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E-subdifferential of E-convex Functions and its Applications to Minimization

Problem

Tadeusz Antczak and Najeeb Abdulaleem*

Abstract. In this paper, a new concept of the subdifferential is defined for non-

differentiable (not necessarily) locally Lipschitz functions. Namely, the concept of

E-subdifferential and the notion of E-subconvexity are introduced for E-convex func-

tions. Thus, the notion of an E-subdifferentiable E-convex function is introduced and

some properties of this class of nondifferentiable nonconvex functions are studied. The

necessary optimality conditions in E-subdifferentials terms of the involved functions

are established for a new class of nondifferentiable optimization problems. The in-

troduced concept of E-subconvexity is used to prove the sufficiency of the aforesaid

necessary optimality conditions for nondifferentiable optimization problems in which

the involved functions are E-subdifferentiable E-convex.

1. Introduction

It is commonly accepted the opinion that nonsmoothness arises naturally in optimization.

Even if one considers a smooth data model of real-world processes, several operations

associated with control or optimization destroy the initial differentiability and lead to

the need of employing nonsmooth techniques. A typical example of such a situation is

the minimization of a nonsmooth function. In such a case, it has been observed that, in

general, the minimum occurs at a point of nondifferentiability of such a function.

The concept of subdifferential was introduced for studying the minima of convex func-

tions which are important for practical reasons as well as for their theoretical interest

(see, for example, [2, 10, 18, 25, 26, 28, 30, 34], and others). It is one of the most important

branches of convex analysis in the case of nondifferentiable convex functions. From the

perspective of optimization, the subdifferential of a convex function has many of the useful

properties of the derivative.

The term “nonsmooth analysis” was coined in the 1970s by Francis Clarke [7, 8], who

performed pioneering work in this area for fairly general nonsmooth objects. Hence, he
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extended the domain of nonsmooth analysis from convex to locally Lipschitz functions.

Namely, Clarke [8] introduced the concept of generalized gradient of a locally Lipschitz

function. This concept has first been introduced in the finite-dimensional case for locally

Lipschitzian functions, in an analytic form, and for lower semi-continuous functions in a

geometric form.

In recent years, there was a growing realization that a large number of optimization

problems which appeared in applications involved minimization of nondifferentiable func-

tions. The subject of nonsmooth analysis arose out of the need to develop a theory to

deal with the minimization of nonsmooth functions.

During the last half-century, there has been an extremely rapid development in subdif-

ferential calculus of nonsmooth analysis and which is well recognized for its many applica-

tions to optimization theory. There are several natural ways to define general subdifferen-

tials satisfying useful calculus rules. Therefore, after introducing by Clarke a generalized

gradient for a locally Lipschitz function, several other subdifferentials (convex as well as

nonconvex) were proposed in the literature (see, e.g., [3–6, 9, 11–17, 19, 21–24, 27, 29, 31,

33, 35,36], and many others). They are useful for the study of some properties of specific

classes of nonsmooth functions. Their common property is that the given function is in-

vestigated by means of one set (convex or nonconvex). Moreover, it is also a consequence

of the fact that, in recent years, the study of nonsmooth optimization problems with con-

straints has led many authors to introduce various notions of subdifferential or generalized

differential for nondifferentiable functions.

In this paper, we introduce and study a new subdifferential for not necessarily locally

Lipschitz functions. We analyze some properties of the introduced E-subdifferential which

is the set of E-subgradients and which is based on the effect of an operator E : Rn → Rn

on the domain of a function for which is defined. We compare some of the analyzed

properties of the E-subdifferential to the analogous properties of the classical subdiffer-

ential of a convex function. It turns out that the classical subdifferential is a special case

of the introduced E-subdifferential. Further, we also introduce a new class of nondiffer-

entiable generalized convex functions which is an extension and a generalization of the

class of differentiable E-convex functions which included also convex functions. Namely,

we introduce the definition of E-subdifferentiable E-convex functions, called E-subconvex

functions, for short. As it follows from this definition, E-subconvex functions are such a

class of generalized convex functions for which E-subdifferential is nonempty. We prove

the necessary optimality conditions for an E-minimizer of an E-subdifferentiable E-convex

function which is formulated in term of its E-subdifferential.

As applications of the E-subdifferential, both the necessary optimality conditions of

Fritz John type and the necessary optimality conditions of Karush–Kuhn–Tucker type for
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a feasible solution to be an E-minimizer of the considered nonsmooth optimization prob-

lem with E-subdifferentiable functions are established. In order to prove the so-called E-

Karush–Kuhn–Tucker necessary optimality conditions, the generalized E-constraint quali-

fication is introduced in the paper. Further, the sufficiency of the E-Karush–Kuhn–Tucker

necessary optimality conditions is also established under assumptions that the involved

functions are E-subconvex.

The paper is organized as follows. In Section 2, we briefly recall some fundamental def-

initions of the classical subdifferential of a convex function and also the Clarke subgradient

and the Clarke subdifferential for locally Lipschitz functions. Moreover, we also re-call

the definition of an E-convex set and the definition of an E-convex function introduced

by Youness [37]. In Section 3, we introduce the definition of an E-subdifferential of an E-

convex function and we analyze its properties. We compare some of the properties of the

E-subdifferential to analogous properties of the classical subdifferential of a convex func-

tion and the Clarke subdifferential of a locally Lipschitz function. Further, we introduce

the definition of an E-subdifferentiable E-convex function, called E-subconvex, and we

also analyze property of such a new concept of generalized convexity of (not necessarily)

locally Lipschitz functions. In the next section, Applications, we use the E-subdifferential

to formulate new necessary optimality conditions for nondifferentiable optimization prob-

lems with E-subdifferentiable functions. We introduce a new constraint qualification for-

mulated with the help of E-subdifferentials of inequality constraints in proving one of

such necessary optimality conditions. Moreover, we also prove the sufficient optimality

conditions under assumptions that the functions constituting the considered nonsmooth

constrained extremum problem are E-subconvex. The last section contains conclusive

remarks.

