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On Successive Minimal Bases of Division Points of Drinfeld Modules

Maozhou Huang

Abstract. We define successive minimal bases (SMBs) for the space of u™-division
points of a Drinfeld F,[¢]-module over a local field, where w is a finite prime of F[t]
and n is a positive integer. These SMBs share similar properties to those of SMBs
of the lattices associated to Drinfeld modules. We study the relations between these
SMBs and those of the lattices. Finally, we apply the relations to study the explicit
wild ramification subgroup action on an SMB of the space of u"-division points and
show a function field analogue of Szpiro’s conjecture for rank 2 Drinfeld modules under

a certain limited situation.

1. Introduction

1.1. Notations

Let us introduce the notation used throughout this paper. Put A := F[t], where F,[t] is
the polynomial ring in ¢ over the field [F, whose order is a power of a rational prime p.
Let F' be a global function field which is a finite extension of the fraction field of A. Let
K be the completion of F' at a prime w. We also let w denote the valuation associated
to K normalized so that w(K*) = Z. Fix K%P (resp. K*8) a separable (resp. algebraic)
closure of K. Let C,, denote the completion of K28, If w is an infinite prime, we also let
Cs denote C,,.

Let ¢ be a rank r Drinfeld A-module over K. For an element a in A, let ¢[a] be the
A/a-module of a-division points in K*P. It is a free module of rank r. Fix a positive
integer n and a finite prime u of A, i.e., a monic irreducible polynomial u € A. The main
research objects in this paper are successive minimal bases of ¢[u"] defined below. For
a € Aand x € ¢[u"], write a -4  := ¢4(x) for the action of a on z.

If w is an infinite prime, let A denote the rank r A-lattice in Co, and e, the exponential
function from Cg, to C4 associated to ¢ via the uniformization. Here we have considered
A and the domain of ey as A-modules via the natural embedding A — Cg.

If w is a finite prime, we assume throughout this paper that ¢ has stable reduction

over K and the reduction of ¢ has rank r’ < r unless otherwise specified. Let 1) denote the
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rank 7’ Drinfeld module over K having good reduction, A the rank r —r’ A-lattice in C,,
and ey the exponential function from C,, to C,, associated to ¢ via the Tate uniformization
(see [6, Section 7] or Section . Here we consider A and the domain of e4 as A-modules
via 1, i.e., we have the action of a on w to be a -y w := 1y (w) for any a € A and any w in
A or Cy.

Let | — | denote one of the following functions.
(F1) If w is an infinite prime, we have the absolute value | — | on K which extends the
absolute value | — | = ¢4°&(=) on Fq((1)). This absolute value may be extended to
Coo-

(F2) Assume that w is a finite prime of F. Following [8, Section 1], define a function | — |
on K by

(—w(z)V™" if w(z) <0,
forz e K, |z|= < —w@)" ifwx) >0,
|0] = —oc0 if x =0.

We may extend this function to C,,. This function is not an absolute value. However,

the ultrametic inequality holds. For z € C,,, we still call |z| the absolute value of .

1.2. On SMBs of u”-division points

The main definition is

Definition 1.1. Let | — | denote the function in (F1) or (F2). We call a family of elements
{Ai}i=1,...r an SMB (successive minimal basis) of ¢p[u™] if for each i, the elements A, ..., \;

in ¢[u"] satisfy
(1) Ai,...,\; are A/u™-linearly independent;

(2) |A;| is minimal among the absolute values of elements A in ¢[u"] such that A, ...,

Ai—1, A are A/u"-linearly independent.

Here we have imitated the definition of SMBs of the lattices A (see |17, Section 4]
or [10, Section 3]). Let us remark that

Remark 1.2. (1) in the definition implies that {1, ..., A, } is an A/u"-basis (or a generating
set) of ¢[u"]. The condition (2) above can be replaced with “w();) is the largest among the
valuations of elements A in ¢[u"] such that A1, ..., A\j_1, A are A/u™-linearly independent”.
In Definition we will extend the definition of SMBs of ¢[u"] to the case where ¢ does

not necessarily have stable reduction over K.
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If w is a finite prime, let u™"A denote the A-module consisting of all roots of 1yn (X)—w
for all w € A. For any infinite or finite prime w, by the uniformization or the Tate

uniformization of ¢, we have an isomorphism of A/u"-modules
Ep: u"AJA = p[u"]

induced by e4. Hence one may expect that there are relations between SMBs of ¢[u"] and
those of A.
Let | — | denote the absolute value in (F1) (resp. the function in (F2)) if w is an infinite

prime (resp. a finite prime). Put |[u"|o = gee®™).
Theorem 1.3. (1) Let w be an infinite prime.

o (see Theorem Let {w;}i=1,..» be an SMB of A. Then the images eg(w;/u™)
fori=1,...,r form an SMB of ¢[u"].

-----

p[ul]. Let {\;}iz1, » be an SMB of ¢[u"]. Assume that n satisfies |u"|s >
|ne|/|ni|. Under this assumption, for each i =1,...,r, the element A\; has only
one preimage under eg, denoted log,(\;), with absolute value < |w| for any
w € A\{0}. Then the family of elements {u" log,(\i) }i=1,..» C Coo is an SMB
of A.

(2) Let w be a finite prime.

e (see Theorem Let {w;}i=1,.. 0 (resp. {w?}izrurl,m’r) be an SMB of ¥[u"]
(resp. A). Let w; be a root of yn (X)—w? fori=1"+1,...,r. Then the images
ep(wi) fori=1,...,r form an SMB of ¢[u"].

o (see Corollary £.12(1) and (2)) Let | be a positive integer and {n;}i—1,..,r an
SMB of ¢[u!]. Let {\;}iz1.., be an SMB of ¢[u"]. Assume that n satisfies
[u 0o > 1|/ IMr41|. Under this assumption, for each i =1,...,r, the element
Ai has only one preimage, denoted log,(\:), with absolute value < |w| for any
w € A\ {0}. Then the family of elements {logy(Ai)}i=1,....» C Cu (resp. {u" -y
logs(Ai) bimrrg1,...r € Cu) is an SMB of [u™] (resp. of A).

It turns out that the SMBs of ¢[u"] have the following properties.
Proposition 1.4. Let {\;}i=1,., be an SMB of ¢[u™].

(1) (see Proposition 2.10)) The sequence |[A1| < || < -+ < |A| associated to an SMB
of ¢[u™] is an invariant of ¢p[u™], i.e., for any SMB {\.}i=1 ., of ¢[u"], we have
IX;| = |\i] for all i.
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(2) (see Proposition and [4.13)) Assume that u is not divisible by the prime w, i.e.,
w(u) < 0. Then we have

= max{]ai ) )\z|}

> aig A
i

for any a; € A mod u™.

(3) (see Proposition [2.13) There exists an SMB {\,}i=1,.» of p[u™T] such that u-y \; =
A for alli. The elements u -4 \; fori=1,...,r form an SMB of ¢[u™"1].

Here the properties (1) and (2) are similar to those of SMBs of lattices (see Propo-
sitions and . We remark that (2) essentially follows from similar properties of
SMBs of lattices (see Proposition 2.5/ or [17, Lemma 4.2]). We hope to know whether the
condition “w(u) < 0” in (2) can be removed.

Let K(A) (resp. K(u™"A) and K(¢[u"])) denote the extension of K generated by all
elements in A (resp. u="A and ¢[u"]). By Theorem we are able to show

Proposition 1.5. Let | be a positive integer and {n;}i=1,. ,» an SMB of plul]. Let
{Ai}i=1,...r be an SMB of ¢[u™].

(1) (see Corollary 2)) If w is an infinite prime and n is large enough so that |u"|sc >
Inel/Im|, then we have K(A) = K(p[u™]).

(2) (see Corollary [4.12(3)) If w is a finite prime and n is large enough so that |u™|s >
||/ |ner 11, then we have K(u™"A) = K(¢[u"]).

The claim (1) is an effective version of |12, Proposition 2.1].

1.3. An application to rank 2 Drinfeld modules

Let u be a finite prime of A. Let ¢ be a rank 2 Drinfeld A-module over K which does not
necessarily have stable reduction when w is finite. Let {\;}i=12 be an SMB of ¢[u"]. Let
j denote the j-invariant of ¢. Assume
(L1) either (w(j) < w(t)qg and ptw(j)), or w(j) > w(t)g if w is infinite,

. either (w(j) < 0 and ptw(j)), or w(j) >0 if w is finite.
For a positive integer n, let G(n); denote the wild ramification subgroup, i.e., the first lower
ramification subgroup, of Gal(K(¢[u"])/K). In |1, Theorems 3.9 and 3.13, Lemmas 3.14
and 3.15], for u having degree 1 and any n, the action of G(n); on {\;};=12 has been
studied assuming moreover ¢ # 2 when w is a finite prime. In Sections [5] and [0 we study
the action of G(n); on {\;}i=1,2 without requiring (deg(u) = 1) and (¢ # 2 when w is
finite).
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Theorem 1.6. Let ¢ be a rank 2 Drinfeld A-module over K which does not necessarily
have stable reduction when w is finite. Let u be a finite prime of A with deg(u) = d. Let
{)\i}izl’g be an SMB Of QS[U"]

(1) (see Theorem Let w be an infinite prime. Assume w(j) < w(t)q and p { w(j).
Let m be the integer such that w(j) € (w(t)g™ ™, w(t)g™). Put d = deg(u). Assume
n>m/d.

e Any element in G(n)1 fizes Ai;

o Let A<™ denote the subgroup of A consisting of elements with degree < m.
Then the map
G(n)1 — A<m $ )\1, o O'()\Q) — )\2

is an isomorphism of groups.

(2) (see Corollary Let w be a finite prime satisfying w { u. Assume w(j) < 0 and
pfw(g).

o Any element in G(n)1 fizes \1;

e There is an isomorphism of groups
G(n)1 —)A-d) )\1, O'P—>U()\2)—)\2.

Exampleprovides an instance where w is an infinite prime, w(j) < w(t)q, p | w(g),
and the extension K (¢[u"])/K is not wildly ramified. Let us remark that (1) if w is an
infinite prime and w(j) > w(t)q, the extension K(¢[u"])/K is at worst tamely ramified
such that G(n); is a trivial group for any n > 1; (2) if w is a finite prime and w(j) > 0,
then ¢ has potentially good reduction at w such that the extension K (¢[u"])/K is at worst
tamely ramified and the group G(n); is trivial for any n > 1.

Let ¢ be a rank 2 Drinfeld A-module over F. With the assumptions on its j-invariant
in , we define and calculate the conductors of ¢ at each prime w of F' using the u-adic
Tate module with u { w. Finally, we show a function field analogue of Szpiro’s conjecture
in Theorem which slightly generalizes [1, Theorem 4.3].

Motivated by [9, Proposition 3.2], we may expect that there are generalizations of
the results in Sections [f| and [6] to Drinfeld A-modules ¢ of rank r over K satisfying
(X)) = tX +as X9 +a, X9 € K[X]. We have obtained a generalization of Proposition
for such ¢ (see Remark . There are difficulties in generalizing Theorem We do
not further investigate the generalizations in the present paper. Some partial results will
appear in the author’s doctoral thesis [11]. For instance, the explicit action of the wild
ramification subgroup Gal(K(¢[t])/K); on an SMB {}i=1,. » of ¢[t] has been worked

out in |11, Theorem 3.3.16] under certain limited situations.
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1.4. Contents

Except for Section we consider Drinfeld A-modules over a localization K of a global
function field. In Section [2| we first review the basics of the SMB of lattices. The rest of
this section is devoted to the basics of SMBs of ¢[u"]. In Section 3| we mainly show the
infinite prime case of Theorem [1.3] For an element w; of an SMB of the lattice A as in
Theorem [1.3|(1) and an element a; in A with a limited degree, we describe the absolute
value of ey(a;w;) in Corollary (1) This is the key result of this section and its proof
is inspired by that of [10, Lemma 3.4]. Section 4| consists of finite prime analogues of the
results in Section [3] The analogue of Corollary [3.2(1) is Corollary [4.5(1).

In Section [5| (resp. Section @, we apply the results in the previous sections to a rank 2
Drinfeld A-module ¢ over K with w being infinite (resp. finite). We first calculate the
valuations of elements of SMBs of A and ¢[u"] in Sections and In Section we
calculate the conductors of ¢ in Lemma 5.5 Then we study the action of the wild ramifica-
tion subgroup of the Galois group Gal(K (¢[u"])/K) on an SMB of ¢[u"] in Theorem |5.9
Section [6.2| consists of finite prime analogues of the results in Section 5.2l In Section [6.3
we obtain a function field analogue of Szpiro’s conjecture under certain assumptions.

In Appendix [A] when w is an infinite prime, the conductor of a rank r Drinfeld A-
module over K is defined. In Appendix [B] we calculate the Herbrand -function of the
extension of K generated by the roots of a certain polynomial with degree being a power

of q.

