = w0 +
w0

qs − 1
− ws
qs − 1

for i = 1, . . . , s,

w(ωi) = w0m+
w(j)(q − 1)

qms(qs − 1)(qr−s − 1)
− ws
qs − 1

for i = s+ 1, . . . , r.

For n ≥ m/d, we have |un| > |ωr|/|ω1|, w(λi) = −w0nd+w(ωi) for i = 1, . . . , s, and

w(λi) = −w0nd+ w(ωi) for i = s+ 1, . . . , r.

(2) If w(j) ≥ w0q
s qr−s−1

q−1 , we have

w(ωi) = w0 +
w0

qr − 1
− wr
qr − 1

for i = 1, . . . , r.

For i = 1, . . . , r and n ≥ 1, we have w(λi) = −w0nd+ w(ωi).
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5.2. The action of the wild ramification subgroup on the division points

Let K(Λ) (resp. K(ϕ[un])) denote the extension of K generated by all elements in Λ

(resp. in ϕ[un]). If w(j) < w0q andm is the integer such that w(j) ∈ (w0q
m+1, w0q

m], then

by Propositions 5.1(1) and 3.10, we have for any integer n ≥ m/d that (cf. [1, Lemma 3.3])

(5.1) K(ϕ[un]) = K(Λ) = K(ϕ[tm]).

If w(j) ≥ w0q, then by Propositions 5.1(2) and 3.10, we have for any positive integer n

that (cf. [1, Lemma 3.14])

(5.2) K(ϕ[un]) = K(Λ) = K(ϕ[t]).

Put G(Λ) := Gal(K(Λ)/K). Let G(Λ)i and G(Λ)
y denote respectively the i-th lower

and y-th higher ramification subgroups. We are to study the action of the wild ramification

subgroup G(Λ)1 on the SMBs of ϕ[un] for n to be large enough. Let us recall two lemmas.

Lemma 5.3. [1, Lemma 3.8] Assume w(j) < w0q and p ∤ w(j). Let m be the integer sat-

isfying w(j) ∈ (w0q
m+1, w0q

m). Then we have the (Herbrand) ψ-function of the extension

K(Λ)/K to be

ψK(Λ)/K(y)

=



y, −1 ≤ y ≤ 0;

Ey, 0 ≤ y ≤ rm;

qjEy + w(j)E qj−1
q−1 − w0jEq

m, rm−j+1 ≤ y ≤ rm−j for j = 1, . . . ,m− 1;

qmEy + w(j)E qm−1
q−1 − w0mEq

m, r1 ≤ y,

where

rn :=
−w(j) + w0q

n

q − 1

for any positive integer n ≤ m and E is some positive integer not divisible by p.

Lemma 5.4. [1, Lemma 3.14] Assume w(j) ≥ w0q. Then the extension K(ϕ[t])/K is at

worst tamely ramified.

In Lemma-Definition A.1, the conductor of ϕ at w is defined to be

fw(ϕ) :=

∫ ∞

0

(
2− rankAu T

Gy

u

)
dy,

where Tu is the u-adic Tate module of ϕ and Gy is the y-th upper ramification subgroup

of the Galois group Gal(Ksep/K). In the next result, we calculate fw(ϕ) explicitly. This

calculation generalizes the infinite prime case of [1, Lemma-Definition 4.1].
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Lemma 5.5. Assume that one of the following two cases happens

(C1) w(j) < w0q and p ∤ w(j);

(C2) w(j) ≥ w0q.

Then we have

fw(ϕ) =


−w(j)+w0q

q−1 if (C1) happens,

0 if (C2) happens.

Proof. By Corollary 2.14, there is an SMB {λi,n}i=1,2 of ϕ[un] for each integer n ≥ 1 such

that u ·ϕ λi,n+1 = λi,n for i = 1, 2. Recall that Tu is defined to be lim←−n ϕ[u
n] using the

morphisms ϕu : ϕ[u
n+1] → ϕ[un] for all integers n ≥ 1. Hence the tuples (λ1,n)n≥1 and

(λ2,n)n≥1 form an Au-basis of Tu.

Assume (C1) happens. By (5.1), the action of Gy on ϕ[un] for any n ≥ m/d and any

y > 0 factors through G(Λ)y. Notice G(Λ)1 =
⋃
y>0G(Λ)

y. By Proposition 3.13, any

element σ ∈ G(Λ)y for y > 0 fixes λ1,n and fixes uj ·ϕ λ1,n = λ1,n−j for any positive integer

j < n. Hence σ fixes (λ1,n)n≥1. As λ1,n and λ2,n generate K(ϕ[un])/K = K(Λ)/K for

n ≥ m/d, we also have that if σ is not the unit, then it nontrivially acts on λ2,n and hence

nontrivially acts on (λ2,n)n≥1. Therefore Lemma 5.3 implies rankAu T
Gy
u = 1 if 0 < y ≤ r1

and = 2 if r1 < y. We have

fw(ϕ) =

∫ r1

0
1 dy =

−w(j) + w0q

q − 1
.

For the case (C2), by (5.2), the action of Gy on ϕ[un] for any n ≥ 1 and any y > 0

factors through G(Λ)y. By Lemma 5.4, we have G(Λ)y = {e} if y > 0. The result for the

case (C2) immediately follows.