2. Preliminaries

Let Rn be the n-dimensional Euclidean space and Rn
+ be its nonnegative orthant. It is

well-known that a function f : Rn → R is convex on Rn if the inequality

f(λx + (1 − λ)u) ≤ λf(x) + (1 − λ)f(u)

holds for all x, u ∈ Rn and any λ ∈ [0, 1]. It is well-known that the concept of a subgradient

for nondifferentiable convex functions is a simple generalization of the gradient defined for

differentiable functions.

Definition 2.1. [25, 28] It is said that a vector ξ ∈ Rn is a subgradient of a convex

function f : Rn → R at u ∈ Rn if

f(x) − f(u) ≥ ⟨ξ, x− u⟩, ∀x ∈ Rn.
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The above definition has a simple geometric interpretation. Since f is a convex func-

tion, we can find a supporting hyperplane at the boundary point (u, f(u)) that supports

the epigraph of f . The slope of the hyperplane is a subgradient ξ of f at the point u.

Definition 2.2. [25, 28] The subdifferential ∂f(u) of a convex function f : Rn → R at

u ∈ Rn is the set of subderivatives, that is, vectors ξ ∈ Rn belonging to the following set

∂f(u) = {ξ ∈ Rn : f(x) − f(u) ≥ ⟨ξ, x− u⟩, ∀x ∈ Rn},

where the symbol ⟨ · , · ⟩ denotes the inner product of two vectors.

Several classes of functions have been defined for the purpose of weakening the lim-

itations of convexity in mathematical programming. One of such classes of generalized

convex functions are E-convex functions defined on E-convex sets. The definitions of an

E-convex set and the definition of an E-convex function were introduced by Youness [37].

Now, for convenience, we recall the aforesaid definitions.

Definition 2.3. [37] Let E : Rn → Rn be a given operator. A set S ⊆ Rn is said to be

E-convex if and only if the following relation

E(u) + λ(E(x) − E(u)) ∈ S

holds for all x, u ∈ S and any λ ∈ [0, 1].

It is clear that every convex set is E-convex if E is the identity map. If a set S ⊂ Rn

is E-convex, then E(S) ⊆ S. Further, if E(S) is a convex set and E(S) ⊆ S, then S is an

E-convex set (see [32,37]).

Definition 2.4. [37] Let E : Rn → Rn be a given operator and S be a nonempty E-

convex subset of Rn. A real-valued function f : S → R is said to be E-convex on S if and

only if the following inequality

f(λE(x) + (1 − λ)E(u)) ≤ λf(E(x)) + (1 − λ)f(E(u))

holds for all x, u ∈ S and any λ ∈ [0, 1].

Remark 2.5. In the case when E(x) ≡ x, the above definition of an E-convex function

reduces to the definition of a convex function.

Proposition 2.6. [1] Let E : Rn → Rn, S be an E-convex subset of Rn and f : S → R be

an E-convex function at u ∈ S on S. Further, assume that f is differentiable at u. Then,

the inequality

(2.1) f(E(x)) − f(E(u)) ≥ ⟨∇f(E(u)), E(x) − E(u)⟩

holds for all x ∈ S, where ∇f(E(u)) denotes the gradient of f at E(u).
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Note that, in general, the gradient of a function is not the unique element in Rn which

satisfies the inequality (2.1) with respect to the given operator E : Rn → Rn. We illustrate

this fact in the following example.

Example 2.7. Let f : R → R be a function defined by f(x) = x3. Let E : R → R be an

operator defined by E(x) = x2. It can be shown by Definition 2.4 that f is an E-convex at

u = 0 on R. Note that f is differentiable function at u = 0 and ∇f(E(u)) = 0. However,

it can be shown that not only ∇f(E(u)) satisfies the inequality f(E(x)) − f(E(u)) ≥
⟨∇f(E(u)), E(x)−E(u)⟩. Indeed, note that any real number belonging to (−∞, 0] satisfies

the aforesaid inequality.

The property of E-convex functions illustrated in Example 2.7 is similar to that one for

convex functions. It makes, therefore, that we introduce the concept of E-subdifferential

for E-convex functions, similarly to the concept of subdifferential which exists in convex

analysis for convex functions.

3. E-subdifferential and its properties

Based on the definition of a subgradient of a convex function (see Definition 2.1) and the

property of differentiable E-convex functions illustrated in Proposition 2.6, we introduce

the following concepts of an E-subgradient and E-subdifferential for an E-convex function.

Definition 3.1. Let E : Rn → Rn be a given operator and f : Rn → R be an E-convex

function at u ∈ Rn. It is said that ξ ∈ Rn is an E-subgradient of f at u ∈ Rn if the

inequality

f(E(x)) − f(E(u)) ≥ ⟨ξ, E(x) − E(u)⟩

holds for all x ∈ Rn.