2. Basics of SMBs

Let | — | denote the absolute value in (F1) (resp. the function in (F2)) if w is an infinite
prime (resp. a finite prime) defined in Section

2.1. SMBs of lattices

In this subsection, we recall first the basics of SMBs of lattices and then the (Tate)
uniformization of Drinfeld A-modules. Consider C,, as an A-module via the embedding
A — C4. If wis a finite prime, consider C,, as an A-module via a Drinfeld A-module 1

having good reduction of rank r’. The next lemma will be applied implicitly in this paper.

Lemma 2.1. (1) If w is an infinite prime, we have |aw| = |a| - |w| for any a € A and
w € Cqx.
(2) (see [8, Section 1]) Let w be a finite prime. Then we have |a -y w| = |a| - |w|, i.e.,

w(a -y w) = |a|l - w(w) for any a € A and any w € C,, having valuation < 0, where

|aloo = qdeg(a).
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Proof. (1) is clear. We show (2). Put g =1/-deg(a), ap = aand > 7 _, a; X9 = o(X). As
the Drinfeld module ¢ has good reduction, we have w(a;) > 0 and w(ay) = 0. Hence the
assumption w(w) < 0 implies that the valuation w(a,w?’) is the strictly smallest among

w(a;w?) for all i. As w(ag) = 0, we have w(a,w?’) = ¢w(w), i.e., |ayw| = |ale - jw]|. O

Let L be an A-lattice of rank r in C4, or an A-lattice of rank r in C,, such that each

nonzero element in the lattice has valuation < 0.

Definition 2.2. (see |17, Section 4] or [10, Section 3]) A family of elements {w;}i=1, . »

in L is called an SMB of L if for each ¢, the elements wy, ..., w; satisfy
(1) wi,...,w; are A-linearly independent;
(2) |wi| is minimal among the absolute values of elements w in L such that wy, ... ,wi_1,w

are A-linearly independent.

Remark 2.3. If elements \; for i = 1,...,r of ¢[u"] are A/u"-linearly independent (cf. Def-
inition [1.1(1)), then {A;}i1,.., is an A/u"-basis of ¢[u"]. On the other hand, if elements
wi for i =1,...,r of L are A-linearly independent, then {w;};—1 ., is not necessarily an
A-basis of L.

Proposition 2.4. Let {w;}i=1,.., be a family of elements in L.
(1) This family is an SMB if and only if for each i, the elements wy, ... ,w; satisfy

® wi,...,w; are A-linearly independent;

e we have |w;| = l;, where

{; = min {p € R | the ball in Co, or Cy, around 0 of radius p contains

at least i elements in L which are A-linearly independent}.

(2) The sequence |wi| < |wa| < -+ < |wy| for an SMB {w;}i=1,..., is an invariant of L,
i.e., for any SMB {w,}i=1,..r of L, we have |w;| = |w}| for all .

Proposition 2.5. Let {w;}i—1,.., be a family of elements in L so that |wi| < |wa| < ---
|wr|. Then this family is an SMB of L if and only if

IN

(1) wiy...,w, form an A-basis of L;
(2) we have | Y, ajw;| = max;{|a;w;|} for any a; € A.

Proof. This has been proved in [17, Lemma 4.2]. O
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For the subfield K of C,, we say that L is Gal(/K®P/K)-invariant if each element in
the Galois group maps L into L. The following lemma concerns the extension generated

by elements w in the lattice with |w| being minimal.

Lemma 2.6. Let {w;}i=1,. ., be an SMB of L such that |wi| = -+ = |ws| < |wst1] for
some positive integer s < r. Assume that
e the extension M /K generated by w; fori=1,...,s is separable;

o the lattice L is Gal(K*P/K)-invariant.
(1) The extension M/K is Galois.
(2) The extension M /K is at worst tamely ramified.

Proof. We show (1). Let M denote the Galois closure of M /K so that M is exactly the
compositum of ¢M for all ¢ € Gal(]/\/[\/K). We have M = M. Indeed, if M\/M is nontrivial,
there exists some element ¢ € Gal(]\/i/K) such that ¢(w;) ¢ M for j to be one of 1,...,s.
Note that M contains the A-module P,_; _,Aw; (here Aw; := {a y w; | a € A} if
the prime w is finite). As elements in L \ ,_; , Aw; have strictly smaller valuations
than that of w; for ¢ = 1,...,s and Galois actions preserve valuations, this implies that
§(wj) ¢ L. If ¢ also denotes a preimage of ¢ under Gal(K*P?/K) — Gal(M\/K), then
¢(wj) ¢ L contradicts that L is Gal(K®P/K)-invariant.

As for (2), we show that M /K is tamely ramified. Assume the converse so that the wild
ramification subgroup Gal(M/K); is nontrivial. Let wy; denote the normalized valuation

associated to M. For o to be a nontrivial element in Gal(M/K);, we have
1 < wy(o(w)w; ' —1)

for each i. We also have o(w;) —w; # 0 for j to be one of 1,...,s. Note that was(w;) is
the largest among the valuations of all nonzero elements in L. As o(w;j) —w; € L (L is
Gal(K®°? /K )-invariant), we have

wir (0 (wjw; ' = 1) = war(o(wj) — wj) — war(w;) <0.
This gives a contradiction. O

Next, we recall the uniformization and the Tate uniformization. Let ¢ be a rank r
Drinfeld A-module over K. If w is an infinite prime, then the uniformization associates to
the Drinfeld module ¢ a Gal(K%P/K)-invariant A-lattice A and an exponential function
eg on Cy, such that for each a € A, the following diagram commutes, and its two rows

are short exact sequences

AC Co —2 5 Co

A Cpp —25 .
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Here the exponential function is explicitly
ep: Coo + Co, wrw H (1 —w/p)
peA\{0}

and the coefficients of ¢, (X) map to Co, via the embedding K < Co,. The commutativity

of the right square in the diagram means eg(aw) = a -¢ e4(w) for any w € Cuo.

Remark 2.7 (SMBs and isomorphic Drinfeld modules). For any b € K5 \ {0}, we have
the Drinfeld module bgb~! isomorphic to ¢. The uniformization associates to bpb~! the
lattice bA. If the family {w;}i=1,. , is an SMB of A, then {bw;}i=1,. , is an SMB of bA.

If w is a finite prime, assume that ¢ has stable reduction over K and the reduction of

¢ has rank v’ < r. According to |6, Section 7], there are the following data associated to

o:
(1) A rank 7" Drinfeld A-module ¢ over K has good reduction;

(2) A Gal(K®P/K)-invariant A-lattice A has rank r — 7’ with the A action induced by
1. Each element of A has valuation < 0.

(3) An analytic entire surjective homomorphism
ep: Cpy = Cp, wrw H (1 —w/p)
neA\{0}

such that for each a € A, the following diagram commutes, and its two rows are

short exact sequences

A Cp —25C,,

bR

A Cp -5 C,.

The commutativity of the right square means ey(a -y w) = a-¢ey(w) for any w € C,.

We call these data the Tate uniformization of ¢.

2.2. SMBs of the module of u"-division points

In this subsection, let ¢ be a rank r Drinfeld A-module over K which does not necessarily
have stable reduction. Using Remark we may extend Definition

Definition 2.8 (Extending Definition . Let n be a positive integer and u a finite
prime of A. A family of elements {\;};=1,., is an SMB of ¢[u"] if for each i, the elements
AL,y ..., i in @[u”] satisfy
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(1) A1,...,A; are A/u"-linearly independent;

(2) w(A;) is the largest among the valuations of elements A in ¢[u”] such that Ag, ...,

Ai—1, A are A/u"-linearly independent.

Remark 2.9. For any b € K*P \ {0}, a family {\;}i—=1,.., is an SMB of ¢[u"] if and only
if the family {bA;}i—1,., is an SMB of bgb~1[u"]. Especially, this holds when w is a finite
prime and b is an element in some tamely ramified extension L of K so that bpb~! has

stable reduction over L.

The rest of this subsection is concerned with two basic properties of SMBs of ¢[u"].

77777

(1) This family is an SMB if and only if for each i, the elements Ai,...,\; satisfy

o \i,..., N\ are A/u"-linearly independent;

e we have w(\;) = l;, where

l; = max {p € R | the ball {\ € K*P | w()\) > p} contains at least i elements

in ¢[u"] which are A/u™-linearly independent}.

(2) The sequence w(A1) > w(Ag) > --- > w(A,) for an SMB {\;}i=1,.. , is an invariant
of lu"].

Assume that ¢ has stable reduction when w is finite. Then the sequence |A1]| < [A2| <
-+ < |Ar| for an SMB {\;}i=1,...» is an invariant of ¢[u"].

Proof of Proposition [2.10] (2) straightforwardly follows from (1). We then show (1). The
“<” is straightforward. For “=”, the first dot in (1) is the same as Definition [2.§(1).
Clearly, we have l; > w();) for all i and [; = w(A;). Then we proceed by induction. We
fix any ¢, assume l; = w();) for j < i, and show l; = w();). We assume ; > w(\;)
and find a contradiction. There exist elements 7y, ...,n; € ¢[u"] such that n,...,n; are
A/u"linearly independent and w(n;) > l; > w(X;) for j=1,... 4.

Put 7; := unt ¢ n; for j < i and Xj =t ¢ Aj for j <i. We claim that there is

some k such that 7, and Aq,...,\;_1 are A/u-linearly independent. Assume the inverse.
Then we have equations
i—1
bi-¢ M +Zal,j 9 Aj =0
j=1

foralll =1,...,4, where q;; € A mod u and b € A mod v with b; Z 0 mod u for each

[. For each [, we obtain

i—1
M=—>_ a;/bigX,
=1
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where each a;;/b; € A mod u satisfies b;(a; ;/b;) = a;; mod u. Hence A, Aol gen-
erate an i-dimensional A/u-vector space, which is absurd.
Next, we claim that n and A1,...,\;—1 are A/u"-linearly independent. Assume the

inverse and we have

i—1
(2.1) Chog e+ Y a9 A =0,

j=1
where each a; € A mod u" and ¢, € A mod v" with ¢ Z 0 mod u". We may write
¢ = c,u™ with m < n and ¢} € A not divisible by w. Then we have u™ | a; for all j < i,
for otherwise, by , we have Z;;ll a;u""™ -y A; = 0 with a;u"™"™ # 0 mod u" for
some j. We may write a; = agum for a; € A. Hence we have by ,

i—1 i—1
0=cpu ™™ ¢ Mk + Z aju”_l_m 6 Aj =T + Z a;- % Aj
j=1 j=1

with ¢}, € A not divisible by w. This contradicts that 7, and AL, ..., A1 are A/u-linearly

independent. We have obtained A/u"-linearly independent elements Aq, ..., \;_1,n; such
that w(ng) > I; > w()\;). This contradicts Definition [2.8)(2). O

In the remainder of this subsection, we construct an SMB of ¢[u"] for any positive

integer n.

Lemma 2.11. Let {\;}i=1,., be an SMB of ¢[u"]. For each i and a € A with a # 0
mod u”, the element \; has the largest valuation among the roots A of ¢o(X)—a-4 A such

that A € ¢[u”].

Proof. Let A be a root of ¢q(X) — a -4 A; such that A € ¢[u"]. Assume w(X) > w(N;).
It suffices to show that Aj,..., A;_1, A are A/u"-linearly independent because this implies
that the inequality w()\) > w()\;) contradicts Definition [2.§)(2). Assume that there exist
bj € A mod u" with b; # 0 such that b; -4 A + Zj<i bj - Aj = 0. Let ¢ be the minimal
common multiple of a and b; such that ¢ = bb; = d’a for some b, and o’ € A. Consider
the equation b} -4 (bi b A+ qu bj -6 )\j) =0. Since bjb; -y A =d'a-p X =d'a-y \i =c-4 N,
we have

(2.2) C-4 A + Z b;bj ) )\j =0.

J<i
We have u”™ 1 ¢, for otherwise one of a or b; is divisible by u". Hence the nonzero coefficients

in the equation (2.2)) contradict that Aq,...,\; are A/u"-linearly independent. O

Corollary 2.12. With the notation in the lemma, for each i and a € A being a power of

u, the element \; has the largest valuation among the roots of ¢o(X) —a ¢ A;.
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Proposition 2.13. Let {\;}i=1,., be an SMB of ¢[u"].

(1) Foreachi, let X, be a oot of ¢ (X )—Ni having the largest valuation. Then {\,}i=1, _,
is an SMB of ¢p[u"].

(2) The family of elements {w -¢ Ai}i=1,. r is an SMB of Plu™1].

Proof. (1) We check Definition 1) using induction on . The base case is clear. Assume

N, ..., M are A/u""!linearly independent. Assume conversely that there are a; € A
mod u" ! with a; # 0 such that 22:1 aj ¢ )\; =0. Forj=1,...,7,since u-4 )\; = )Aj and
A, ..., A; are A/u™-linearly independent, we have ua; =0 mod u™*! and hence u™ | aj.

There are b; € A with b; #0 mod u such that a; = bju" for all j. Hence

% 7
0= Zaj R0 )\; = iju”_l ) )\j
j=1 J=1

with b;u™"! not divisible by 4", which is absurd.