For an SMB {λi,n}i=1,2 of ϕ[un] and an element σ ∈ G(Λ)1 which is not the unit, we

work out σ(λ2,n) in the remainder of this subsection.

Lemma 5.6. Assume w(j) ∈ (w0q
m+1, w0q

m) for a positive integer m. Let n be an integer

≥ m/d and {λi}i=1,2 an SMB of ϕ[un]. Then we have

w(ti ·ϕ λ1) = w(ξ1,nd−i) and w(ti ·ϕ λ2) = w(ξ2,nd−i) for 1 ≤ i < nd.

Proof. We show the result for λ2. The proof of the result for λ1 is similar. By Proposi-

tion 5.1(1), we have w(λ2) = w(ξ2,nd). To know w(t ·ϕ λ2) = w(tλ2 + a1λ
q
2 + a2λ

q2

2 ), we

calculate

w(tλ2)− w(a1λq2) =
−w(j) + w0q

m((q − 1)(nd−m) + 1)

qm
,

w(a1λ
q
2)− w(a2λ

q2

2 ) =
w(j)(qm−1 − 1) + w0(q − 1)(nd−m)qm

qm−1
< 0.
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We have

w(tλ2)− w(a1λq2)

> 0 if nd = m,

< 0 if nd > m.

Hence we have

w(t ·ϕ λ2) =

w(a1λ
q
2) = w(ξ2,m−1) if nd = m,

w(tλ2) = w(ξ2,nd−1) if nd > m.

We assume that the result for i− 1 is valid. Put λ′2 := ti−1 ·ϕ λ2. If i ≤ nd−m, to know

w(t ·ϕ λ′2), we calculate

w(tλ′2)− w(a1λ
′q
2 ) =

−w(j) + w0q
m((q − 1)(nd− i−m) + q)

qm
< 0,

w(tλ′2)− w(a2λ
′q2
2 ) =

w(j)(qm − q − 1) + w0q
m((q2 − 1)(nd− i−m) + q2)

qm
< 0.

Hence we have w(t ·ϕ λ′2) = w(tλ′2) = w(ξ2,nd−i). Assume i > nd−m. To know w(t ·ϕ λ′2),
we calculate

w(tλ′2)− w(a1λ
′q
2 ) =

−w(j) + w0q
nd−i+1

qnd−i+1
> 0,

w(a1λ
′q
2 )− w(a2λ

′q2
2 ) =

w(j)(qnd−i − 1)

qnd−i
< 0.

Hence w(t ·ϕ λ′2) = w(a1λ
′q
2 ) = w(ξ2,nd−i) and the result for λ2 follows.

Corollary 5.7. Resume the assumptions in the lemma.

(1) For any a ∈ A with deg(a) < nd, we have

w(a ·ϕ λ1) = w(tdeg(a) ·ϕ λ1) = w(ξ1,nd−deg(a)),(5.3)

w(a ·ϕ λ2) = w(tdeg(a) ·ϕ λ2) = w(ξ2,nd−deg(a)).(5.4)

(2) For λ ∈ ϕ[un] having valuation ≥ w(ξ1,nd−m+1), there exists some b ∈ A with

deg(b) < m such that b ·ϕ λ1 = λ.

Proof. By [1, Proposition 2.2], we have

w(ξ1,j) > w(ξ2,nd) for j = nd, nd− 1, . . . , nd−m+ 1,(5.5)

w(ξi,j+1) > w(ξi,j) for i = 1, 2 and positive integers j < nd.(5.6)

For (1), by (5.6) and the lemma, we have w(tdeg(a) ·ϕ λ1) < w(ti ·ϕ λ1) for any positive

integer i < deg(a). Hence the desired equality follows from the ultrametric inequality.

The equation for λ2 follows in the same way.
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For (2), by (5.5), we have w(λ) ≥ w(ξ1,nd−m+1) > w(ξ2,nd) = w(λ2). As {λi}i=1,2 is

an SMB of ϕ[un], there exist b, b′ ∈ A mod un such that λ = b ·ϕ λ1 + b′ ·ϕ λ2. We may

assume that b and b′ have degrees < deg(un) = nd. Assume conversely b′ ̸= 0. By (5.4)

and (5.6), we have

w(b′ ·ϕ λ2) = w(tdeg(b
′) ·ϕ λ2) = w(ξ2,nd−deg(b′)) ≤ w(λ2).

By Proposition 3.12, we have w(λ) = min{w(b ·ϕ λ1), w(b′ ·ϕ λ2)}. Hence w(λ) ≤ w(b′ ·ϕ
λ2) ≤ w(λ2), a contradiction. By (5.3), we have

w(b ·ϕ λ1) = w(tdeg(b) ·ϕ λ1) = w(ξ1,nd−deg(b)).

Then w(b ·ϕ λ1) ≥ w(ξ1,nd−m+1) and (5.6) imply deg(b) < m.

Remark 5.8. Resume the assumptions in the lemma.

(1) The elements tj ·ϕλi for i = 1, 2 and 0 ≤ j < nd form an Fq-basis of ϕ[un] as a vector

space. Indeed, by the lemma and [1, Proposition 2.2], the valuations w(tj ·ϕ λi) for
all i and j are different from each other. Hence all elements tj ·ϕ λi are Fq-linearly
independent and form a 2nd-dimensional vector subspace of ϕ[un]. Since ϕ[un] has

dimension 2nd as an Fq-vector space, the claim follows.