Definition 3.2. Let E : Rn → Rn be a given operator and f : Rn → R be an E-convex

function at u ∈ Rn. The set of all E-subgradients of f : Rn → R at u ∈ Rn, that is, the

set which is denoted by ∂Ef(u) and defined by

(3.1) ∂Ef(u) := {ξ ∈ Rn : f(E(x)) − f(E(u)) ≥ ⟨ξ, E(x) − E(u)⟩, ∀x ∈ Rn}

is said to be the E-subdifferential of f at u.

Definition 3.3. A function f is called E-subdifferentiable at u if it is E-subdifferential

at u, that is, the set ∂Ef(u) is nonempty.

In the next example, we consider the function for which the classical subdifferential

of a convex function (and, thus, its Clarke’s subdifferential) and the E-subdifferential are

not the same.
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Example 3.4. Consider the function f : R → R defined by f(x) = |x|. Let the operator

E : R → R be defined by E(x) = |x|. Note that, by Definition 2.4, f is an E-convex

function at u = 0 on R. Hence, by Definition 3.2, E-subdifferential of f at u = 0

is ∂Ef(0) = (−∞, 1], whereas the subdifferential of a convex function f at u = 0 is

∂f(0) = [−1, 1].

Remark 3.5. Of course, if we take another operator E, then we can obtain a different E-

subdifferential. We consider again the function f from Example 3.4. However, this time,

we take the operator E1 : R → R defined by E1(x) = −|x|. Then, ∂E1f(0) = [−1,∞).

Now, we consider a function for which the Clarke subdifferential is contained in its

E-subdifferential.

Example 3.6. Consider the function f : R → R defined by f(x) = x2. Let the operator

E : R → R be defined by

E(x) =

0 if x ≥ 0,

−x2 if x < 0.

Hence, E-subdifferential of f at u = 0 is ∂Ef(0) = [0,∞), whereas the Clarke’s subdiffer-

ential of f at u = 0 is ∂f(0) = {0}. Therefore, ∂f(0) ⊂ ∂Ef(0).

It is possible also that an E-subdifferential is contained in the Clarke subdifferential.

Now, we illustrate such a case in the next example.

Example 3.7. Consider the function f : R → R defined by f(x) = |x|. Let the operator

E : R → R be defined by

E(x) =


−1 if x < 0,

1/2 if x = 0,

1 if x > 0.

Hence, it can be shown by Definition 2.4 that f is an E-convex function at u = 0 with

respect to the given operator E. Further, the E-subdifferential of f at u = 0 is ∂Ef(0) =

[−1/3, 1], whereas the Clarke’s subdifferential of f at u = 0 is ∂f(0) = [−1, 1]. Then,

∂Ef(0) ⊂ ∂f(0).

Also it is possible that the Clarke’s subdifferential of f at a given point is an empty

set, whereas the E-subdifferential of f at this point is a nonempty subset of Rn.

Example 3.8. Let the function f : R → R be defined by f(x) = 3
√
x. We define the

operator E : R → R by

E(x) =


x3 if x ≤ −1,

0 if −1 < x < 1,

−x3 if x ≥ 1.
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Note that f is not a Lipschitz function and, therefore, its Clarke’s subdifferential is empty.

However, by Definition 3.2, we have that ∂Ef(0) = [1,∞).

Remark 3.9. The classical subdifferential of a convex function f at the given point u

can be treated as a special case of the E-subdifferential of f at this point. Namely, the

subdifferential of a convex function f at the given point u is the E-subdifferential of f at

this point with respect to the operator E : Rn → Rn defined by E(x) = x.

Note that the classical subdifferential can be empty at the given point, whereas an

E-subdifferential can be nonempty.

Example 3.10. Let f : R → R be a function defined by f(x) = −|x|. Note that the

classical subdifferential of f at u = 0 is ∂f(0) = ∅. Let the operator E : R → R be defined

by E(x) = −|x|. Hence, by Definition 3.2, we have that ∂Ef(0) = [1,∞).

Note that even though the E-subdifferential ∂Ef(u) is a single point set, then f does

not need to be a differentiable function at this point. We now give an example of such a

function to illustrate this property.

Example 3.11. Let the function f : R → R be defined by f(x) =

 3
√
x if x < 0,

x if x ≥ 0.
Fur-

ther, let the operator E : R → R be defined by

E(x) =


−1 if x < 0,

0 if x = 0,

1 if x > 0.

Then, by Definition 3.2, we have that ∂Ef(0) = {1}. Although the E-subdifferential of f

at 0 is a single point, however, f is not differentiable at this point.

Another interesting property of the E-subdifferential is the fact that the gradient of a

differentiable function cannot be its element.

Example 3.12. Let f : R → R be a function defined by f(x) = x2 and E : R → R be a

map defined by E(x) = x2. We show that f is an E-subconvex function at any u on R.

First, we prove, by Definition 2.4, that f is an E-convex function on R. In fact, we show

that the inequality

f(λE(x) + (1 − λ)E(u)) ≤ λf(E(x)) + (1 − λ)f(E(u))

holds for all x, u ∈ S and any λ ∈ [0, 1]. Then, for all x, u ∈ S and any λ ∈ [0, 1], one has

(3.2) (λx2 + (1 − λ)u2)2 ≤ λx4 + (1 − λ)u4.
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Note that (3.2) is fulfilled for λ = 0 and λ = 1. Hence, (3.2) is equivalent to the inequality

(x2−u2)2 ≥ 0, which is fulfilled for all x, u ∈ S and any λ ∈ (0, 1). Then, by Definition 2.4,

f is an E-convex function on R.