As for Definition (2), we show w()\)) > w(A) for each A € ¢[u"!] such that
N, M, X are A/u™t-linearly independent. Notice u -4 A € @[u"] and that the ele-
ments Ar,...,\i—1,u -4 A are A/u"-linearly independent. We have w();) > w(u -4 A) as
{A\i}i=1,..r is an SMB of ¢[u"]. Note that w(\}) is the largest among the valuations of
roots of ¢, (X)—\;. By comparing the Newton polygons of ¢,,(X) —A; and ¢y, (X) —u-¢ A,
we have w(X]) > w(\).

(2) It is straightforward to check Definition ( 1). Let A be an element of ¢[u" 1] such
that u-g A1, ..., ugAi—1, A are A/u™"linearly independent. To show w(u-¢A;) > w(\), we
assume conversely w(u-¢A;) < w(A). By comparing the Newton polygons of ¢, (X) —u-¢A;
and ¢, (X) — A, there is a root X of ¢,(X) — X such that w(\) > w();). We have
N € ¢[u™] as all roots of ¢, (X)— A belong to ¢[u"]. Similar to the proof of (1), one shows
that A,..., A1, \ are A/u"-linearly independent. Hence the inequality w(\) > w()\;)
contradicts that {\;}i=1 ., is an SMB of ¢[u"]. O

We can find an SMB of ¢[u] in the following way. Put

A1,1 := an element in ¢[u] \ {0} with the largest valuation,

(23) Ai1 := an element in @lu] \ @(A/u) ‘¢ Aj,1 with the largest valuation

7<i
for i = 2,3,...,7. Since A/u is a field, the elements \;; for i = 1,...,r are A/u-linearly

independent and form an SMB of ¢[u]. Applying the proposition, we have

Corollary 2.14. Let {\;1}i=1,. . be an SMB of ¢[u] defined above. Inductively, let \; ;
be a root of ¢pu(X) — Aij—1 having the largest valuation for each i and each integer j > 2.
Then for each positive integer n, we have that {\; ,}i=1,. » is an SMB of ¢[u™].
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3. Relations between SMBs, the infinite prime case

Let w denote an infinite prime, | — | the absolute value in (F1) and {w;}i=1,. , an SMB
of A throughout this section. For a positive integer n and a finite prime u of A, we study
the relations between SMBs of A and those of ¢[u"].

Lemma 3.1. Let a be an element in A. For w =3 ajw; € A with a; € A, let i be an

index so that |aw;| = |wl, i.e., |ajw;| = max;{|ajw;|}. Assume deg(a;) < deg(a). Then

e ()l =lee G-
()3 1 (-3)

pEA\{0} an

‘z‘. I 1_w‘
a ap |’
ueA\{0} a

japl<|w]

we have

Proof. We have

Its absolute value is

For pu € A satisfying |au| < |w|, we have by the ultrametric inequality

1_i _ i _ a;W; _ 1_aiwi
ap aj aj ap |
Next, for p € A satisfying |ap| = |w| = |a;w;|, we show
’1—“’ — 1= i
ap ap
It suffices to show
lw—ap|=|w| and |aw; —ap| = |a;w;|.
Since |a;| < |a|, we have y belonging to );_; Aw;, for otherwise we have [au| > [aw;| >

|la;w;| by Proposition [2.5(2). Applying Proposition 2.5(2) to |w — au| and |a;w; — apl|, we
obtain the desired equalities. ]

Corollary 3.2. Let a be an element in A.

(1) Foranyi=1,...,r and any a; € A satisfying deg(a;) < deg(a), we have

a;W; A;Wy
eo ()| =122 TT el /el
peA\{0}
lap|<|aiw;]

(2) For any positive integers i,j <, let a; and a; be elements in A with degrees strictly

smaller than that of a. Assume |ajw;| < |aw;|. Then

oo (%5) [ < oo (550
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(3) With the notation in the lemma, we have

oo (@) = mpe{los o ()}

(4) For any positive integer i < r and b € A satisfying deg(b) < deg(a), we have

oo ()] < oo ()]

Proof. (1) has been shown in the proof of the lemma. As for (2), by the assumption, we

have
(3.1) {neAllap| <lajw;l} € {peAllap| <lawil}.

If pu satisfies |ap| < |ajwj|, we have |a;w;|/|ap| < |ajw;|/|ap|. Combining this inequality
and (3.1), we have the desired inequality by (1). For (3), as a - eg(w) = ey(aw) for any

a € A and any w € Cy, it remains to show

oo ()| = mae{les (521

This equality follows from Lemma[3.1]and (2). As for (4), note |w;| < |bw;|. One can show
(4) similar to the proof of (2). O

Theorem 3.3. For any finite prime u of A and any positive integer n, the family of

elements {eg(wi/u™)}iz1,.., is an SMB of ¢[u™].

Proof. Put \; = ey(w;/u") for all i. Note that wy/u",... w,/u" are A/u"-linearly inde-
pendent as elements in v~ "A/A. By the A/u"-module isomorphism E4: u™"A/A — ¢[u"]
induced by eg4, we have that Ai,..., A, are A/u"-linearly independent.

Fix a positive integer i < r. To check Definition [1.1}(2), we show that |A;| is minimal
among the absolute values of elements in ¢[u"]\ D, _;(4/u") ¢ A; (in #[u”]\ {0} if i = 1).
Put A =3 a; ¢ Aj with aj € A mod u” such that there is ay # 0 for some k > i. We
show |A;| < |A]. Without loss of generality, we assume that deg(a;) < deg(u™) for any j.
Let [ be an index so that |aquw;| = ! > ajwj’. By Corollary (3), we have

N = oo M-
As |agwy| < |ajw|, Corollary [.2)(2) implies

ApWE Wi
o () < Jee (G201

hence |ay ¢ A\x| < |ag-¢ Mi|. As |wi| < |wg|, Corollary (2) also implies |A;| < |Ag|. By
Corollary [3.2(4), we have |ax| - |[Xc| < |a -¢ Ax|. Combining the equality and inequalities,

we have

Al < Akl < ak] - (Al < ag g Akl < ag-¢ M| = [A- O
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Remark 3.4. We have shown in the above proof that |[A;| is minimal among the absolute

77777

below, we know that there exists an SMB {w]}i—1,.. » of A such that ey(w,/u™) = N, for

all 7. Hence ] has the minimal absolute value among elements in ¢[u™]\ {0}.

Corollary 3.5. Let {\i}i=1,..» be an SMB of ¢[u"].

(1) Ifn is large enough so that |u™| > |wy|/|wi], then fori=1,...,r, we have |\;|-|u

|-

(2) For any positive integer n, we have |A\|/| 1| > |wr|/|w1].

(3) Ifn is large enough so that [u"| > |w,|/|wi|, then we have |N;| < |w1| fori=1,...

Proof. We show (1). Fix i to be one of 1,...,r. Corollary [3.2[1) implies

(3.2) les (55)| = | GAI\[{O} il /"l
|5"M<|wi\

For any p € A, we have

u | = Juwr| > Jwr| = il

by the hypothesis. Hence (3.2)) implies

oo ()| =

By Theorem the family {eg(w;/u™)}iz1,. » is an SMB of ¢[u"]. Hence we have

Wi

un |’

(3.3) |Ai| = ’% (%)‘ for any i

by Proposition [2.10{2). (1) follows. Notice that (3.2]) implies
w1 ! Wi Wi .
o Gl =[] and oo ()| 2[55] forans
(2) follows from (3.3)). Since we know |A,| = |w,|/|u™| by (1), we have

il < A = Jer/|u™| < fwrl/ (lwr] /|wn]) = Jor]

and (3) follows.

n’:

O]

Remark 3.6. By Corollary 3.5(1) and (2), we have |A;| - [u"| = |ws| if n is large enough so

that [u"] > |Arl/|Ad]-
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Put B := {w € Cx | |w| < |wi|}. Since BN A = (), the exponential function ey is

injective on B. For any w € C,, we have

(3-4) les(@) =lwl- ]

neA\{0}
] <ol

1“‘.

Hence |eg(w)| = |w| for w € B. This implies e4(B) C B. Put C := e4(B). There
is an inverse log,: C' — B of ey defined by a power series with coefficients in K and

ep : B = C :log, are inverse to each other.
Lemma 3.7. (1) We have C = B.
(2) We have the following maps which are inverse to each other
ey : BNL= BNou"] : log,,
where
L= {Z a;(w;/u™) ‘ a; € A with deg(a;) < deg(u”)}
i
is a set of representatives of all elements in u="A/A.
(3) For any A € BN ¢[u"], we have |log,(\)| = [Al.

Proof. We show (1) using a property of the image of the open disk B under the power

series ey. Let ¢; be elements in C, so that

Z GW = w H 1 - w//‘ = e¢( )
i1 peA\{0}
We first calculate the minimal integer d such that |c||w?| is maximal among |c;||wi| for

all 4, i.e., d is the Weierstrass degree of e, on B. Clearly ¢; = 1. As |w/pu| < 1 for any
w e A\ {0}, we have the following inequalities

i—1
H w1/ 1
j=1
for integers i > 2. Hence d = 1. By [2, Theorem 3.15], we have C' = e4(B) = B.

As we have bijections e4: B — B and e4: L — ¢[u"], (2) follows. As for (3), by (2),
we have log,(\) € BN L and ey (log,(A)) = A. Hence we have [log,(A)| = |A| by (3.4)).

leillwi] < sup  Q |wi]- < wi] = Jer|fwr]

nyEM\{0}

Let {\;}i=1,..» denote an SMB of ¢[u"]. Assume that the positive integer n is large
enough so that [u”| > |wy|/|wi|. By Corollary 3.5(3) and Lemma [3.7(1), for each i, we
have \; € BN ¢[u"] = C' N ¢[u"] and we put w; := log,(A;).
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Theorem 3.8. The family {u"w}i=1... , is an SMB of A.
We need a lemma in the proof.

Lemma 3.9. Let {n;}i=1..., be a family of elements in uw="A. It is an SMB of u™"A if
and only if {u"n;}i=1,. r is an SMB of A.

Proof. For any a; € A, we have

> aun; > i
i i

Then the lemma follows from Proposition 2.5 O

= u"

Proof of Theorem [3.8 By Lemma [3.9] it suffices to show that the family of elements
{wi}i=1,., is an SMB of u="A. To check the first dot in Proposition (1), we show that
w],...,w are A-linearly independent. Assume that there exist nonzero a; € A such that
> aiw; = 0. We may assume u” { a; for some 4, for otherwise we divide both sides of
the equation ), a;w; = 0 by some power of u. Note that the map ey is A/u"-linear. As
some a; satisfies a; Z 0 mod u™ and Aq,..., A, are A/u"-linearly independent, we have
e¢(zi aiwg) =Y, ai ¢ A # 0. This is absurd.

Next, we check the second dot in Proposition [2.4{(1). Let I; < Iy < .-+ < [, be the
invariant of ©~™A as in Proposition (2) Fix 7 to be a positive integer < r. It suffices
to show l; = |w}|. We have [; < |w}|. Let us assume [; < |[w}|. As \; € BN ¢[u"], we
have |w]| = |A;| by Lemma [3.7(3). Hence I; < |w}| = |\;| < |w1|. By Proposition [2.4]1),
there is an SMB {n;};=1,..» of u™"A such that |n;| = l; < |wi|. As |n;| < |wi|, we know
leg(n:)| = |ns| from (B.4). We have

leg(mi)| = Imil =1 < |wi = [\l

and hence |e4(n;)| < |A;|. On the other hand, note that {u"n;};—1,. , is an SMB of A by
Lemma By Theorem the elements eg4(n;) for j =1,...,r form an SMB of ¢[u"].
By Proposition [2.10(2), this contradicts |eg(7;)| < |As]. O

Finally, we give applications of Theorems [3.3] and

Proposition 3.10. If n is large enough so that |u"| > |wr|/|wi|, then we have

where K (A) (resp. K(p[u"])) is the extension of K generated by all elements in A (resp. in
¢lu"])-
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Proof. (cf. the proof of [12, Proposition 2.1]) Note that ey is given by a power series
with coefficients in K. For any z € K°P, we have e4(x) € K(z) since the field K (z) is
complete. Since the exponential map ey induces a bijection v~ "A/A — ¢[u"], for any A
in ¢[u"], there exists w € u™"A such that e4(w) = A. This implies K(\) C K(w) and
K($[u)) € K(A).

Note that logy is given by a power series with coefficients in K. For any y € C'N K*P,
we similarly have log,(y) € K(y). Let {\i}i=1,._» be an SMB of ¢[u"]. As |[u”| > |w;|/|w1],
by Theorem the elements u"w; for i = 1,...,r form an SMB of A, where w; = log,(\;).
Since K (w}) C K(\;) for each i, we have K(A) C K(¢p[u™]). O

Combining Corollary [3.5{2), Theorem and Proposition we have

Corollary 3.11. Let! be a positive integer and {n; }i=1,..., an SMB of p[ul]. Let {Niti=1,.r
be an SMB of ¢[u™]. If n is large enough so that |u™| > |n;|/|m|, then we have

(1) the family {u" 10g¢,()\i)}i=1,...,r is an SMB of A;

Proposition 3.12. Let {\;}i—1,..» be an SMB of ¢[u"]. We have

> aig A

= max{|ai o) >\z|}

for any a; € A mod u”.