(2) For a positive integer j ≤ n, let {λ′i}i=1,2 be an SMB of ϕ[uj ]. By Corollary 5.7(1),

we have

w(λ′1) = w(ξ1,jd) and w(λ′2) = w(ξ2,jd).

Under the assumptions in Lemma 5.3, we put Ri := ψK(Λ)/K(ri) for i = 1, . . . ,m and

we have

Ri = −w(j)E
1

q − 1
− w0Eq

m

(
m− i− 1

q − 1

)
.

Theorem 5.9. Assume w(j) < w0q and p ∤ w(j). Let m be the integer so that w(j) ∈
(w0q

m+1, w0q
m). Let n be an integer ≥ m/d and {λi}i=1,2 an SMB of ϕ[un]. Put G(Λ) :=

Gal(K(Λ)/K). For a positive integer i, let A<i denote the subgroup of A consisting of

elements with degrees < i.

(1) Any element in G(Λ)1 fixes λ1;

(2) The map

g : G(Λ)1 → A<m ·ϕ λ1, σ 7→ σ(λ2)− λ2

is an isomorphism.
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(3) Put ri :=
−w(j)+w0qi

q−1 for 1 ≤ i ≤ m as in Lemma 5.3. Let G(Λ)ri denote the ri-th

upper ramification subgroup of G(Λ). Then for each i = 1, . . . ,m, the restriction

g : G(Λ)ri → A<i ·ϕ λ1

is an isomorphism.

Proof. (1) has been shown in Proposition 3.13.

(2) We show σ(λ2) − λ2 ∈ A<m ·ϕ λ1 for an element σ in G(Λ)1 = G(Λ)Rm . Clearly

σ(λ2)−λ2 ∈ ϕ[un]. By Corollary 5.7(2), an element of ϕ[un] having valuation≥ w(ξ1,nd−m+1)

belongs to the Fq-vector space A<m ·ϕ λ1. Hence it suffices to show w(σ(λ2) − λ2) ≥
w(ξ1,nd−m+1). By Proposition 5.1, we have w(λi) = w(ξi,nd). Let wΛ denote the normal-

ized valuation associated to K(Λ). We have wΛ = Eqmw. Consider

wΛ(σ(λ2)− λ2) = wΛ(σ(λ2)λ
−1
2 − 1) + wΛ(λ2)

≥ Rm + wΛ(λ2)

= −w(j)E 1

q − 1
− w0Eq

m

(
− 1

q − 1

)
− Eqm

(
w0(nd−m) +

w1

q − 1
− w(j)

qm(q − 1)

)
= −Eqm

(
w0(nd−m) +

w1 − w0

q − 1

)
= wΛ(ξ1,nd−m+1).

Hence the image σ(λ2)− λ2 of σ under the map g belongs to A<m ·ϕ λ1.
Next, we show that g is an isomorphism. The map is injective since λ1 and λ2 generate

K(Λ)/K and σ(λ1) = λ1 for any σ ∈ G(Λ)1. By [1, Theorem 3.9], we know G(Λ)1 ∼= Fmq .
As qm is also the cardinal of A<m ·ϕ λ1, the map is bijective. It suffices to show that this

map is a morphism. For any σ ∈ G(Λ)1, we have that σ fixes λ1 and σ(λ2)− λ2 = b ·ϕ λ1
for some b ∈ A. Hence for any σ′, σ ∈ G(Λ)1, we have

σ′(σ(λ2)− λ2) = σ(λ2)− λ2.

This implies

σ′(σ(λ2))− λ2 = σ′(σ(λ2))− σ′(λ2) + σ′(λ2)− λ2
= σ′(σ(λ2)− λ2) + σ′(λ2)− λ2
= σ(λ2)− λ2 + σ′(λ2)− λ2,

which shows that the map is a morphism.

(3) Note G(Λ)ri = G(Λ)Ri . We show that g : G(Λ)Ri → A<i ·ϕ λ1 is an isomorphism

for each i = 1, . . . ,m. By Corollary 5.7(1), (5.5) and (5.6), the vector space A<i ·ϕ λ1
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consists of elements of ϕ[un] having valuations ≥ w(ξ1,nd−i+1). For i to be one of 1, . . . ,m

and σ to be a nontrivial element in G(Λ)Ri , we have

wΛ(σ(λ2)− λ2) = wΛ(σ(λ2)λ
−1
2 − 1) + wΛ(λ2)

≥ Ri + wΛ(λ2)

= −w(j)E 1

q − 1
− w0Eq

m

(
m− i− 1

q − 1

)
− Eqm

(
w0(nd−m) +

w1

q − 1
− w(j)

qm(q − 1)

)
= −Eqm

(
w0(nd− i) +

w1 − w0

q − 1

)
= wΛ(ξ1,nd−i+1).

This implies that g(G(Λ)Ri) ⊂ A<i ·ϕ λ1. As the cardinals of G(Λ)Ri and A<i ·ϕ λ1 are

both qi, the restriction

g : G(Λ)Ri → A<i ·ϕ λ1

is an isomorphism for each i.