Further, note that ∂Ef(u) is nonempty for each u ∈ R. Indeed, note that ξ = 2u2 ∈
∂Ef(u) for each u ∈ R. This means that ∂Ef(u) is nonempty for each u ∈ R. However, it

is not difficult to see that ∇f(2) /∈ ∂Ef(2).

It is known that the Clarke’s subdifferential is defined for locally Lipschitz functions.

However, as it follows even from the example below, the E-subdifferential may be a

nonempty set, also for a function which is not locally Lipschitz. In other words, there

are E-subdifferentiable functions which are not locally Lipschitz. In the next example, we

present such a function.

Example 3.13. Consider the following function f : R → R defined by

f(x) =

1/ 3
√
x if x ̸= 0,

0 if x = 0.

Note that, in fact, f is not locally Lipschitz at 0, since it is discontinuous at this point.

Let the operator E : R → R be defined by

E(x) =



x if x < −1,

1/x3 if −1 ≤ x < 0,

0 if x = 0,

−1/x3 if 0 < x ≤ 1,

−x if x > 1.

Then, it can be shown, by Definition 3.2, that ∂Ef(0) = {ξ ∈ R : ξ ≥ 1}. This il-

lustrates the fact that although f is not a locally Lipschitz function at 0, however, its

E-subdifferential at this point may be a nonempty set.

In order to show the existence of E-subgradients of some nondifferentiable functions

or, in other words, that their E-subdifferentials are nonempty, we introduce the concept

of an E-subdifferentiable E-convex function, also called an E-subconvex function.

Definition 3.14. Let E : Rn → Rn be a given operator. A function f : Rn → R is said

to be E-subdifferentiable E-convex at u ∈ Rn or, in short, E-subconvex, if there exists

ξ ∈ Rn such that the inequality

f(E(x)) − f(E(u)) ≥ ⟨ξ, E(x) − E(u)⟩

holds for all x ∈ Rn. The function f is said to be E-subconvex on Rn if its is E-subconvex

at each u ∈ Rn.
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Remark 3.15. We use the wording in the definition of an E-subconvex function f that this

function is E-subdifferentiable. Indeed, as it follows from Definition 3.3, any E-subconvex

function is, in fact, E-subdifferentiable since its E-subdifferential is a nonempty set.

Remark 3.16. If E(x) ≡ x, then the definition of an E-subconvex function reduces to the

well-known definition of a subdifferentiable convex function (see [25]).

Remark 3.17. Note that the class of differentiable E-convex functions is a subclass of the

class of E-subconvex. In fact, if f is a differentiable E-convex function, then the inequality

f(E(x)) − f(E(u)) ≥ ⟨∇f(E(u)), E(x) − E(u)⟩

holds for all x ∈ Rn. Hence, the subdifferential ∂Ef(u) of f is nonempty in such a case

since ∇f(E(u)) ∈ ∂Ef(u). Then, by Definition 3.14, f is an E-subconvex at u.

Example 3.18. Let the function f : R → R be defined by f(x) = x2. Further, let the

operator E : R → R be defined by

E(x) =

0 if x ̸= 0,

1/2 if x = 0.

It is not difficult to show, by Definition 2.4, that f is an E-convex function on R. Further,

by Definition 3.14, f is an E-subconvex function on R and, moreover, by Definition 3.2,

∂Ef(0) = [1/2,∞). Then, note that ∇f(0) = 0 /∈ ∂Ef(0). This means that the gradient

of f at 0 is not element of the E-subdifferential of f at this point, although f is an

E-subconvex at this point, that is, f has a nonempty E-subdifferential at 0.

Now, we prove some properties of E-subdifferential.

Proposition 3.19. Let E : Rn → Rn be a given operator. If a function f : Rn → R is

E-subconvex at u ∈ Rn, then ∂Ef(u) is a nonempty closed convex subset of Rn.

Proof. The result that ∂Ef(u) is a nonempty subset of Rn if a function f : Rn → R is

E-subconvex at u ∈ Rn follows directly from Definition 3.14.

Closedness ∂Ef(u) is evident—(3.1) is an infinite system of nonstrict linear inequalities

with respect to ξ, the inequalities being indexed by x.

We now prove that ∂Ef(u) is a convex subset of Rn. Let ξ1 and ξ2 be two elements of

∂Ef(u). Hence, by Definition 3.2, we have that two inequalities

f(E(x)) − f(E(u)) ≥ ⟨ξ1, E(x) − E(u)⟩,

f(E(x)) − f(E(u)) ≥ ⟨ξ2, E(x) − E(u)⟩
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hold for all x ∈ Rn. Let λ ∈ [0, 1]. Multiplying the first inequality above by λ and the

second one by 1 − λ, we get

λ[f(E(x)) − f(E(u))] ≥ ⟨λξ1, E(x) − E(u)⟩,

(1 − λ)[f(E(x)) − f(E(u))] ≥ ⟨(1 − λ)ξ2, E(x) − E(u)⟩.

Adding both sides of the above inequalities, we get

f(E(x)) − f(E(u)) ≥ ⟨λξ1 + (1 − λ)ξ2, E(x) − E(u)⟩.

Hence, by Definition 3.2, λξ1 + (1 − λ)ξ2 belong to ∂Ef(u). This means that ∂Ef(u) is a

convex subset of Rn.