Proof. Without loss of generality, we assume deg(a;) < deg(u™) for all i. Assume first
that n is large enough so that |u™| > [A.|/|A1] (see Corollary[3.5|(2)). By Theorem the
elements u"w; for i = 1,...,r form an SMB of A, where w; = log,();). By Corollary (3),

we have
€o (Z awé)
i

As e¢( > aiwz’-) =), Gi ¢ Ai, the claim follows.

For any n, let n’ be an integer > n so that [u"| > |A.|/|A1|. By Proposition M(l),
there is an SMB {\.};=1.__, of ¢[u™] such that ™ =™ -4 X; = \; for all i. Then the desired
equation for {\;};=1 ., follows from that for {\;};=1 . O

= mlax{]ai ‘& e¢(w£)\}.

Proposition 3.13. (cf. Lemma Let {\i}i=1,..r be an SMB of ¢p[u™] such that |\| =

oo = |As| < |Ast1| for some positive integer s.

(1) The extension of K generated by A1, ..., \s is at worst tamely ramified.
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(2) For an element o in the wild ramification subgroup Gal(K(¢[u™])/K)1, we have
0’()\]') :)\j fOT'j: 1,...,8.

Proof. (2) straightforwardly follows from (1). We show (1). Let n’ be an integer satisfying
n' > n and [u"| > |A|/|\]. By Proposition [2.13(1), we know that there exists an
SMB {\};=1,.., of ¢[u™] such that u™ =" .45 X, = ); for all i. By Corollary we
have [Nj| = --- = |X| < [N,;;]. By Corollary [3.11(1), we know that there exists an
SMB {w;}i=1,..,» of A such that e¢(w,;/u"/) = M, for all 7. Corollary implies that
lwi| = = |ws| < |wst1]|. As egy(wi/u"™) = Ai, we have K();) C K(w;) for all i. Then the
result follows from Lemma O

4. Relations between SMBs, the finite prime case

Throughout this section, let w denote a finite prime and assume that ¢ has stable reduction
over K. Assume that the reduction of ¢ has rank 7 < r unless otherwise specified. Let
{wYi— 41, be an SMB of A. Let | — | denote the function in (F2) in Section and
put |ale = ¢%&@ for any a € A. For a positive integer n and a finite prime v of A, we
study the relations between SMBs of 1[u"], those of A, and those of ¢[u™].

First, we are concerned with the valuations of the elements in the A-module u™"A,
i.e., the roots of ¥n(X) — w for all w € A.

Lemma 4.1. Let a be an element in A.

(1) Each root of ¥4(X) has valuation > 0. Moreover, all nonzero roots of 1q(X) have

valuation = 0 if and only if w(a) = 0.
(2) For a nonzero element w € A, each root of 14(X) — w has valuation < 0.
(3) An element w € a=tA belongs to 1[a] if and only if it has valuation > 0.

Proof. Put g := r' - deg(a), ag = a, Zfzoaini = Yo(X) and P; = (¢*,w(a;)) for
i=0,...,9. As w(a;) > 0 and w(ay) = 0, the segments in the Newton polygon of 1, (X)
have slopes < 0. If w(ag) = 0, then the Newton polygon of ¢,(X) consists of exactly
one segment PyP, which has slope 0. Hence each root of 1,(X) has valuation = 0. If
w(ap) > 0, then the left-most segment in the Newton polygon of 1, (X ) has negative slope.
Hence some nonzero root of 1, (X) has valuation > 0.

As for (2), put Q = (0,w(w)). As w(w) < 0, w(a;) > 0 for all i, and w(ay) = 0,
the Newton polygon of 1,(X) — w consists of exactly one segment QP, whose slope is
—w(w)/q9 > 0. Hence (2) follows. From (1) and (2), we know (3). O
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Fix a root w; of un(X) —w? for i = v’ +1,...,r. The elements wy41,...,w, are

A-linearly independent. For all a; € A, we have

T T
2 : § : n
a; 1 Wy a;u o W;

i=r'+1 i=r'+1

r
2: 0
ai-¢wi .

i=r’'+1

[u" oo -

Hence, by Proposition [2.5] we have

,
Z Qj o Wi

(4.1) = max {|a; -y wil}
. i=r'+1,..,r
i=r'+1
for any a; € A.
In the remainder of this section, let {w;};=1,. ,» be an SMB of ¥ [u"] and wy 41, ..., w,

be elements in u™"A defined as above. The family {w;}i—1 . , form an A/u"-basis of
u”"A/A. Next, we study the relations between {w;}i=1,._, and SMBs of ¢[u"].

Lemma 4.2. (1) For all a; € A, we have

Zai P Wi
i

(2) Let a; be elements in A fori = 1,...,r. Assume either w(u) = 0, or some a; is

}Zigr’ai -wwi’ <0 alla; =0 fori>71',

‘ZDW% -wwi‘ >0 somea;#0 fori>r'.

nonzero for i > 1r'. Then we have

Zai ) Wi
i

Proof. (1) Since ;.. a; -y wi € p[u"], we have |Ei9/ a; -y wi| < 0 by Lemma (3)
Since u" -y w; for all i = 7'+ 1,...,r are elements in A, we have |u"| - |w;| > 0 and hence

= m?X{|ai - wi }-

|ailoo - |wi| > 0 if @; is nonzero. Hence, by and the ultrametric inequality, we have
| DG wi| = ‘ D i @i wi‘ > 0 if some a; for i > ' is nonzero. (1) follows.

(2) If some a; # 0 for @ > 1/, the desired equality follows from (1) and (4.1). By
Lemma 1), the assumption w(u) = 0 implies that the elements in 1[u"]| have valuation
0. Hence ‘ D iyt Qi wi| =0 and |a; -y w;| = 0 for all i < r’. The desired equality similarly
follows. - O

Recall for any w € C,,, we have
ep(w) =w H (1—w>.
perifoy » F
Its valuation is
(4.2) w(eg(w)) = w(w) + Z w (1 - w) .

HEAN(0} K
w(p)>w(w)

For certain w =), a; -y w; € u~"A, we are to calculate |ey(w)|.
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Lemma 4.3. Ifw =), a;yw; witha; € A mod u", we have

leg(W)] = |wl.

Proof. By (4.2)), it suffices to show w(1l —w/u) = 0 for each p € A. Notice w(w) > 0 by
Lemma[4.2(1). Since w(y) < 0 for any p € A, we have w(1 —w/p) = 0 by the ultrametric
inequality. O

Lemma 4.4. (cf. Lemma For w = Zj aj -y wj € u"A, assume some a; for j > 1’
is nonzero. Let i be an integer > r' such that |w| = |a; - wi| = max;{|a; -4 w;|} (by

Lemma [1.2)(2)). Assume deg(a;) < deg(u"). Then we have

leg(w)] = leg(a; -y wi)l-

Proof. By (4.2)), it suffices to show

w(l—w> :w<1—ai.¢wi>
% Y

for each p € A with w(p) > w(w). If w(p) > w(w), then we have by the ultrametric
inequality that

(D)) (5 - (52).
()2 -

if w(p) = w(w) = w(a; - w;). It suffices to show

Next, we show

w(w—p) =ww) and w(a; -y w; — ) = w(a; - w;).
As deg(a;) < deg(u"), we have

] = lai -y wil = lailoo - ] < [u"[oo - lwi] = |w]

and hence |u| = |w| < |[w?|. This implies p € @;‘;}ﬂ/“

|| > |w?| by Proposition (2) Applying Lemma (2) to |w — p| and |a; - wi — p, we
obtain the desired equalities. ]

Ay w?, for otherwise we have

Corollary 4.5. (cf. Corollary

(1) With the notation in Lemma we have

w(egw) =ww) + Y (ww) —w(w).

neA\{0}
w(p)>w(w)



270 Maozhou Huang

Particularly, for any i =1,...,7 and any a; € A\ {0} satisfying deg(a;) < deg(u™),

we have

w(eg(a; - wi)) = w(a; - wi) + D (wlaipwi) — w(w),
neA\{0}

w(p)>w(a;pw;)
(2) For any positive integers i,j < r, let a; and a; be elements in A with degree strictly

smaller than that of a. Assume |a; - wj| < |a; -y wi|. Then
leg(aj -y wj)| < leg(ai -y wi)l.
(3) With the notation in Lemma we have
leg(w)| = m]ax{]aj ‘¢ €p(wj)| }-

(4) For any positive integer i = ' +1,...,7 and b € A satisfying deg(b) < deg(a), we
have

|bloo - [eg(wi)| < [b-g eg(wi)]-

Proof. If i < 1’, then we have w(eg(a; - w;i)) = w(a; - w;) by Lemma The rest of (1)
has been shown in Lemma Similar to the proof of Corollary [3.2(2) (resp. (3)), the
claim (2) (resp. (3)) follows from (1) (resp. Lemma [4.4] and (2)).

We show (4). Note b -4 eg(wi) = eg(b - w;). By (1), the desired inequality in (4) is
equivalent to
(4.3)

Bloe - [wlwn) + D (wlw) —w(p) | Zwb-pw)+ Y (wb-yw) —w(p).

pneA\{0} neA\{0}
w(p)>w(w;) w(p)>w (b ypwi)

By Lemma (2), we may write the left in this inequality to be

w(b 2 wi) + Z (w(b 2 wi) — w(b 2 ,u))

nEA\{0}
w(p)>w(w;)

Then (4.3)) follows from the inclusion
{bppuebyAwbygp)>wbyw)h C{pel|wp)>wbd-yw)}h O

Theorem 4.6. (cf. Theorem For any finite prime u of A and any positive integer
n, let {w;}i=1,. , be the elements in u="A defined before Lemma . Then the family of
elements {ey(w;)}iz1,..r is an SMB of ¢[u"].
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Proof. Put A\; := eg(w;) for all 4. Since wy,...,w, form an A/u"-basis of u="A/A, their
images under the A/u"-module isomorphism £,: u™"A/A — ¢[u"] are A/u"-linearly in-
dependent.

We check Definition (2) Fix a positive integer i < r. For A =3 a; -4 \; with a; €
A mod u" such that Aj,...,\j—1,\ are A/u"-linearly independent, we show |A;| < |A|.
Without loss of generality, we assume deg(a;) < deg(u") for any j.

Assume first ¢ < 7/. If a;j = 0 for all j > 7/, the desired inequality follows from
{wj};=1,... being an SMB of 9[u"] and Lemma If aj # 0 mod ™ for some j > 7/,
we can apply Corollary (1), and we have ‘Z] aj - wi| < ‘Z] a; ¢ Aj|. We know
|Zj a; -y wj| > 0 from Lemma(l). By Lemmas (1) and we have |\;| = |w;| <0.

Hence
> ajpw; > ajp )
j

J
As for the case i > 7’ + 1, note that there is aj # 0 for some k > 7 as A\y,..., \ji_1, A
are A/u™-linearly independent. Similar to the proof of Theorem one can apply Corol-
lary [£.5|(2), (3) and (4) to show the inequality |A;| < |Al. O

Corollary 4.7. (cf. Corollary [3.5) Let {\;}i—1,..., be an SMB of ¢[u"].

(1) If n is large enough so that |u™|s > |w9|/|w9,+1|, then for i = 1,...,r, we have
Al = Jwi.

0

(2) For any positive integer n, we have |Ae|/|Xpj1| > || /|wd |-

0

(3) If n is large enough so that [u"|oe > |w|/|wl |, then we have |Ni| < |w% | for

1=1,...,r.

Proof. The equation |\;| = |w;| for i = 1,... 7' follows from Lemma Similar to the

proof of Corollary one can apply Corollary (1), Theorem and Proposition m(Z)
to show the rest of the lemma. ]

Put B := {w € Cy | lw| < [w,,|}. Since BN A = ), the exponential function ey
is injective on B. By (4.2)), we have |e4(w)| = |w| for w € B. This implies e4(B) C B.
Put C := ey(B). There is an inverse log,: C' — B of e, defined by a power series with

coefficients in K and e, : B = C : log, are inverse to each other.
Lemma 4.8. (cf. Lemma [3.7)

(1) We have C' N ¢[u"] = BN p[u™].

(2) We have the following maps which are inverse to each other

ey : BNL= BNou"] :log,,
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where

L= {Za, ) Wi

is a set of representatives of all elements in u="A/A.

a; € A with deg(a;) < deg(u”)}

(3) For any A € BN ¢[u"], we have |log,(\)| = [Al.

Following the strategy of the proof of Lemma [3.7(1), we can show Lemma [4.§1)

alternatively.

Proof of Lemma [£.8] (1) We know C N ¢[u™] C B N ¢[u™], which implies #B N ¢[u™] >
#C N ¢[u"], where #B N ¢[u"] denotes the cardinality of the set B N ¢[u"]. We show

£CNPu"] > #BNL > #BNo[u"] > #C N ou).