Example 5.10. (with the help of T. Asayama and Y. Taguchi) Let C denote the Carlitz

Fq[t]-module over Fq(t) determined by Ct(X) = tX+Xq. Put T := t2+a for some a ∈ Fq.
Let ϕ denote the Drinfeld Fq[T ]-module over Fq(t) determined by ϕT (X) = Ct2+a(X). Let

K denote the completion of Fq(t) at the infinite prime and w the associated normalized

valuation so that w(t) = −1. The j-invariant j of ϕ has valuation w(j) = −q(q +

1) < w(t)q. However, by [14, Theorem 7.1.13] (initially given by Hayes), the extension

K(ϕ[Tn]) = K(C[(t2 + a)n]) of K for any positive integer n is tamely ramified. By this

example, to remove the condition p ∤ w(j) might be hard.

6. Applications to rank 2 Drinfeld modules, finite prime case

Let w be a finite prime of K. Throughout this section, let u be a finite prime of A having

degree d, and n a positive integer. Let ϕ be a rank 2 Drinfeld A-module overK determined

by ϕt(X) = tX + a1X
q + a2X

q2 ∈ K[X]. Let j denote the j-invariant aq+1
1 /a2.

6.1. The valuations of SMBs

Throughout this subsection, assume that ϕ has bad reduction over K, i.e., ϕ has stable

reduction over K and the reduction has rank 1. We have w(a1) = 0 and w(a2) > 0

such that w(j) < 0. Let {ξi,n}i=1,2 be an SMB of ϕ[tn] obtained as in Corollary 2.14.

By [1, Proposition 2.5 and Lemma A.1 (2)], we have

w(ξ1,n) =
w(t)

(q − 1)qn−1
and w(ξ2,n) =

w(j)

(q − 1)qn
.
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Proposition 6.1. (cf. Proposition 5.1) Let {ω1} be an SMB of ψ[un], {ω0
2} an SMB of

Λ, and {λi}i=1,2 an SMB of ϕ[un]. Then for any positive integer n, we have

w(ω1) = w(λ1) =
w(u)

(qd − 1)q(n−1)d
, w(ω0

2) =
w(j)

q − 1
and w(λ2) =

w(j)

(q − 1)qnd
.

Proof. Note that the condition “|un|∞ > |ω0
r |/|ω0

r′+1|” in Section 4 is trivial. The results

for ω0
2 and λ2 follow from the value w(ξ2,n) and Corollary 4.7(1).

By Lemma 4.3 and Proposition 2.10(2), it remains to calculate w(ω1). The case w ∤ u
is straightforward. Assume w | u. We have ψt(X) = tX + b1X

q ∈ K[X] such that

the valuation of b1 is 0. Let K ′ denote the extension of K generated by some b ∈ Ksep

with bq−1 = b1. Then we have C = bψb−1 as Drinfeld A-modules over K ′ where C

denotes the Carlitz module. Let {η1,j} be an SMB of C[uj ] for each positive integer j

as in Corollary 2.14. As bω1 forms an SMB of bψb−1[un], we have w(ω1) = w(η1,n) by

Proposition 2.10(2).

To calculate w(η1,n), we proceed by induction. We first calculate w(η1,1). Put u0 := u,∑d
i=0 uiX

qi := Cu(X) and Pi := (qi, w(ui)) for i = 0, . . . , d. By the explicit formula of ui

in [14, Corollary 5.4.4] (initially given by Carlitz), we have w(ui) = w(u) for i = 0, . . . , d−1.
The Newton polygon of Cu(X) is P0Pd having exactly one segment. Hence we have

w(η1,1) =
w(u)
qd−1

.

Assume w(η1,i−1) =
w(u)

(qd−1)q(i−2)d . Put Qi−1 := (0, w(η1,i−1)). The Newton polygon of

Cu(X)−η1,i−1 isQi−1Pd having exactly one segment. Hence we have w(η1,i) =
w(u)

(qd−1)q(i−1)d ,

as desired.

6.2. The action of the wild ramification subgroup on the division points

Assume w ∤ u, i.e., w(u) = 0 throughout this subsection. Assume that ϕ has bad reduction

over K. Let L be the extension of K generated by the elements in Λ. For a positive

integer n, let Ln denote the extension of L generated by the elements in u−nΛ. As the

condition “|un|∞ > |ω0
r |/|ω0

r′+1|” in Section 4 is fulfilled for any positive integer n, by

Proposition 4.11, we have K(ϕ[un]) = Ln for any positive integer n. We put G(n) :=

Gal(K(ϕ[un])/K).

In this subsection, we first study the action of the wild ramification subgroup G(n)1

on u−nΛ/Λ. Next, using the isomorphism Eϕ : u−nΛ/Λ → ϕ[un], we know the action of

G(n)1 on ϕ[un]. Let {ω1} be an SMB of ψ[un], {ω0
2} an SMB of Λ, and ω2 a root of

ψun(X)− ω0
2.

Lemma 6.2. The extension L/K is at worst tamely ramified.

Proof. We know that Λ is an A-lattice via ψ and is Gal(Ksep/K)-invariant. As L/K is
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a subextension of L1/K and L1 = K1 is Galois over K, we have that L/K is separable.

Then the desired claim follows from Lemma 2.6.

Theorem 6.3. (cf. Theorem 5.9) Let ϕ be a rank 2 Drinfeld A-module over K having bad

reduction such that w(j) < 0. Put R := −w(ω0
2) =

−w(j)
q−1 . Assume p ∤ w(j).