Remark 3.20. Note that, in general, ∂Ef(u) is not a compact subset of Rn as it follows

even from Example 3.4 (and also from Remark 3.5).

Proposition 3.21. Let E : Rn → Rn be a given open map. Further, assume that f : Rn →
R is an E-subconvex function at a given u ∈ Rn. If there exists a neighborhood U(u) of u

such that the inequality

(3.3) |f(E(z)) − f(E(x))| ≤ Ku∥E(z) − E(x)∥

holds for all x, z ∈ U(u), where Ku > 0, then ∂Ef(u) is a compact subset of Rn.

Proof. Let E : Rn → Rn be a given operator and u ∈ Rn be given. By assumption,

f : Rn → R is E-subdifferentiable E-convex at u ∈ Rn. Hence, by Definition 3.2, the

inequality

f(E(z)) − f(E(x)) ≥ ⟨ξ, E(z) − E(x)⟩

holds for all x, z ∈ U(u). Let x be any point of U(u). Then, by (3.3), the inequality

f(E(z)) − f(E(x)) ≤ Ku∥E(z) − E(x)∥

holds for all z ∈ U(u). Let us denote φ(z, x) = E(z)−E(x). By assumption, E is an open

map. Hence, the map z → φ(z, x) is also an open map. Therefore, the map z → φ(z, x)

maps the open set U(u) onto an open neighborhood V (0) of the origin. Hence, we have

that, at each x ∈ U(u), the inequality

(3.4) ⟨ξ, z − 0⟩ ≤ Ku∥z − 0∥

holds for any ξ ∈ ∂Ef(u) and all z ∈ B(0, r) ⊂ V (0), where B(0, r) denotes the open ball

centered at 0 with the radius r > 0. Hence, (3.4) implies that the inequality

|⟨ξ, z⟩| ≤ Ku∥z∥

holds. This means that ∥ξ∥ ≤ Ku. Thus, we conclude that the map x → ∂Ef(x) is locally

bounded at u. Therefore, the set ∂Ef(u) is compact.
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Remark 3.22. Note that if E : Rn → Rn is not an open map and f : Rn → R is an E-

subconvex function at u ∈ Rn, then ∂Ef(u) is not necessarily a compact subset of Rn.

Indeed, we consider the function f : R → R which is defined by f(x) = x3. Moreover, let

the operator E : R → R be defined by

E(x) =


1 if x < −1 ∨ x > 1,

−x3 if −1 ≤ x ≤ 0,

x3 if 0 ≤ x ≤ 1.

It can be shown, by Definition 2.4, that f is an E-convex function at u = 0. Also it is

not difficult to note that E is not an open map. It can be shown, by Definition 3.2, that

∂Ef(0) = (−∞, 0]. Since E is not an open map, ∂Ef(0) is not a compact subset of R.

Proposition 3.23. Let f1 : Rn → R and f2 : Rn → R be E-subconvex functions. Then,

f1 + f2 is also an E-subconvex function and, moreover, the following relation

(3.5) ∂Ef1(u) + ∂Ef2(u) ⊆ ∂E(f1 + f2)(u)

holds for each u ∈ Rn.

Proof. The proof of this proposition follows directly from Definitions 3.2 and 3.14.

Note that the equality does not hold in a general case. Now, we give an example of

such E-subconvex functions for which there is no the equality in (3.5).

Example 3.24. Let f1 : R → R and f2 : R → R be functions defined by

f1(x) =

x if x < 0,

x/2 if x ≥ 0
and f2(x) =

0 if x < 0,

x/2 if x ≥ 0.

Further, let E : R → R be an operator defined by E(x) = x2. Then, it can be shown

by Definition 2.4, that f1 and f2 are E-convex functions at u = 0 on R. Moreover, by

Definition 3.14 both f1 and f2 are E-subconvex functions at u = 0 and, by Definition 3.2,

∂Ef1(0) = {ξ ∈ R : ξ ≤ 1/2} and ∂Ef2(0) = {ξ ∈ R : ξ ≤ 0}. Then, by Proposition 3.23,

f1 + f2 is also an E-subconvex function at u = 0 and, by Definition 3.2, ∂E(f1 + f2)(0) =

{ξ ∈ R : ξ ≤ 1}. Thus, ∂Ef1(0) + ∂Ef2(0) ⊂ ∂E(f1 + f2)(0).

Proposition 3.25. If a function f : Rn → R has a nonempty E-subdifferential at any

u ∈ Rn, then f is an E-subconvex function.

Proof. For arbitrary x, u ∈ Rn and λ ∈ [0, 1], there exists an E-subgradient ξ at λx+ (1−
λ)u. Hence, by Definition 3.1, it follows that

f(E(x)) ≥ f(λE(x) + (1 − λ)E(u)) + ⟨ξ, (1 − λ)(E(x) − E(u))⟩,

f(E(u)) ≥ f(λE(x) + (1 − λ)E(u)) + ⟨ξ, λ(E(u) − E(x))⟩.
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Multiplying the first inequality above by λ and the second one by 1−λ, we get, respectively,

λf(E(x)) ≥ λf(λE(x) + (1 − λ)E(u)) + λ(1 − λ)⟨ξ, E(x) − E(u)⟩,

(1 − λ)f(E(u)) ≥ (1 − λ)f(λE(x) + (1 − λ)E(u)) − λ(1 − λ)⟨ξ, E(x) − E(u)⟩.