As ey is injective on L, we have #B N L < #C N ¢[u"] and it remains to show #BN L >
4B $fu").

Put B¢ := {w € Cy | Jw| > |w¥_,|}, which is complementary to B in C,. For any
w = Zj aj -y w; € BN L, there exists a; # 0 for some j > 1/, for otherwise we have

lw| <0 < |w | by Lemma (1) By Corollary [4.5(1), we have
leg(@)] > |w] > Jwp -

Hence e4(B°N L) C BN g[u"]. As ey is injective on £, we have #B°N L < #B°N ¢[u"].
This implies #B N L > #B N ¢[u"], as desired.

(2) The map eg: BN L — BN ¢[u"] is injective and is also surjective as #B N L =
#B N ¢[u"]. Hence (2) follows.

(3) By (2), we have log,(A\) € BN L and eg(log,(A)) = A. Hence (3) follows from

Lemma [4.3] and Corollary [4.51). O

Lemma 4.9. Let {\;}i=1,..» be an SMB of ¢[u"]. We have w(\;) > 0 for i < r' and
w(A;) <0 fori>r'.

Proof. For a positive integer j, let {\;;}i=1,..» be an SMB of #[u’] as in Corollary
By Proposition m@), we have w(\;) = w(\; ) for all 4. It suffices to show w(A ) > 0
and w(Ap41,) <O0.

We first show w(A, 1) > 0and w(A41,1) < 0. Put d := deg(u), ug := u, Z:io w; X4 =
¢u(X) and P; := (¢, w(u;)) fori = 0,...,7d. As ¢ has stable reduction, we have w(u;) > 0
for all i, w(ug) =0, and w(u;) > 0 for all ¢ > r'd. Hence the point P4 is a vertex of the
Newton polygon of ¢,(X). The segments on the left (resp. right) of P,./; have slopes < 0
(resp. slopes > 0). Hence there are exactly ¢"' % roots with valuations > 0. Here 0 € ¢[u]

is considered to have valuation > 0.
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We show w (A1) > 0 and w(A41,1) < 0 by induction. By (£2.3]), we have w(A1,;1) > 0.
Fix a positive integer & < 7’ and assume w(Aijn) > 0 for ¢ < k. Then the elements \;

k=1)d ¢lements. Since ¢

for i < k generate an A/u-vector subspace of ¢[u] containing ¢
has stable reduction, for any a € A, all coefficients of ¢,(X) have valuation > 0. By
the ultrametric inequality, we have w(a -4 Aj1) > 0 for any a« € A mod w and ¢ < k.
k=1d o gr'd
there are elements in ¢[u] \ @, ,(A/u) -¢ \i,1 having valuation > 0. By (2.3), we have

w(Ag,1) > 0. For k =1’ + 1, we have the same inductive hypothesis as above. However,

Hence all the elements in the vector subspace have valuations > 0. Since ¢(

since ¢-~14 = ¢4 each element in ¢[u] \ P, (A/u) -4 Ai1 has valuation < 0 and hence
w(Ay11) <O.

Next, we show w(A, ;) > 0 (resp. w(A\v11,,) < 0) by induction. Assume w(A,j_1) >0
(resp. w(Av41,5-1) < 0). By Corollary , the element A,/ ; (resp. A\p41 ;) is a root of
Gu(X) = A j—1 (resp. ¢u(X) — A4 j—1) having the largest valuation. By the induction
hypothesis and the valuations of the coefficients of ¢, (X), the left-most segment in the
Newton polygon of ¢, (X) — Ay j_1 (resp. ¢pu(X) — A\pr41,j—1) has slope < 0 (resp. > 0).
Hence we have w(\, ;) > 0 and w(Apv41,;5) < 0. O

Let {\;}i=1,. , denote an SMB of ¢[u"]. Assume that the positive integer n is large
enough so that |u"|e > |wp|/|w?, |. By Corollary (3) and Lemma (1), for each 1,
we have \; € BN ¢[u"] = C'N p[u"] and we put w; := log,(\;).

Theorem 4.10. (cf. Theorem
(1) The family of elements {w}i=1,. , is an SMB of ¥[u"].
(2) The family of elements {u™ -y W, }iepr41,.. » is an SMB of A.

Proof. (1) To check Definition [L.1(1), we show that the elements wj for i < 7’ belong to
Y[u"] and are A/u"-linearly independent. By Lemma [£.8(3) and Lemma we have
w(w]) = w(A;) > 0 for i < ¢/. By Lemma [£.1]3), this implies that w] € t[u"] for
i < r’. Note that £,: v "A/A — ¢[u"] is an A/u"-module isomorphism induced by ey
and ey(w]) = Ni. If X", aj-ypw;, = 0 with a; € A mod ™, then we have Y, a;-p\i = 0.
This implies a; = 0 mod u" and hence the desired linear independence. B

As {\i}i=1,..r is an SMB of ¢[u"], we can straightforwardly check Definition (2)
using Lemma [£.3]

(2) Similar to (1), we can apply Lemmas [.8(3), [£.1)(3) to show w! ¢ t[u"] such
that u" - w] for i >’ belong to A. We check the two dots in Proposition (1) Let us
show that w/,, .
Y isp @iy wi = 0, we can show a; = 0 mod u™ for all i similar to (1). Assume a; # 0

..,wl are A-linearly independent first. If there exist a; € A such that

for some 4. Let m be the integer such that u™ | a; for all i > 7' and u™*! { a; for some
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1. Then there exist b; € A such that a; = b;u™ for all : > r’ and b; # 0 mod u for some
i. Hence )
hand,

i bi g Wi is a root of ¢,m(X) and we denote this root by w. On the other

u"-¢w:Zbi-¢ (u™ -y wi) € A

i>r’
Since AN [u™] =0, we have u" -, w = 0 and hence w € Y[u"]. By (1), there exist b; € A
mod u" for i <7’ such that w =37, b; -y wi. This equality implies

O=eg (Y bipwi— D bipwi| = bighi—> bi-gh
i>r! i<r! i>r/ i<r!
As some b; # 0 mod u", this is absurd.

Finally, we check the second dot in Proposition 2.4(1). Let l,41 < --- < I, denote
the invariant of A as in Proposition 2.4[(2). Fix i to be a positive integer satisfying
r’ < i < r. It suffices to show l; = |u™ - wj|. We have [; < |u" - wj|. Let us assume
li < |u"™ -y Wwj|. Since \; € BN ¢[u"], we have |wj| = |\;| by Lemma ). Hence
Li/[u"|oe < |wi| = [Ai] < |w%,,|. By Proposition [2.4] there is an SMB {n?};_11,., of A
such that [n?| = I;. Let n; be a root of 1, (X) — 77? for all j (cf. the definition of w; before

Lemma 4.2). As || = li/|u"|o < |w 4], we have |eg(n;)| = |n;| by (4.2). This implies
leg(mi)| = [mil = 1i/|u"|oo < |wil = |-

By Theorem the elements ey (w}) for j =1,...,7" and ey (n;) for j =7 +1,...,r form
an SMB of ¢[u"]. By Proposition [2.10(2), this contradicts |eq(n;)| < |Ail- O

Proposition 4.11. (cf. Proposition(3.10) Ifn is large enough so that [u™|s > |w9|/]w$,+1|,
then we have

K(u™"A) = K(¢[u"]),

where K (u™"A) (resp. K(¢[u"™])) is the extension of K generated by all elements in u™ ™A
(resp. in ¢[u™]).

Proof. Note that ey is given by a power series with coefficients in K and it induces an
isomorphism £4: u™"A/A — ¢[u"]. Similar to the proof of Proposition one can show
K(¢[u"]) € K(u™"A).

Note that log, is given by a power series with coefficients in K. For any y € C'N K*P,
we have log,(y) € K(y). Let {Ai}i=1,..» be an SMB of ¢[u”]. As |u"|e > |w?|/|wd 4],
by Theorem m the families {w]};=1, , and {u™ -y w]}i= 41, , are respectively an
SMB of ¢[u"] and A, where w; = log,(A;). Since K(w;) C K(A;) for each i, it suffices to
show that w/ for all ¢ form a generating set of = "™A. For any w € u™"A, it is a root of
Pyn (X) —u" - w. Note u™ - w € A. Since {u" - w}}izp41,.» is an SMB of A, we have
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u ey w = DGy (U oy wp) for some a; € A, Hence )., a; -y w; is also a root of
Py (X) —u™ -y w. Since {w]}i—1,. , is an SMB of [u"], we have >,

Zigr’ a; - w, for some a; € A mod u™ and the claim follows. O

Ay W —w =

Combining Corollary [4.7(2), Theorem and Proposition we have

Corollary 4.12. (cf. Corollary|3.11)) Let | be a positive integer and {n; }i=1,..., an SMB of
p[ul]. Let {\i}i=1..., be an SMB of ¢[u"]. If n is large enough so that |u™|s > 0|/ |0 111,

then we have
(1) the family {log,(\i)}i=1,.. ., is an SMB of [u”];
(2) the family {u" -y log,(Ni) Yizrrq1,...r is an SMB of A;
(3) K(u™A) = K(6[u"]).

Proposition 4.13. (cf. Proposition [3.12)) Assume w(u) =0, i.e., u is not divisible by the
prime w. Let {\;}i=1..., be an SMB of ¢[u™]. Then we have

Zai o) >\z

= max {a; -4 Ai|}

for any a; € A mod u”.

Proof. Assume first that n is large enough so that [u"|s > |w?|/|wd . By Theoremm,
the families {w]};—1 ,» and {u" -y w]}i=p 41, are respectively an SMB of ¢[u"] and A,
where w; = log,(A;). Without loss of generality, we assume deg(a;) < deg(u™). Assume
that a; is nonzero for some i > 1. By Corollary [4.53), we have

€ (Z Qg o) w;) ‘ = mzaX {‘CLZ ) e¢(w§)]}.
)

As e¢( > i 'zb%,') =, Gi-¢Ai, the claim follows. If a; = 0 for all ¢ >/, then )., a;-yw]
belongs to ¥[u"]. By Lemma (1)7 we have ’Zig’r’ A o) w;‘ = 0 if some aiigé 0 and
la; -y wi| = 0 for all ¢ <7’ if a; # 0. The desired equality follows from Lemma Similar
to the proof of Proposition the case where n is arbitrary follows from the case where

n is large enough. I

Proposition 4.14. (cf. Proposition |3.13)) Let u be a finite prime of A not divisible by the

prime w. Let {\;}i=1...» be an SMB of ¢[u™] so that |A\1| = -+ = |X\s| < |[Asy1| for some

-----

positive integer s.

(1) The extension of K generated by A1, ..., \s is unramified.
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(2) For an element o in the ramification subgroup Gal(K (¢[u"])/K)o, we have o(\;) =
Aj forj=1,...,s.

Proof. (2) straightforwardly follows from (1). We show (1). Notice w(u) = 0. Following
the proof of Lemma [£.9] we know that s = r’ and 0 = w(\1) = -+ = w(A) > w(Av11).
Let n/ be an integer satisfying n’ > n and [u" |o > |Av|/|Ap41|. By Proposition M(l),
we know that there exists an SMB {\,};=1 __, of qb[u”,] such that 4™ " - \; = \; for all 4.
By Corollary with w; = log,(X]) for all i, we have that the families {w;}i—1,..,» and
{u”/ o Wh iz 41, are respectively an SMB of @/}[u”/] and an SMB of A. As e¢(u"/*" o
wh) = X, we have K()\;) C K(u” ™™ -, w}) for all i. Note that {u™ ™™ -y w}icy, o i
an SMB of 1[u"] by Proposition [2.13(2). By [14, Theorem 6.3.1] (initially proved by
Takahashi), the extension of K generated by the elements in ¥[u"] is unramified. The

result follows. O

We assumed above that each Drinfeld module has stable reduction over K. For a
Drinfeld A-module ¢ over K which does not have stable reduction, it turns out that ¢ is
isomorphic to a Drinfeld module having stable reduction over an at worst tamely ramified
subextension of K (¢[u])/K with u not divisible by w.

Proposition 4.15. Let ¢ be a rank r Drinfeld A-module over K which does not necessarily
have stable reduction. Let u be a finite prime of A with w { u. Let v’ be the positive
integer < r so that ¢ is isomorphic to a Drinfeld module having stable reduction over
some extension of K and the reduction has rank v’ < r. Let {\;}i=1,. , be an SMB of
du]. Then bpb~" has stable reduction over K(\1) for b= A' and the extension K(\)/K

is at worst tamely ramified.

Proof. Assume ' < r. Put tX + Y., a; X9 := ¢;(X). Let M be a tamely ramified
extension of K of degree ¢" — 1. Let b be an element in M with valuation w(b) =
%. Then bgb~! has stable reduction over M. The family {bAi}i=1,.r is an SMB of
bpb~u] (see Remark . By Proposition the extension M (A1)/M = M(b\1)/M
is unramified. Hence M (\;)/K is tamely ramified and its subextension K (A1)/K is at

worst tamely ramified.