(1) Let L(ψ[un]) be the extension of L generated by the elements in ψ[un]. There is an

isomorphism

Gal(Ln/L(ψ[u
n]))→ ψ[un], σ 7→ σ(ω2)− ω2.

(2) Let E be the ramification index of L/K. The (Herbrand) ψ-function of the extension

Ln/K is

ψLn/K(y) =


y, −1 ≤ y ≤ 0;

Ey, 0 ≤ y ≤ R;

qndEy − (qnd − 1)ER, R ≤ y.

Proof. Let wL denote the normalized valuation associated to L. We have wL = Ew. As

the extension L(ψ[un])/L is unramified, we may let wL denote the normalized valuation

associated to L(ψ[un]). The field Ln is the splitting field of ψun(X)−ω0
2 over L(ψ[un]). As

E is not divisible by p (see Lemma 6.2), we have p ∤ ER = −wL(ω0
2). Note wL(ω

0
2) < 0.

We can apply Proposition B.2(2) to ψun(X)−ω0
2 ∈ L(ψ[un])[X]. Note that the difference

between two roots of ψun(X)−ω0
2 belongs to ψ[un]. The extension Ln/L(ψ[u

n]) is totally

ramified and is generated by ω2. The map Gal(Ln/L(ψ[u
n]))→ ψ[un], σ 7→ σ(ω2)− ω2 is

an isomorphism.

(2) By Lemma 6.2, we have the ψ-function of L/K to be

ψL/K(y) =

y, −1 ≤ y ≤ 0;

Ey, 0 ≤ y.

The ψ-function of L(ψ[un])/L is ψL(ψ[un])/L(y) = y. Applying Proposition B.2(3) to

ψun(X)− ω0
2 ∈ L(ψ[un])[X], we have

ψLn/L(ψ[un])(y) =

y, −1 ≤ y ≤ ER;

qndy − (qnd − 1)ER, ER ≤ y,

and the desired ψ-function follows from Lemma B.1.

Let ϕ be a rank 2 Drinfeld A-module over K which does not necessarily have stable

reduction. Assume that w(j) < 0 such that ϕ is isomorphic to a Drinfeld module having

bad reduction over some extension of K. By Proposition 4.15, we may take this extension
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of K to be K(λ1,1), where {λi,1}i=1,2 is an SMB of ϕ[u] and K(λ1,1)/K is at worst tamely

ramified. Let ψ and Λ denote respectively the Drinfeld module having good reduction

and the lattice associated to the Drinfeld module having stable reduction via the Tate

uniformization. Let L denote the extension of K(λ1,1) generated by the elements in Λ. By

Lemma 2.6, the extension L/K is at worst tamely ramified. For a positive integer n, let

Ln denote the extension of L generated by the elements in u−nΛ. We have K(ϕ[un]) = Ln.

Corollary 6.4. Let ϕ be a rank 2 Drinfeld A-module over K which does not necessarily

have stable reduction. Assume w(j) < 0 and p ∤ w(j).

(1) Let E be the ramification index of L/K. Put R = −w(j)
q−1 . The ψ-function of the

extension K(ϕ[un])/K is

ψK(ϕ[un])/K(y) =


y, −1 ≤ y ≤ 0;

Ey, 0 ≤ y ≤ R;

qndEy − (qnd − 1)ER, R ≤ y.

(2) Let {λi}i=1,2 be an SMB of ϕ[un]. Then each element in G(n)1 fixes λ1 and there is

an isomorphism

G(n)1 → A ·ϕ λ1, σ 7→ σ(λ2)− λ2.

Proof. Apply Theorem 6.3(2) with K in the theorem being K(λ1,1) and we obtain the ψ-

function of K(ϕ[un])/K(λ1,1). As K(λ1,1)/K is at worst tamely ramified, its ψ-function

is clear. Then (1) follows from Lemma B.1.

We show (2). Note that L(ψ[un])/K is at worst tamely ramified. By the ψ-function

of Ln/K, we have the following equation of the higher ramification subgroups

G(n)1 = Gal(Ln/K)1 = Gal(Ln/K)ER = Gal(Ln/L(ψ[u
n])).

By Proposition 4.15, the Drinfeld module bϕb−1 for b = λ−1
1,1 has stable reduction over

K(λ1,1). Let logϕ denote logbϕb−1 . By Theorem 4.10, the element logϕ(bλ1) forms an

SMB of ψ[un] and un ·ψ logϕ(bλ2) forms an SMB of Λ. Apply Theorem 6.3(1) with

ω1 = logϕ(bλ1) and ω2 = logϕ(bλ2). We have σ(logϕ(bλ1)) = logϕ(bλ1) for any σ ∈ G(n)1
and an isomorphism

G(n)1 → ψ[un], σ 7→ σ(logϕ(bλ2))− logϕ(bλ2).