Adding both sides of the above inequalities, we obtain that the inequality

λf(E(x)) + (1 − λ)f(E(u)) ≥ f(λE(x) + (1 − λ)E(u))

holds for any λ ∈ [0, 1]. Since x and u are arbitrary points and λ is any number from

[0, 1], by Definition 2.4, f is an E-convex function. By assumption, f has a nonempty E-

subdifferential at any u ∈ Rn. Hence, by Definition 3.14, f is an E-subconvex function.

Now, we prove the sufficient condition for ξ ∈ Rn to belong to the E-subdifferential of

a differentiable E-convex function. Therefore, we introduce the definition of the so-called

E-normal cone at u ∈ X.

Definition 3.26. Let X be a subset of Rn and E : Rn → Rn be a given operator. The

E-normal cone NE
X (u) at u ∈ X is defined by

NE
X (u) = {ξ ∈ Rn : ⟨ξ, E(x) − E(u)⟩ ≤ 0,∀x ∈ X}.

Remark 3.27. It is clear that 0 ∈ NE
X (u). Further, note that if X = Rn, then the E-normal

cone doesn’t need to be a singleton set containing zero element alone, unlike the usual

normal cone in convex analysis. Indeed, if X = R, we define an operator E : R → R by

E(x) = x2. Then, by Definition 3.26, it follows that NE
X (0) = {ξ ∈ R : ξ ≤ 0}.

Remark 3.28. As it follows from Definition 3.26 and the definition of the usual normal cone

in convex analysis, the usual normal cone, that is, the set NX(u) = {ξ ∈ Rn : ⟨ξ, x− u⟩ ≤
0,∀x ∈ X} can be considered as a special case of NE

X (u) if E(x) ≡ x.

Theorem 3.29. Let E : Rn → Rn be a differentiable mapping and f : Rn → R be a

differentiable function. If ξ is an element Rn such that

(3.6) ξ −∇f(E(u)) ∈ NE
Rn(u),

then ξ ∈ ∂Ef(u).

Proof. Let f : Rn → R be an differentiable E-convex function and u ∈ Rn be given.

Moreover, assume that ξ ∈ Rn satisfies (3.6). Then, by Definition 3.26, it follows that

⟨ξ −∇f(E(u)), E(x) − E(u)⟩ ≤ 0, ∀x ∈ Rn.
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Thus,

(3.7) ⟨∇f(E(u)), E(x) − E(u)⟩ ≥ ⟨ξ, E(x) − E(u)⟩, ∀x ∈ Rn.

Since E and f are differentiable, f ◦ E is differentiable function. Hence, by the Taylor’s

formula, we have

f(E(u) + λ(E(x) − E(u))) = f(E(u)) + ⟨∇(f ◦ E)(u), λ(E(x) − E(u))⟩

+ o(λ∥E(x) − E(u)∥),
(3.8)

where o(λ∥E(x)−E(u)∥)
λ → 0 as λ → 0+. Using (3.7) in (3.8), we get that the inequality

f(E(u) + λ(E(x) − E(u))) ≥ f(E(u)) + λ⟨ξ, E(x) − E(u)⟩ + o(λ∥E(x) − E(u)∥)

holds for all x ∈ Rn. By assumption, f is E-convex on Rn. Then, by Definition 2.4, the

inequality

(3.9) f(λE(x) + (1 − λ)E(u)) ≤ λf(E(x)) + (1 − λ)f(E(u))

holds for all x ∈ Rn and any λ ∈ [0, 1]. Combining (3.8) and (3.9), we obtain that

λf(E(x)) + (1 − λ)f(E(u)) ≥ f(E(u)) + λ⟨ξ, E(x) − E(u)⟩ + o(λ∥E(x) − E(u)∥).

Thus,

λ[f(E(x)) − f(E(u))] ≥ λ⟨ξ, E(x) − E(u)⟩ + o(λ∥E(x) − E(u)∥).

Dividing by λ > 0, we have

f(E(x)) − f(E(u)) ≥ ⟨ξ, E(x) − E(u)⟩ +
o(λ∥E(x) − E(u)∥)

λ
.

Letting λ → 0+ and taking into account that o(λ∥E(x)−E(u)∥)
λ → 0 as λ → 0+, we get that

the inequality

f(E(x)) − f(E(u)) ≥ ⟨ξ, E(x) − E(u)⟩

holds for all x ∈ Rn. This means, by Definition 3.2, that ξ ∈ ∂Ef(u) and completes the

proof of this theorem.

Now, we give the definition of an E-minimizer of a function.

Definition 3.30. Let E : Rn → Rn be a given operator. It is said that x ∈ Rn is a global

E-minimizer of f : Rn → R if the inequality

f(E(x)) ≥ f(E(x))

holds for all x ∈ Rn.
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The following result follows directly from the definition of the E-subdifferential.

Proposition 3.31. Let E : Rn → Rn be a given operator and f : Rn → R be an E-

subdifferentiable function. If x ∈ Rn is a global E-minimizer of f , then 0 ∈ ∂Ef(x).

Proof. This result follows directly from Definitions 3.2 and 3.30.

Note that the result established in Proposition 3.31 is only the necessary condition for

a global E-minimizer of an E-subdifferentiable function. In order to prove the sufficient

condition for a global E-minimizer of E-subdifferentiable function, we assume that this

function is E-subconvex at such a point.

Proposition 3.32. Let E : Rn → Rn be a given operator and f : Rn → R be an E-

subconvex function. If 0 ∈ ∂Ef(x), then x is an E-minimizer of f .