Following the proof of Lemma we know that w(b);) = 0 for i = 1,...,r". Hence
w(A1) = —% and we may take b to be )\1_1.

r'_1
As for the case r’ = r, for a tamely ramified extension M /K of degree ¢" —1 and b € M

with w(b) = 7;17(‘0;7"1) , we have that bpb~! has good reduction over M. By [14, Theorem 6.3.1],

the extension M (bA1)/M is unramified. The result for the case v’ = r follows similarly. [J
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5. Applications to rank 2 Drinfeld modules, infinite prime case

Throughout this section, let w be an infinite prime, u a finite prime of A having degree
d, and n a positive integer. Let ¢ be a rank 2 Drinfeld A-module over K determined by
(X)) =tX + a1 X1+ s X? € K[X]. Let j denote the j-invariant a‘fﬂ/ag of ¢. Put
wop = w(t), wi := w(a1) and wy := w(ag). For each positive integer j, let {&; j}i=1 2 be an
SMB of ¢[t/] obtained as in Corollary

5.1. The valuations of SMBs

Our goal is to determine the valuations of elements of SMBs of the lattice A and the
module ¢[u"] in terms of wy, w1 and we. If w(j) < wog, let m be the integer satisfying

w(j) € (wog™ ', woq™]. By |1, Lemma 2.1], we have

w1 — Wy

7 > for n > 1 and
q_

w(Ern) = — (wom S

_ w2twi(g"—g—1)

w(Eap) = (g—1)g™ ’

—(wdn—m)—k%), n > m.

0<n<m;

Now the condition [t > |5, |/[€1,] in Remark B.6]reads —won > —w(&a,n) +w(&1,n). For

n > m, this inequality is equivalent to

—won > —wo(m — 1) + wo___wid)

g—1 (¢g—1)¢gm

For any n > m, the inequality [t"| > |£2.,|/|&1,n| holds. If w(j) > wog, by [1, Proposi-

tion 2.4], we have

w(éip) =w(éy) =— <w0(n —1)+ uﬂ) .

Hence the condition [t"| > [£2.5|/]&1,n| is fulfilled for any positive integer n.
Proposition 5.1. Let {w;}i=1,2 be an SMB of A and {\;}i=12 an SMB of ¢[u™].

w(g) < woq and m s the integer so that w(g) € (woq ,Woq' |, we have
1) If w(g dm is the int that w(j m+l m h

wo w1

w(w1)=wo+q_1—q_1,
wig)  w
(¢—Dg™ q-1

w(wz) = wom +

Forn > m/d, we have [u™| > |wa|/|wi|, w(A1) = w(&i na) and w(A2) = w(€2n4)-
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(2) If w(g) > woq, we have

_ _ wo w2
w(wy) = w(wz) = wo + 21 21

Forn > 1, we have w(A1) = w(A2) = w(§1,nd) = w(€2,nd)-

We note that the valuations w(w;) and w(wz) above have been obtained by Chen—Lee
in [5, Theorem 3.1 and Corollary 3.1]. One may also recover the rank r = 2 case of

Gekeler’s formula [9, Proposition 3.2] (see also [14, Proposition 5.5.8]).

Proof of Proposition 5.1} The claims of w(w1) and w(wz) follow from Remark Corol-
lary [3.5(1), and the arguments before the proposition. Then the claims of w(A;) and
w(A2) are proved by Corollary [3.5(1). O

Remark 5.2. Let r be a positive integer and ¢ a rank r Drinfeld A-module over K such that
:(X) =tX +as X7 + a, X7 € K[X]. Here s is an positive integer < 7. Let {w;}i—1,_
be an SMB of A (associated to ¢) and {A;}i=1,.., an SMB of ¢[u"] for u and n as above.
Put

" -1  ¢°-1
> . q—1 q—1
ji=as" " Ja," .

We obtain the following generalization of Proposition Its proof is similar to [,
Lemma 2.1 and Proposition 2.4] and Proposition

(1) If w(j) < woq® T—= and m is the integer such that

qg—1
TS r—s
] (m+1)su ms 4 —1
w(3)6<woq -1 ; Woq -1 |
we have
w w ,
w(wi):wo—i-qs_ol — qs—sl fori=1,...,s,
w(g)(g—1) w; .
w(w;) = wom + (G — (g = 1) - e fori=s+1,...,r.
For n > m/d, we have |[u"| > |w;|/|w1], w(A;) = —wend + w(w;) for i = 1,...,s, and
w(N;) = —wond + w(w;) fori=s+1,...,7.
(2) If w(f) > wog® T+, we have
Wo w .
w(wz‘):wo—i-qr_l - qr—rl fori=1,...,r.

Fori=1,...,7 and n > 1, we have w()\;) = —wond + w(w;).
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5.2. The action of the wild ramification subgroup on the division points

Let K(A) (resp. K(¢[u"])) denote the extension of K generated by all elements in A
(resp. in ¢[u™]). Ifw(j) < woq and m is the integer such that w(j) € (wog™*t, woq™], then
by Propositions[5.1(1) and we have for any integer n > m/d that (cf. [1, Lemma 3.3])

(5.1) K(o[u"]) = K(A) = K(¢[t™]).

If w(j) > wog, then by Propositions [5.1[2) and we have for any positive integer n
that (cf. |1, Lemma 3.14])

(5-2) K(o[u"]) = K(A) = K(¢[t])-

Put G(A) := Gal(K(A)/K). Let G(A); and G(A)Y denote respectively the i-th lower
and y-th higher ramification subgroups. We are to study the action of the wild ramification

subgroup G(A); on the SMBs of ¢[u"] for n to be large enough. Let us recall two lemmas.

Lemma 5.3. |1, Lemma 3.8] Assume w(j) < woq and ptw(g). Let m be the integer sat-
isfying w(j) € (wog™ t, woq™). Then we have the (Herbrand) v-function of the extension
K(A)/K to be

Vi) (Y)
(
Ey, 0 <y <rm;

¢Ey+ w(j)Eq,;%f —wojEq",  rtmejy1 Sy < rmej forj=1,...,m—1;

¢" By +w(j) EL —womEq™, 11 <y,
where . .
—w(j) + woq
qg—1
for any positive integer n < m and E is some positive integer not divisible by p.

T 1=

Lemma 5.4. |1, Lemma 3.14] Assume w(j) > woq. Then the extension K(¢[t])/K is at

worst tamely ramified.

In Lemma-Definition the conductor of ¢ at w is defined to be

Fu(6) = /0 7 (2 - ranks, T9") dy,

where T), is the u-adic Tate module of ¢ and GY is the y-th upper ramification subgroup
of the Galois group Gal(K*P/K). In the next result, we calculate f,(¢) explicitly. This

calculation generalizes the infinite prime case of [1, Lemma-Definition 4.1].
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Lemma 5.5. Assume that one of the following two cases happens
(C1) w(g) < woq and ptw(j);
(C2) w(g) = woq.

Then we have
%&rwoq if (C1) happens,
fuw(g) = I
0 if (C2) happens.

Proof. By Corollary there is an SMB {); ,, }i=1,2 of ¢[u"] for each integer n > 1 such
that w4 A\jnt1 = i for @ = 1,2, Recall that T;, is defined to be l&nn ¢[u™] using the
morphisms ¢y : ¢[u"] — ¢[u”] for all integers n > 1. Hence the tuples (A1 ,)n>1 and
(A2,n)n>1 form an A,-basis of T),.

Assume (C1) happens. By (5.1), the action of GY on ¢[u"] for any n > m/d and any
y > 0 factors through G(A)Y. Notice G(A)1 = J,~qG(A)?. By Proposition any
element o € G(A)Y for y > 0 fixes A1, and fixes u’ -4 A1, = A1,,,—; for any positive integer
j < n. Hence o fixes (A1 n)n>1. As A1, and Ag, generate K(¢u"])/K = K(A)/K for
n > m/d, we also have that if ¢ is not the unit, then it nontrivially acts on Az, and hence
nontrivially acts on (A2, )n>1. Therefore Lemma implies rank s, T¢' = 1if 0 <y <1y
and = 2 if r; <y. We have

futo) = [ 1y = 200
0 q—1

For the case (C2), by (5.2)), the action of GY on ¢[u"] for any n > 1 and any y > 0
factors through G(A)Y. By Lemma we have G(A)Y = {e} if y > 0. The result for the
case (C2) immediately follows. O

For an SMB {\; , }i=1,2 of ¢[u"] and an element ¢ € G(A); which is not the unit, we

work out o(Ag,) in the remainder of this subsection.

Lemma 5.6. Assume w(j) € (woq™ !, woq™) for a positive integer m. Let n be an integer
>m/d and {\;}i=1,2 an SMB of ¢p[u"]. Then we have

w(t' -y M) = w(€pai) and w(t' -3 re) = w(opg—i) forl<i<nd.
Proof. We show the result for Ay. The proof of the result for A; is similar. By Proposi-
tion (1), we have w(\2) = w(&2na). To know w(t -4 A2) = w(ths + a1 Ad + ag)\gg), we
calculate
—w(g) + wog (g — V(nd —m) + 1)
qm
w(g) (g™ = 1) +wo(g — 1)(nd —m)g™
qm—l

w(thg) — w(aA\d) =

)

w(aA\d) — w(ag)\(;) = < 0.
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We have
>0 if nd=m,
w(tAe) — w(arAd)
<0 if nd >m.

Hence we have

w(aA\d) = w(am—1) if nd =m,

w(t 0 )\2) = 2

w(the) = w(éepi—1) if nd >m.

We assume that the result for ¢ — 1 is valid. Put Ay :=¢"=1 -4 Ao, If i < nd — m, to know

w(t -4 Ay), we calculate

—w(j) +woq™((q — 1)(nd —i—m) +q) -
qm
w(§)(¢" —q—1) +woq"((¢* = 1)(nd — i —m) + ¢*)
qm

w(thy) — w(a N) =

0,

w(tNy) — w(ap\d) = <0.

Hence we have w(t -4 A\y) = w(tX\y) = w(§2,nd—i). Assume i > nd —m. To know w(t -4 AS),

we calculate

wltd) — wlanxf) =~
w(a\y) — w(azy) = w(j)(j:j__: —U
Hence w(t ¢ Ny) = w(arNy) = w(€2,na—;) and the result for Ag follows. O
Corollary 5.7. Resume the assumptions in the lemma.
(1) For any a € A with deg(a) < nd, we have
(5.3) w(a ¢ M) = w9 4 A1) = w(& na—deg(a));
(5.4) w(a ¢ A2) = w(tW 4 Xo) = w(Ea nddeg(a))-

(2) For A € ¢[u"] having valuation > w(&1 pd—m+1), there exists some b € A with
deg(b) < m such that b-4 \y = \.

Proof. By [1, Proposition 2.2], we have

(5.5) w(&i ;) > w(éang) for j=nd,nd—1,...,nd —m+1,
(5.6) w(&j+1) > w(&,;) for i =1,2 and positive integers j < nd.
For (1), by (5.6) and the lemma, we have w(t4°8(®) .4 A1) < w(t -4 A1) for any positive

integer ¢ < deg(a). Hence the desired equality follows from the ultrametric inequality.

The equation for Ay follows in the same way.
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For (2), by (5.5), we have w(A) > w(&1 nd—m+1) > w(€2.nd) = w(A2). As {Ai}i=12 is
an SMB of ¢[u"], there exist b,)’ € A mod u™ such that A = b-¢ Ay + ' -4 Aa. We may
assume that b and b’ have degrees < deg(u™) = nd. Assume conversely b’ # 0. By ([5.4)

and ([5.6)), we have
w(b ¢ A2) = w(tEY) g Xg) = w(Ee na—deg(p) < w(A2).

By Proposition we have w(X) = min{w(b -4 A1), w(b -4 A2)}. Hence w(X) < w(d -4
A2) < w(Az2), a contradiction. By (5.3)), we have

w(b K2 )‘1) = w(tdeg(b) ¢ >‘1) = w(gl,ndfdeg(b))‘
Then w(b -4 M) > w(&1 pd—m+1) and (5.6 imply deg(b) < m. O

Remark 5.8. Resume the assumptions in the lemma.

(1) The elements /-4 A; for i = 1,2 and 0 < j < nd form an F-basis of ¢[u"] as a vector
space. Indeed, by the lemma and [1, Proposition 2.2], the valuations w(#/ - Ai) for
all i and j are different from each other. Hence all elements ¢/ -4 \; are F,-linearly
independent and form a 2nd-dimensional vector subspace of ¢[u"]. Since ¢[u"] has

dimension 2nd as an Fg-vector space, the claim follows.

(2) For a positive integer j < n, let {\;};—1 2 be an SMB of ¢[u/]. By Corollary (1),
we have
wA\) = w(éga) and  w(Ag) = w(éaa)-

Under the assumptions in Lemma we put R; := g ()i (ri) fori=1,...,m and

we have
1 1
R; = —w(g)Ei1 —woEq™ <m —i— ) .