Note ψ[un] = A ·ψ logϕ bλ1. The map Ebϕb−1 |ψ[un] : ψ[un] → A ·bϕb−1 bλ1 induced by the

exponential map eϕ is an isomorphism. Indeed, it is injective as ψ[un]∩Λ = {0}. Since the
sets ψ[un] and A ·bϕb−1 bλ1 both have cardinal qnd, we have the surjectivity. Notice that

Ebϕb−1 is compatible with the Gal(Ksep/K)-actions and Gal(Ksep/K) acts on u−nΛ/Λ and
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ϕ[un] via G(n). We obtain that σ(logϕ(bλ1)) = logϕ(bλ1) and σ(logϕ(bλ2)) − logϕ(bλ2)

map to respectively σ(bλ1) = bλ1 and σ(bλ2) − bλ2. The desired isomorphism is the

composition

G(n)1 → ψ[un]
Ebϕb−1

−−−−→ A ·bϕb−1 bλ1
b−1·−−−−→ A ·ϕ λ1, σ 7→ σ(λ2)− λ2.

The next result generalizes the finite prime case of [1, Lemma-Definition 4.1].

Lemma-Definition 6.5. (cf. Lemma 5.5) Let ϕ be a rank 2 Drinfeld A-module over K

which does not necessarily have stable reduction. Assume one of the following two cases

happens

(C1) w(j) < 0 and p ∤ w(j);

(C2) w(j) ≥ 0.

Let Gy denote the y-th upper ramification subgroup of the Galois group Gal(Ksep/K). For

any finite prime u of A not divisible by w, let Tu denote the u-adic Tate module of ϕ. Put

fw(ϕ) :=

∫ ∞

0

(
2− rankAu T

Gy

u

)
dy.

Then we have

(1) the value fw(ϕ) is independent of the choice of u.

(2) fw(ϕ) =


−w(j)
q−1 if (C1) happens,

0 if (C2) happens.

Define the conductor of ϕ at w to be the integral fw(ϕ).

Proof. We will show (2) for any finite prime u of A with w ∤ u and (1) straightforwardly

follows.

Assume the case (C1) happens. By Corollary 2.14, there is an SMB {λi,n}i=1,2 of ϕ[u
n]

for each integer n ≥ 1 such that u ·ϕ λi,n+1 = λi,n for i = 1, 2. By Corollary 6.4(1), we

have G(n)y = G(n)1 for any 0 < y ≤ −w(j)
q−1 and = {e} for y > −w(j)

q−1 . By Corollary 6.4(2),

for any n ≥ 1 and 0 < y ≤ −w(j)
q−1 , any element in G(n)y fixes λ1,i for all i ≤ n, and any

nontrivial element σ ∈ G(n)y nontrivially acts on λ2,n.

As u ·ϕ λ1,n+1 = λ1,n and u ·ϕ λ2,n+1 = λ2,n for any n ≥ 1, the tuples (λ1,n)n≥1 and

(λ2,n)n≥1 form an Au-basis of Tu. Note that Gy acts on Tu via G(∞)y = lim←−nG(n)
y. Any

nontrivial element of G(∞)y for 0 < y ≤ −w(j)
q−1 fixes (λ1,n)n≥1 and nontrivially acts on

(λ2,n)n≥1. Hence rankAu T
Gy
u = 1 if 0 < y ≤ −w(j)

q−1 and = 2 if −w(j)
q−1 < y. We have

fw(ϕ) =

∫ −w(j)
q−1

0
1 dy =

−w(j)
q − 1

.
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For the case (C2), we know that ϕ is isomorphic to a Drinfeld module having good

reduction over some extension of K. By Proposition 4.15, we may take the extension of K

to be K(λ1,1) and the extension K(λ1,1)/K is at worst tamely ramified, where {λi,1}i=1,2

is an SMB of ϕ[u]. For b = λ−1
1,1, as the Drinfeld module bϕb−1 has good reduction, the

extension K(bϕb−1[un])/K(λ1,1) is unramified. Hence the extension K(ϕ[un])/K is at

worst tamely ramified and the conductor vanishes.

6.3. A function field analogue of Szpiro’s conjecture for rank 2 Drinfeld modules

Let ϕ be a rank 2 Drinfeld A-module over F (F is the global function field defined in

Section 1.1). For a prime w of F , consider ϕ as a Drinfeld module over Fw and let

fw(ϕ) be the conductor calculated in Lemma 5.5 and Lemma-Definition 6.5. Similar to [1,

Section 4.2], we can obtain a relation between the J-height of ϕ and the conductors of ϕ.

LetMF denote the set of primes of F . For a prime w of F , let deg(w) denote the degree

of the residue field of Fw over Fq. The J-height of ϕ is defined to be (see [4, Section 2.2]

or [1, Section 4.2])

hJ(ϕ) :=
1

[F : Fq(t)]
∑
w∈MF

deg(w) ·max{−w(j), 0},

where j is the j-invariant of ϕ. Following [1, Section 4.2], we may define the (global)

conductor of the Drinfeld module ϕ to be

f(ϕ) :=
∑
w∈MF

deg(w) · fw(ϕ).

Similar to the proof of [1, Theorem 4.3], we have the following statement by Lemma 5.5

and Lemma-Definition 6.5. It is a function field analogue of Szpiro’s conjecture.

Theorem 6.6. Put w0 = w(t) if w is an infinite prime of F . Let ϕ be a rank 2 Drinfeld

A-module over F such that for each prime w of F , its j-invariant j satisfieseither
(
w(j) < w0q and p ∤ w(j)

)
, or w(j) ≥ w0q if w is infinite,

either
(
w(j) < 0 and p ∤ w(j)

)
, or w(j) ≥ 0 if w is finite.