Proof. Let E : Rn → Rn be a given operator. Further, assume that f : Rn → R is an

E-subconvex function on Rn. Hence, by Definition 3.2, the inequality

(3.10) f(E(x)) − f(E(x)) ≥ ⟨ξ, E(x) − E(x)⟩

holds for all x ∈ Rn and any ξ ∈ ∂Ef(x). Since 0 ∈ ∂Ef(x), (3.10) implies that the

inequality

f(E(x)) ≥ f(E(x))

holds for all x ∈ Rn. This means that x is an E-minimizer of f .

The result established in Proposition 3.31 is true for a global E-minimizer only. But if

x is a local E-optimal solution, then it is possible that 0 /∈ ∂Ef(x), even if f is a subconvex

at x. We illustrate such a case in the next example.

Example 3.33. Consider the function f : [a,∞) → R, where a is any negative number

such that a ≤ −3, be defined by

f(x) =



−2 if a ≤ x < −2,

3x + 4 if −2 ≤ x < −1,

− 3
√
x if −1 ≤ x < 0,

x2 if x ≥ 0.

Further, let the operator E : Rn → Rn be defined by

E(x) =


−x3 if a ≤ x < −1,

− 3
√
x if −1 ≤ x < 0,

√
x if x ≥ 0.
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It is not difficult to show by Definition 2.4, that f is an E-convex function at x = 0 on

[a,∞). Further, note that x = 0 is a local E-minimizer of f . However, by Definition 3.2,

we have that ∂Ef(0) = (−∞,−a6]. This means that the condition 0 ∈ ∂Ef(0) is not

necessary condition for x to be a local E-minimizer of a subconvex function.

Lemma 3.34. Let f : Rn → R be an E-subconvex function such that 0 /∈ ∂Ef(x). Then

the set FE(ξ) = {z ∈ Rn : ⟨ξ, z⟩ < 0} is nonempty for any ξ ∈ ∂Ef(x).

Proof. By assumption, 0 /∈ ∂Ef(x). Hence, by Proposition 3.31, x is not an E-minimizer

of f over Rn. Then, by Definition 3.30, there exists another x̃ ∈ Rn such that

f(E(x̃)) < f(E(x)).

Since f is an E-subconvex at x, the inequality

f(E(x)) − f(E(x)) ≥ ⟨ξ, E(x) − E(x)⟩

holds for all x ∈ Rn and any ξ ∈ ∂Ef(x). Therefore, it is also satisfied for x = x̃ ∈ Rn.

Combining two last inequalities, we get the result.

4. Applications

In this section, as an application of the concept of an E-subdifferential and the E-

subconvexity notion, we prove both necessary and sufficient optimality conditions for

a nondifferentiable optimization problem with E-subconvex functions.

Let E : Rn → Rn be a given. In the paper, consider the following nonlinear nondiffer-

entiable constrained optimization problem (4.1) defined by

(4.1) minimize f(x) subject to gj(x) ≤ 0, j ∈ J = {1, . . . ,m},

where f : Rn → R, gj : Rn → R, j ∈ J , are real-valued E-subdifferentiable functions

defined on Rn.

For the purpose of simplifying our presentation, we will next introduce some notations

which will be used frequently throughout this section. Let

D := {x ∈ Rn : gj(x) ≤ 0, j ∈ J}

be the set of all feasible solutions of (4.1). Throughout this section, we shall assume that

a map E : Rn → Rn is given. Now, we introduce the definition of an E-optimal solution

for the considered optimization problem (4.1).

Definition 4.1. It is said that x ∈ D is an E-optimal solution of (4.1) if and only if there

exists no other feasible point x such that

f(E(x)) < f(E(x)).
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Further, let us denote by JE(x) the set of inequality constraint indices that are active

at E(x), that is, JE(x) = {j ∈ J : gj(E(x)) = 0}. If we assume that the functions

constituting the considered optimization problem (4.1) are E-convex, then the following

result is true.

Proposition 4.2. [37] Let the constraint functions gj, j ∈ J , be E-convex on D. Then,

the set D of all feasible solutions of (4.1) is E-convex.

To prove the necessary optimality conditions for (4.1) by using E-subdifferentials of

the involved functions, we shall assume that the objective function f and the constraint

functions gj , j ∈ J , satisfy the following condition at any E-optimal solution x.

Condition (E). Let E : Rn → Rn be a given operator. It said that the function φ : Rn →
R satisfies Condition (E) at x if the inequality

lim sup
λ↓0

φ(E(x) + λ(E(x) − E(x))) − φ(E(x))

λ
≤ ⟨ξ, E(x) − E(x)⟩

holds for some ξ ∈ ∂Eφ(x) and all x ∈ Rn.

Theorem 4.3 (The necessary optimality conditions of E-Fritz John type). Let x ∈ D

be an E-minimizer of the considered optimization problem (4.1). Further, assume that

the objective function f and the constraint functions gj, j ∈ J , constituting (4.1) are E-

subdifferentiable and they satisfy Condition (E) at this point. Then there exist ϑ ∈ R+

and µ ∈ Rm
+ such that

0 ∈ ϑ∂Ef(x) +
m∑
j=1

µj∂Egj(x),(4.2)

µjgj(x) = 0, j ∈ J,(4.3)

(ϑ, µ) ̸= 0.(4.4)

Proof. Consider the following cases:

(i) If either 0 ∈ ∂Ef(x), then we take ϑ ̸= 0 and µj = 0, j ∈ J , then (4.2) is fulfilled.