Theorem 5.9. Assume w(j) < woq and p { w(j). Let m be the integer so that w(j) €
(wog™ ™, woq™). Let n be an integer > m/d and {\;}i—12 an SMB of ¢[u™]. Put G(A) :=
Gal(K(A)/K). For a positive integer i, let A<' denote the subgroup of A consisting of

elements with degrees < 1.
(1) Any element in G(A)1 fizes A\i;

(2) The map
g: G(A)l —)A<m -¢)\1, U'—)O’(/\Q)—)\Q

is an isomorphism.
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3) Putr; := —w(d)twoq! for 1 <i < m as in Lemma [5.3| Let G(A)" denote the r;-th
q—1

upper ramification subgroup of G(A). Then for each i =1,...,m, the restriction
g: G(N)" — A< 4\
18 an isomorphism.

Proof. (1) has been shown in Proposition

(2) We show o(A2) — Ay € AS™ -4 Ay for an element ¢ in G(A); = G(A)g,,. Clearly
o(A2)—A2 € ¢[u"]. By Corollary[5.7(2), an element of ¢[u"] having valuation > w(&1 nd—m-+1)
belongs to the F,-vector space A<™ -, A\1. Hence it suffices to show w(o(A2) — A2) >
w(&1 nd—m+1)- By Proposition we have w()\;) = w(& nq). Let wp denote the normal-

ized valuation associated to K(A). We have wy = Eq"™w. Consider

wa((X2) — A2) = wa(e(M2)Ay T — 1) +wa(A2)
>Ry + wA()\2)

. 1 m 1
——w(J)Eﬁ—onq <_q—1>
- F wo(nd — m) + —
! <0( ) qg—1 qm™(qg—-1)
w1 — wWo

= —Eq™ (wo(nd —m) + ) = WA (§1,nd—m+1)-

qg—1

Hence the image o(A2) — A2 of o under the map g belongs to A< -4 Ay.

Next, we show that ¢ is an isomorphism. The map is injective since A\; and Ao generate
K(A)/K and (A1) = Ay for any o € G(A);. By [1, Theorem 3.9], we know G(A); = F'.
As ¢ is also the cardinal of A<™ -4 \q, the map is bijective. It suffices to show that this
map is a morphism. For any o € G(A);, we have that o fixes A\; and o(X2) — Ao =b -4 M

for some b € A. Hence for any o’,0 € G(A)1, we have
' (a(X2) — A2) = a(A2) — Aa.
This implies
d'(0(X2)) — Ao =" (c(N2)) — o' (X2) + 0" (N2) — A2

= J,(O'(/\Q) - )\2) + U/()\Q) — )\2
= 0(/\2) — Ao + O'/(>\2) — A9,
which shows that the map is a morphism.

(3) Note G(A)"" = G(A)g,. We show that g: G(A)g, — A< -, A1 is an isomorphism
for each i = 1,...,m. By Corollary (1), (5.5) and (5.6), the vector space A<" -4 X\
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consists of elements of ¢[u"] having valuations > w(&; ng—i+1). For i to be one of 1,...,m

and o to be a nontrivial element in G(A)g,, we have

wa(o(X2) = Xo) = wa(o(A2) A" — 1) + wa(Xe)
> Ri + wp(A2)

) 1 m , 1
= —w(])Eﬁ —woEq (m 1 q—l>
wy w(g)
— Eq™ (w nd —m) + - >
ot s PRy
N W — W
= —Eq" <wo(nd —i)+ ;_10> = wA(&1,nd—i+1)-

This implies that g(G(A)g,) C A< -4 A\1. As the cardinals of G(A)g, and A<% -4 Ay are
both ¢, the restriction
qg: G(A)RZ — A<i ‘é A1

is an isomorphism for each 1. O

Example 5.10. (with the help of T. Asayama and Y. Taguchi) Let C' denote the Carlitz
F,[t]-module over F,(t) determined by C¢(X) = tX + X9. Put T := t>+a for some a € F,.
Let ¢ denote the Drinfeld F,[T]-module over Fy(t) determined by ¢7(X) = Ci2,(X). Let
K denote the completion of F, () at the infinite prime and w the associated normalized
valuation so that w(t) = —1. The j-invariant j of ¢ has valuation w(j) = —q(q +
1) < w(t)q. However, by [14, Theorem 7.1.13] (initially given by Hayes), the extension
K(¢[T™)) = K(C[(t* + a)"]) of K for any positive integer n is tamely ramified. By this

example, to remove the condition p t w(g) might be hard.

6. Applications to rank 2 Drinfeld modules, finite prime case

Let w be a finite prime of K. Throughout this section, let u be a finite prime of A having
degree d, and n a positive integer. Let ¢ be a rank 2 Drinfeld A-module over K determined
by ¢pi(X) =tX + a1 X1+ as X? € K[X]. Let j denote the j-invariant a‘{“/ag.

6.1. The valuations of SMBs

Throughout this subsection, assume that ¢ has bad reduction over K, i.e., ¢ has stable
reduction over K and the reduction has rank 1. We have w(a;) = 0 and w(az) > 0
such that w(g) < 0. Let {& ,}i=12 be an SMB of ¢[t"] obtained as in Corollary
By [1, Proposition 2.5 and Lemma A.1 (2)], we have

w(t)

w(é1n) = (a— g1

and - w(&2,n) =



On Successive Minimal Bases of Division Points of Drinfeld Modules 285

Proposition 6.1. (cf. Proposition Let {w1} be an SMB of ¥[u"], {w9} an SMB of
A, and {\i}i=12 an SMB of ¢[u"]. Then for any positive integer n, we have

w(w)
(7 = gD

Proof. Note that the condition “|u"|s > |[w?|/|w |” in Section [4]is trivial. The results
for w§ and g follow from the value w(&s,,) and Corollary (1)

By Lemma [4.3]and Proposition [2.10)2), it remains to calculate w(w;). The case w { u
is straightforward. Assume w | u. We have ¥(X) = tX + b1 X9 € K[X] such that
the valuation of by is 0. Let K’ denote the extension of K generated by some b € K5P
with 8971 = b;. Then we have C = byb~! as Drinfeld A-modules over K’ where C
denotes the Carlitz module. Let {n;;} be an SMB of C[u’] for each positive integer j
as in Corollary As bw; forms an SMB of bypb~[u"], we have w(wi) = w(n1n) by
Proposition [2.10](2).

To calculate w(n; ), we proceed by induction. We first calculate w(n;,1). Put ug := u,
Z?:o w; X9 = Cy(X) and P; := (¢', w(w;)) for i = 0,...,d. By the explicit formula of u;
in |14}, Corollary 5.4.4] (initially given by Carlitz), we have w(u;) = w(u) fori =0,...,d—1.

0) — w(]) and w()\Q) o w(])

w(wy) =w(A) = w(ws ~ (g 1)gmd

The Newton polygon of C,(X) is PyP; having exactly one segment. Hence we have

w(n,1) = ;}1(2.

Assume w(n;;—1) = (qdl)(ﬁ Put Q;—1 := (0,w(m i—1)). The Newton polygon of
Cu(X)—m1i—1 is Qi—1 P4 having exactly one segment. Hence we have w(n; ;) = M%’
as desired. O

6.2. The action of the wild ramification subgroup on the division points

Assume w t u, i.e., w(u) = 0 throughout this subsection. Assume that ¢ has bad reduction
over K. Let L be the extension of K generated by the elements in A. For a positive
integer n, let L, denote the extension of L generated by the elements in u~™A. As the
condition “|u"[oe > |w?|/|w ;7 in Section {4 is fulfilled for any positive integer n, by
Proposition we have K(¢[u"]) = L,, for any positive integer n. We put G(n) :=
Gal(K ([u"))/K).

In this subsection, we first study the action of the wild ramification subgroup G(n);
on u~"A/A. Next, using the isomorphism £4: u="A/A — ¢[u"], we know the action of
G(n); on ¢[u"]. Let {wi} be an SMB of 9[u"], {w9} an SMB of A, and ws a root of
tun (X) — W

Lemma 6.2. The extension L/K is at worst tamely ramified.

Proof. We know that A is an A-lattice via ¢ and is Gal(K®P/K)-invariant. As L/K is
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a subextension of L;/K and L; = K is Galois over K, we have that L/K is separable.
Then the desired claim follows from Lemma [2.61 O

Theorem 6.3. (cf. Theorem Let ¢ be a rank 2 Drinfeld A-module over K having bad

reduction such that w(j) < 0. Put R := —w(wl) = _qw_(f). Assume pfw(y).

(1) Let L(v[u™]) be the extension of L generated by the elements in Y[u™]. There is an
isomorphism
Gal(L,/L(p[u"])) = ¢u"], o+ o(w2) — wo.

(2) Let E be the ramification index of L/K. The (Herbrand) v -function of the extension
L,/K is
Y —1<y<0;
Ur,./k(y) = { By, 0<y<R
By — (¢"* —1)ER, R<uy.

Proof. Let wy, denote the normalized valuation associated to L. We have w; = Fw. As
the extension L(¢[u"])/L is unramified, we may let wy, denote the normalized valuation
associated to L(¢[u"]). The field L, is the splitting field of 1, (X)— w3 over L(1[u™]). As
E is not divisible by p (see Lemma , we have p{ ER = —w(w9). Note wr(w§) < 0.
We can apply Proposition (2) t0 Pyn (X) — w8 € L(x[u"])[X]. Note that the difference
between two roots of ¥, (X) — wd belongs to 1[u"]. The extension L, /L(1)[u"]) is totally
ramified and is generated by wy. The map Gal(L,,/L(¢[u"])) — ¥[u"], o — o(wa) — w2 is
an isomorphism.

(2) By Lemma we have the ¢-function of L/K to be

The y-function of L(¢[u™])/L is ¥ryu))/L(y) = y. Applying Proposition (3) to
hur (X) — w§ € L(y[u"])[X], we have

VL, /L) (Y) = d d
"y — (" —1)ER, ER <y,
and the desired y-function follows from Lemma O

Let ¢ be a rank 2 Drinfeld A-module over K which does not necessarily have stable
reduction. Assume that w(j) < 0 such that ¢ is isomorphic to a Drinfeld module having

bad reduction over some extension of K. By Proposition we may take this extension
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of K to be K(A1,1), where {\;1}i=1,2 is an SMB of ¢[u] and K (A11)/K is at worst tamely
ramified. Let ¢ and A denote respectively the Drinfeld module having good reduction
and the lattice associated to the Drinfeld module having stable reduction via the Tate
uniformization. Let L denote the extension of K (A1) generated by the elements in A. By
Lemma the extension L/K is at worst tamely ramified. For a positive integer n, let
L,, denote the extension of L generated by the elements in u~"A. We have K (¢[u"]) = Ly,.

Corollary 6.4. Let ¢ be a rank 2 Drinfeld A-module over K which does not necessarily
have stable reduction. Assume w(j) <0 and ptw(j).

(1) Let E be the ramification index of L/K. Put R = 7;’1(19.). The )-function of the
extension K(¢p[u"])/K is

v, 1<y <0
VK (ofur))/ Kk (Y) = 4§ By, 0<y<R
By — ("' —1)ER, R<y.

(2) Let {\;i}i=12 be an SMB of ¢[u™]. Then each element in G(n)y fizes \1 and there is
an isomorphism
G(n)1 —)A'¢ )\1, O‘l—>0()\2)—)\2.

Proof. Apply Theorem [6.3{2) with K in the theorem being K (A1,1) and we obtain the -
function of K (¢[u"])/K(A1,1). As K(A1,1)/K is at worst tamely ramified, its ¢-function
is clear. Then (1) follows from Lemma [B.1]

We show (2). Note that L(y[u"])/K is at worst tamely ramified. By the -function

of L, /K, we have the following equation of the higher ramification subgroups
G(n)1 = Gal(L,/K)1 = Gal(L,/K)gr = Gal(L, /L(¢¥[u"])).

By Proposition the Drinfeld module bpb~! for b = )‘1_% has stable reduction over
K(A11). Let logy denote logyy,-1. By Theorem the element log,(bA1) forms an
SMB of ¥[u"] and u" -y log,(bA2) forms an SMB of A. Apply Theorem 1) with
w1 = logy(bA1) and wz = log,(bA2). We have o(log,(bA1)) = log,(bA1) for any o € G(n)

and an isomorphism
G(n)1 — Yu"], o+ o(log,(bA2)) —log,(bA2).

Note ¢[u"] = A -y log, bA1. The map Eppp—1|ypun]: V[u"] — A pgp-1 bA1 induced by the
exponential map ey is an isomorphism. Indeed, it is injective as 1 [u"”]NA = {0}. Since the
sets [u"] and A 4,1 bA1 both have cardinal ¢, we have the surjectivity. Notice that
Epgp—1 is compatible with the Gal(K* /K )-actions and Gal(K*?/K) acts on u~"A/A and
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¢[u"] via G(n). We obtain that o(log,(bA1)) = logs(bA1) and o(log,(bA2)) — log,(bA2)
map to respectively o(b\1) = bA; and o(bAy) — bAa. The desired isomorphism is the

composition

1
Gn)1 — Blu"] 225 A b T A h, o o(Ae) = o, O
The next result generalizes the finite prime case of |1, Lemma-Definition 4.1].