Then

hJ(ϕ) ≤ f(ϕ) · q − 1

[F : Fq(t)]
+ q.

A. The conductors of Drinfeld modules at infinite prime

Let K be the completion of a global function field at an infinite prime w. Let ϕ denote a

rank r Drinfeld A-module over K for an integer r ≥ 2. Let Tu be the u-adic Tate module



290 Maozhou Huang

of ϕ. Let Gy denote the y-th upper ramification subgroup of the absolute Galois group G

of K.

Lemma-Definition A.1. The value of the integral∫ ∞

0

(
r − rankAu T

Gy

u

)
dy

is convergent and independent of u. Define the conductor of ϕ at w to be this integral.

Proof. The result follows from the following two claims:

(1) rankAu T
Gy
u = rankA ΛG(Λ)y for any finite prime u of A, where G(Λ)y denotes the

y-th upper ramification subgroup of the Galois group of the extension K(Λ) of K

generated by all elements in Λ.

(2) The following integral ∫ ∞

0

(
r − rankA ΛG(Λ)y

)
dy

is convergent

As for (1), note that the isomorphism Eϕ : u−nΛ/Λ→ ϕ[un] induced by the exponential

map eϕ is G-equivariant. We have a G-equivariant isomorphism Tu ∼= Λ⊗AAu. Note that
the action of Gy on Λ factors through G(Λ)y. It suffices to see rankAu(Λ ⊗A Au)G(Λ)y =

rankA ΛG(Λ)y . As (Λ ⊗A Au)G(Λ)y is free over Au and is identified with ΛG(Λ) ⊗A Au, we
know that ΛG(Λ)y is projective over A according to the following two facts:

(1) The flatness is a local property [16, 00HT];

(2) Each finitely generated flat module over a Noetherian ring is projective [16, 00NX].

Then the desired equality follows from the definition of rank and the Nakayama lemma.

As for (2), notice that the extension K(Λ)/K is finite. There is an integer i so that

the i-th lower ramification subgroup of Gal(K(Λ)/K) is trivial. Hence there is a rational

number y so that y-th upper ramification subgroup of Gal(K(Λ)/K) is trivial. This shows

that ∫ ∞

0

(
r − rankA ΛG(Λ)y

)
dy ≤ y(r − 1),

i.e., the monotone function

f(x) :=

∫ x

0

(
r − rankA ΛG(Λ)y

)
dy

is bounded. Hence the limit limx→+∞ f(x) exists, i.e., the integral is convergent.
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Remark A.2. (1) Let n be an integer so that K(Λ) = K(ϕ[un]). Hence one may expect

that

rankAu T
Gy

u = rankA/un ϕ[u
n]G

y
= rankA/un(Λ/u

nΛ)G
y
= rankA ΛG(Λ)y .

Here the A/un-submodule ϕ[un]G
y
of ϕ[un] is free by [3, VII.14, Theorem 1].

(2) Let w be a finite prime, u a finite prime of A with w ∤ u. Let Gy denote the y-th

upper ramification subgroup of the absolute Galois group K. M. Mornev has proved

that [13, Theorem 1] there is some rational number y so that Gy trivially acts on

Tu. Using this result, similar to the proof above, one can show that the integral∫ ∞

0

(
r − rankAu T

Gy

u

)
dy

is convergent.

B. Basics of Herbrand ψ-functions

Throughout this section, let K be a complete discrete valuation field of characteristic p

so that the residue field is a perfect field. Let us recall the definition of the (Herbrand)

ψ-function ψL/K for a finite Galois extension L/K of a complete valuation field of char-

acteristic p. Let Gy denote the y-th upper ramification subgroup of the Galois group

Gal(L/K) of L/K. By the ψ-function of L/K, we mean the real-valued function on the

interval [0,+∞) defined as

ψL/K(y) =

∫ y

0

#G0

#Gr
dr.

We extend ψL/K to [−1,+∞) by letting ψL/K(y) = y if −1 ≤ y ≤ 0. Then ψL/K is a

continuous and piecewise linear function on [−1,+∞). If ψL/K is linear on some interval

[a, b] ⊂ [−1,∞), then we have Gb = Gy = GψL/K(y) for y ∈ (a, b]. By the wild ramification

subgroup of L/K, we mean the first lower ramification subgroup G1, which is equal to the

union of Gy for y > 0.

Lemma B.1. (see e.g., [7, Chapter III, (3.3)]) Let L/M and M/K be finite Galois exten-

sions. Then

ψL/K = ψL/M ◦ ψM/K .

Assume that K contains Fq, where q is a power of p. Let vK denote the normalized

valuation associated to K so that vK(K×) = Z. For a positive integer s, put

f(X) = Xqs +

s−1∑
k=1

akX
qk + aX ∈ K[X]
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such that vK(ak)−vK(a)
qk−1

≥ −vK(a)
qs−1 for k = 1, . . . , s− 1, i.e., the Newton polygon of f(X)/X

has exactly one segment. The extension generated by the roots of the polynomial f(X)−c
for certain c ∈ K plays a key role in Section 6.2. To obtain its ψ-function, we will need

the following fact. It is a slight generalization of the function field case of [7, Chapter III,

Proposition 2.5] (cf. [1, Proposition 3.2]).

Proposition B.2. Let f(X)−c be the polynomial above. Let F and L denote respectively

the splitting field of f(X) and that of f(X)−c. Put vc := vK(c) and va := vK(a). Assume

p ∤ vc and −vc
qs < va − vc so that the Newton polygon of f(X)− c has exactly one segment

and R := vaqs

qs−1 − vc > 0. Then

(1) The extension of F/K is at worst tamely ramified.

(2) We have a composition of field extensions

K F L.

Moreover, the extension L/F is totally ramified of degree qs and generated by one

root x of f(X)− c. We have an isomorphism

g : Gal(L/F )→ V, σ 7→ σ(x)− x,

where V ∼= Fsq is the Fq-vector space consisting of the roots of f(X).

(3) Let e denote the ramification index of F/K. The ψ-function of L/K is

ψL/K(y) =


y, −1 ≤ y ≤ 0;

ey, 0 ≤ y ≤ R;

eqsy − (qs − 1)eR, R ≤ y.

Proof. Let M be an extension of K with ramification index qs − 1. We can take some

b ∈M such that v(b) = −va
qs−1 . With b′ = bq

s
, modify f(X) to be

f1(X) = Xqs +

s−1∑
k=1

bkX
qk + b0X := b′f(X/b).

We have

vK(b0) = 0 and vK(bk) = vK(ak)−
va(q

s − qk)
qs − 1

≥ 0 for k = 1, . . . , s− 1.

Thus f1(X) is a monic polynomial whose reduction is separable. By Hensel’s lemma [14,

Corollary 2.4.5], the extension of M generated by the roots of f(X) is unramified. Hence
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the extension of K generated by the roots of f(X) is at worst tamely ramified. This shows

(1).

For (2), note that the difference of any two roots of f(X) − c is a root of f(X). The

field F is contained in L and L is the extension of F generated by one root of f(X)− c.
As the polynomial f(X) is additive, its roots form an Fq-vector space of dimensional s,

denoted V . Let x be a root of f(X)−c. For any σ ∈ Gal(L/F ), the difference σ(x)−x is a

root of f(X) and hence we obtain a map g : Gal(L/F )→ V , σ 7→ σ(x)−x. The element σ

is determined by σ(x) since x generates L/F . Hence the map g is injective. This implies

that #Gal(L/F ) ≤ qs. As the Newton polygon of f(X) − c has exactly one segment,

we have vF (x) = evc/q
s, where vF denotes the normalized valuation associated to F and

e denotes the ramification index of F/K. As p ∤ e, p ∤ vc, we have #Gal(L/F ) = qs.

Therefore, the extension L/F is a totally ramified Galois extension of degree qs. The map

Gal(L/F ) → V is surjective as the cardinal of Gal(L/F ) is equal to that of V . As each

element Gal(L/F ) fixes each element of V , the map g is a morphism.

We show (3). Let πL be a uniformizer of L. For a nontrivial element σ in Gal(L/F ),

as σ(x)/x is a unit of L (here x is a root of f(X)− c), we have

σ(x)/x = uF ϵ

for some ϵ ∈ 1 + (πL) (the first higher unit group of L) and some uF in the unit group of

F . Notice

σ2(x)/x = σ(xuF ϵ)/x = uFσ(ϵ)σ(x)/x = u2Fσ(ϵ)ϵ,

σ3(x)/x = σ(xu2Fσ(ϵ)ϵ)/x = u2Fσ
2(ϵ)σ(ϵ)σ(x)/x = u3Fσ

2(ϵ)σ(ϵ)ϵ, and so on.

As the Galois group of L/F is isomorphic to the Fq-vector space of dimensional s, the

Galois group element σ has order p. We have

1 = σp(x)/x = upF

p−1∏
k=0

σk(ϵ).

This implies upF ≡ 1 (mod πL). As p-th power map is injective on the residue field of L,

we have uF ≡ 1 (mod πL). Hence uF ∈ 1 + (πF ), where πF is a uniformizer of F . We

know that σ(x)/x ∈ 1+(πL). Hence there exists some uL in the unit group of L and some

positive integer b such that

(B.1) σ(x)/x ≡ (1 + uLπ
b
L) mod (πL)

b+1.

From (2), we know vL(x) = evc and is prime to qs (vL denotes the normalized valuation

associated to L). Hence there exist integers i, j satisfying vL(x
iπjF ) = 1. Here i is not

divisible by p. The element xiπjF is a uniformizer of L. By [15, Chapter IV, Proposition 5],
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to know the ψ-function of L/F , we need to know vL(σ(x
iπjF )/x

iπjF − 1) for all nontrivial

Galois group elements σ. By (B.1), we know

σ(xiπjF )/x
iπjF ≡ (1 + uLπ

b
L)
i ≡ 1 + iuiLπ

b
L mod (πL)

b+1.

On the other hand, as vL(σ(x)− x) = vaeqs

qs−1 for any nontrivial σ, we know b = vL(σ(x)−
x)− vL(x) = eR. The ψ-functions of F/K and L/F are respectively

ψF/K(y) =

y, −1 ≤ y ≤ 0;

ey, 0 ≤ y
and ψL/F (y) =

y, −1 ≤ y ≤ eR;

qsy − (qs − 1)eR, eR ≤ y.

By Lemma B.1, we obtain the ψ-function ψL/K as the proposition describes.
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