Lemma-Definition 6.5. (cf. Lemma Let ¢ be a rank 2 Drinfeld A-module over K
which does not necessarily have stable reduction. Assume one of the following two cases

happens
(C1) w(j) <0 and pfw(jg);
(C2) w(y)>0.

Let GY denote the y-th upper ramification subgroup of the Galois group Gal(K*?/K). For
any finite prime u of A not divisible by w, let T,, denote the u-adic Tate module of ¢. Put

fuw(P) = / (2 —ranky, TuGy) dy.
0
Then we have

(1) the value f,,(¢) is independent of the choice of w.

(2) fw(o) = _qw—(f) if (C1) happens,
w 0 if (C2) happens.

Define the conductor of ¢ at w to be the integral i, ().

Proof. We will show (2) for any finite prime u of A with w { u and (1) straightforwardly
follows.

Assume the case (C1) happens. By Corollary there is an SMB {); ;, }i=1,2 of ¢[u”]
for each integer n > 1 such that u ¢ Xint1 = Aip for i = 1,2. By Corollary (6.4 - ,
have G(n)Y = G(n); for any 0 <y < — (J) and = {e} for y > w(]) By Corollary ( )
foranyn>1land 0 <y < = (J), any element in G(n)Y fixes /\1’z for all ¢ < n, and any

nontrivial element o € G(n)Y nontrivially acts on Ag .
As u ) )\1 n+l = )\1 N and u ) )\2 n+l = )\2n for any n > 1 the tuples ()\1 n)n>1 and

(A2,n)n>1 form an A,-basis of T,. Note that GY acts on T, via G(c0)¥ = = lim G(n)Y. Any
(J)

nontrivial element of G(c0)Y for 0 < y < fixes (A1,n)n>1 and nontrivially acts on

(A2,n)n>1. Hence ranky, TG =1if0<y < < ( ) and = 2 if wm < y. We have

—w(d) .
fute) = [T 1y ),
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For the case (C2), we know that ¢ is isomorphic to a Drinfeld module having good
reduction over some extension of K. By Proposition [4.15] we may take the extension of K
to be K(A1,1) and the extension K (\;1)/K is at worst tamely ramified, where {\; 1 }i=12
is an SMB of ¢[u]. For b = Af&, as the Drinfeld module bgpb~! has good reduction, the
extension K (bpb~[u™])/K (A1) is unramified. Hence the extension K(¢[u"])/K is at

worst tamely ramified and the conductor vanishes. O

6.3. A function field analogue of Szpiro’s conjecture for rank 2 Drinfeld modules

Let ¢ be a rank 2 Drinfeld A-module over F' (F' is the global function field defined in
Section . For a prime w of F', consider ¢ as a Drinfeld module over F,, and let
fuw(¢) be the conductor calculated in Lemma [5.5] and Lemma-Definition Similar to [1,
Section 4.2], we can obtain a relation between the J-height of ¢ and the conductors of ¢.

Let My denote the set of primes of F'. For a prime w of F, let deg(w) denote the degree
of the residue field of Fy, over F,. The J-height of ¢ is defined to be (see [4, Section 2.2]
or |1, Section 4.2])

ha(6) = Gy Do dee(w) - max{—u(3). 0}

WEMF

where j is the j-invariant of ¢. Following |1, Section 4.2], we may define the (global)
conductor of the Drinfeld module ¢ to be

f(@) = > deg(w) - fu(9).

weEMp

Similar to the proof of |1, Theorem 4.3], we have the following statement by Lemma
and Lemma-Definition It is a function field analogue of Szpiro’s conjecture.

Theorem 6.6. Put wy = w(t) if w is an infinite prime of F. Let ¢ be a rank 2 Drinfeld

A-module over F such that for each prime w of F, its j-invariant j satisfies

either (w(g) < woq andpj[w(j)), or w(j) > woq if w is infinite,
either (w(§) <0 and pfw(j)), or w(j) >0 if w is finite.
Then

q—1

hy(o) Sf(@'m

+q.

A. The conductors of Drinfeld modules at infinite prime

Let K be the completion of a global function field at an infinite prime w. Let ¢ denote a
rank 7 Drinfeld A-module over K for an integer » > 2. Let T3, be the u-adic Tate module
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of ¢. Let GY denote the y-th upper ramification subgroup of the absolute Galois group G
of K.

Lemma-Definition A.1. The value of the integral

[e.9]
/() (r —ranky, Tfy) dy

is convergent and independent of u. Define the conductor of ¢ at w to be this integral.
Proof. The result follows from the following two claims:

(1) ranka, TG = rankg AWM for any finite prime u of A, where G(A)Y denotes the
y-th upper ramification subgroup of the Galois group of the extension K(A) of K

generated by all elements in A.

(2) The following integral
/ (r — ranky AG(A)y) dy
0

is convergent

As for (1), note that the isomorphism E4: u™"A/A — ¢[u"] induced by the exponential
map ey is G-equivariant. We have a G-equivariant isomorphism 7, = A®4 A,. Note that
the action of GY on A factors through G(A)Y. It suffices to see rank4, (A ®4 A,)¢W* =
rank 4 AGVY . As (A®a Au)G(A)y is free over A, and is identified with AN ®4 A, we

know that A@" is projective over A according to the following two facts:
(1) The flatness is a local property [16, 00HT];
(2) Each finitely generated flat module over a Noetherian ring is projective [16, 00NX].

Then the desired equality follows from the definition of rank and the Nakayama lemma.

As for (2), notice that the extension K(A)/K is finite. There is an integer 7 so that
the i-th lower ramification subgroup of Gal(K(A)/K) is trivial. Hence there is a rational
number 7 so that g-th upper ramification subgroup of Gal(K (A)/K) is trivial. This shows
that

/ (r — rank 4 AG(A)y) dy <y(r—1),
0

i.e., the monotone function
fx) = / (r — ranky AG(A)y) dy
0

is bounded. Hence the limit lim,_,~ f(z) exists, i.e., the integral is convergent. O
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Remark A.2. (1) Let n be an integer so that K(A) = K(¢[u"]). Hence one may expect
that

ranky, 70" = rank 4 /,n - rank 4 /,n (AJu™A)®" = ranky AGN”,
Here the A/u™-submodule ¢[u"]%" of ¢[u™] is free by [3, VII.14, Theorem 1].

(2) Let w be a finite prime, u a finite prime of A with w { u. Let GY denote the y-th
upper ramification subgroup of the absolute Galois group K. M. Mornev has proved
that [13, Theorem 1] there is some rational number 7 so that GY trivially acts on

T,. Using this result, similar to the proof above, one can show that the integral

o
/0 (7“ —rankyg, TEU) dy

is convergent.

B. Basics of Herbrand -functions

Throughout this section, let K be a complete discrete valuation field of characteristic p
so that the residue field is a perfect field. Let us recall the definition of the (Herbrand)
y-function vy, for a finite Galois extension L/K of a complete valuation field of char-
acteristic p. Let GY denote the y-th upper ramification subgroup of the Galois group
Gal(L/K) of L/K. By the ¢-function of L/K, we mean the real-valued function on the
interval [0, +00) defined as .
Y
Vi (Y) :/0 igr dr.

We extend 91,k to [—1,+00) by letting v /x(y) = y if =1 <y < 0. Then ¢/ is a
continuous and piecewise linear function on [—1,+o00). If ¢, /K 18 linear on some interval
[a,b] C [~1,00), then we have G® = GY = Gy, i (y) for y € (a,b]. By the wild ramification

subgroup of L/K, we mean the first lower ramification subgroup G, which is equal to the

union of GY for y > 0.

Lemma B.1. (see e.g., |7, Chapter III, (3.3)]) Let L/M and M/K be finite Galois exten-

sions. Then

Yk =YL o Vm/K-

Assume that K contains F,, where ¢ is a power of p. Let vx denote the normalized

valuation associated to K so that vi (K*) = Z. For a positive integer s, put

s—1
FX) = X7+ arX? +aX € K[X]
k=1
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such that UK(aglz:;)K(a) > 7;5’1(? for k=1,...,s—1, i.e., the Newton polygon of f(X)/X
has exactly one segment. The extension generated by the roots of the polynomial f(X)—c
for certain ¢ € K plays a key role in Section [6.2] To obtain its ¢-function, we will need
the following fact. It is a slight generalization of the function field case of |7, Chapter III,

Proposition 2.5] (cf. [1, Proposition 3.2]).

Proposition B.2. Let f(X)—c be the polynomial above. Let F and L denote respectively
the splitting field of f(X) and that of f(X)—c. Putv. :=vg(c) and v, := vi(a). Assume

— Ve

7
Vaq
-

p1toe and

< Vg — Ve S0 that the Newton polygon of f(X) — ¢ has exactly one segment
and R = 2L

7 — Ve > 0. Then

(1) The extension of F/K is at worst tamely ramified.
(2) We have a composition of field extensions
K—F—L.

Moreover, the extension L/F is totally ramified of degree ¢° and generated by one

root x of f(X) — c. We have an isomorphism
g: Gal(L/F) =V, o~ o(x)—uz,
where V =2 Fy is the Fy-vector space consisting of the roots of f(X).
(3) Let e denote the ramification index of F/K. The v-function of L/K is
Y, —1<y<0;

YY) = | ey, 0<y<R;
e’y — (¢° — 1)eR, R<y.

Proof. Let M be an extension of K with ramification index ¢° — 1. We can take some
b € M such that v(b) = Z%=. With ¥ = b?", modify f(X) to be

-1
s—1 .
AX)=XT 4> B XT +bgX = b f(X/b).
k=1

We have

va(q® — %)

vr(bp) =0 and wvg(bg) = vi(ag) — ¢ —1

>0 fork=1,...,s—1.

Thus f1(X) is a monic polynomial whose reduction is separable. By Hensel’s lemma |14}

Corollary 2.4.5], the extension of M generated by the roots of f(X) is unramified. Hence
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the extension of K generated by the roots of f(X) is at worst tamely ramified. This shows
(1).

For (2), note that the difference of any two roots of f(X) — ¢ is a root of f(X). The
field F' is contained in L and L is the extension of F' generated by one root of f(X) — c.
As the polynomial f(X) is additive, its roots form an [F4-vector space of dimensional s,
denoted V. Let x be a root of f(X)—c. For any o € Gal(L/F), the difference o(z)—x is a
root of f(X) and hence we obtain a map ¢g: Gal(L/F) — V, 0+ o(x)—x. The element o
is determined by o(x) since = generates L/F. Hence the map g is injective. This implies
that # Gal(L/F) < ¢°. As the Newton polygon of f(X) — ¢ has exactly one segment,
we have vp(z) = ev./q®, where vr denotes the normalized valuation associated to F' and
e denotes the ramification index of F/K. As p{e, p{ v, we have # Gal(L/F) = ¢*.
Therefore, the extension L/F is a totally ramified Galois extension of degree ¢°. The map
Gal(L/F) — V is surjective as the cardinal of Gal(L/F') is equal to that of V. As each
element Gal(L/F) fixes each element of V', the map g is a morphism.

We show (3). Let 7z, be a uniformizer of L. For a nontrivial element o in Gal(L/F),

as o(x)/x is a unit of L (here x is a root of f(X) — ¢), we have
o(x)/x = upe

for some € € 1+ (7z) (the first higher unit group of L) and some up in the unit group of
F'. Notice

2(z)/z = o(zupe)/x = upo(e)o(z)/x = ubo(€)e,

Q

o3(z)/z = o(zubo(e)e) )z = uho?(€)o(e)o(z)/x = ubo?(e)o(e)e, and so on.

As the Galois group of L/F is isomorphic to the F,-vector space of dimensional s, the

Galois group element ¢ has order p. We have
p—1
1=0"(z)/z =ul, H ok (e).
k=0

This implies v}, = 1 (mod 7). As p-th power map is injective on the residue field of L,
we have up = 1 (mod 7). Hence up € 1+ (wp), where g is a uniformizer of F.. We
know that o(z)/x € 1+ (71). Hence there exists some uz, in the unit group of L and some

positive integer b such that
(B.1) o(z)/z = (1+upr?) mod (wp)"+t

From (2), we know vy, (z) = ev. and is prime to ¢° (vz, denotes the normalized valuation
associated to L). Hence there exist integers i, j satisfying vy (z'n%) = 1. Here i is not

divisible by p. The element y;iwfp is a uniformizer of L. By [15, Chapter IV, Proposition 5],
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to know the -function of L/F, we need to know vL(a(:z:iW%)/xiﬂ% — 1) for all nontrivial
Galois group elements o. By (B.1]), we know

b b

o(z'mh) /o'l = (L+upn)) = 1+ iugny, mod (rp)"*.

On the other hand, as vy (o(x) — z) = Z‘;iqf for any nontrivial o, we know b = vy (o(z) —

x) —vr(z) = eR. The ¢-functions of F/K and L/F are respectively

y, —1<y<0; Y, —1<y<ekR;
Vp/k(y) = and ¥ p(y) =
ey, 0<y ¢’y —(¢° —1)eR, eR<y.
By Lemma we obtain the ¢-function 91/ as the proposition describes. O
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