If 0 ∈ ∂Egj∗(x) for some j∗ ∈ JE(x), then we set ϑ = 0, µj∗ ̸= 0 and µj = 0, j ∈ J \ {j∗}.

Hence, (4.2) is also fulfilled in such a case.

(ii) Let us assume that 0 /∈ ∂Ef(x) and 0 /∈ ∂Egj(x), j ∈ J(x). By assumption, f and

gj , j ∈ J , satisfy Condition (E) at x. Hence, there exist ξ ∈ ∂Ef(x) and ξj ∈ ∂Egj(x),

j ∈ J such that the inequalities

lim sup
λ↓0

f(E(x) + λ(E(x) − E(x))) − f(E(x))

λ
≤ ⟨ξ, E(x) − E(x)⟩,(4.5)

lim sup
λ↓0

gj(E(x) + λ(E(x) − E(x))) − gj(E(x))

λ
≤ ⟨ξj , E(x) − E(x)⟩, j ∈ J(x)(4.6)
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hold for all x ∈ Rn. By assumption, 0 /∈ ∂Ef(x) and 0 /∈ ∂Egj(x), j ∈ J . Hence, ξ ̸= 0,

ξ ∈ ∂Ef(x), and ξj ̸= 0, ξj ∈ ∂Egj(x), j ∈ J . Let us denote

FE(x)(ξ) = {x ∈ Rn : ⟨ξ, E(x) − E(x)⟩ < 0},(4.7)

F
E(x)
j (ξj) = {x ∈ Rn : ⟨ξj , E(x) − E(x)⟩ < 0}, j ∈ J.(4.8)

Since 0 /∈ ∂Ef(x) and 0 /∈ ∂Egj(x), j ∈ J , by Lemma 3.34, it follows that FE(x)(ξ) ̸= ∅
and F

E(x)
j (ξj) ̸= ∅, j ∈ J .

Now, we show that FE(x)(ξ) ∩
⋂m

j=1 F
E(x)
j (ξ) = ∅. We proceed by contradiction.

Suppose, contrary to the result, that there exists x ∈ FE(x)(ξ) ∩
⋂m

j=1 F
E(x)
j (ξj). Then,

combining (4.5)–(4.8), we get that, for sufficiently small λ > 0, f(E(x)+λ(E(x)−E(x))) <

f(E(x)) λ ∈ (0, λf ] and gj(E(x) + λ(E(x) − E(x))) < gj(E(x)), j ∈ J , λ ∈ (0, λgj ]. Note

that gj(E(x)) = 0, j ∈ JE(x). Hence, gj(E(x) + λ(E(x) − E(x))) < 0, j ∈ JE(x),

λ ∈ (0, λgj ]. Moreover, we have gj(E(x)) < 0, j /∈ JE(x). Therefore, gj(E(x) + λ(E(x) −
E(x))) < 0, j /∈ J(x), λ ∈ (0, λgj ]. Hence, gj(E(x) + λ(E(x) − E(x))) < 0, j ∈ J ,

λ ∈ (0, λgj ].

Let us set λ = min{λf , λgj , j ∈ J}. Then, we have that f(E(x) + λ(E(x) − E(x))) <

f(E(x)) and gj(E(x) + λ(E(x) − E(x))) < 0, j ∈ J , for any λ ∈ (0, λ]. Hence, this is a

contradiction to the assumption that x is an E-minimizer of (4.1). Hence, the system of

inequalities

⟨ξ, E(x) − E(x)⟩ < 0 and ⟨ξj , E(x) − E(x)⟩ < 0, j ∈ JE(x)

has no a solution x ∈ Rn. Hence, by Gordan’s theorem of the alternative (see [20]), there

exist ϑ ∈ R+ and µ ∈ Rm
+ such that

(4.9) ϑξ +
∑

j∈JE(x)

µjξj = 0.

If we set µj = 0, j /∈ JE(x), then (4.9) implies that the necessary optimality condition

of E-Fritz John type (4.2) is fulfilled. Also it is not difficult to see that the necessary

optimality conditions of E-Fritz John type (4.3) and (4.4) are fulfilled. This completes

the proof of this theorem.

Example 4.4. Consider the following nondifferentiable optimization problem defined by

(4.10) minimize f(x) = |x|3 subject to g(x) = −x3 ≤ 0.

Note that D = {x ∈ R : x ≥ 0} and x = 0 is a feasible solution of (4.10). Let E : R → R

be a mapping defined by E(x) = −x2. It is not difficult to show, by Definition 2.4, that

the functions constituting (4.10) are E-convex at x = 0 on R (therefore, they are E-convex
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at x = 0 on D). Further, note that, by Definition 3.2, the E-subdifferentials at x = 0 of

the functions constituting the considered nonlinear constrained extremum problem (4.10)

are as follows: ∂Ef(x) = [0,∞) and ∂Eg(x) = [0,∞). Since the E-subdifferentials of

f and g are nonempty at x, by Definition 3.3, the functions constituting (4.10) are E-

subdifferentiable at x = 0. Also it can be noticed that each function constituting (4.10)

satisfies Condition (E). Thus, the necessary optimality conditions of E-Fritz John type (see

Theorem 4.3) are fulfilled for the considered nondifferentiable optimization problem (4.10).

In order to prove the necessary optimality conditions of E-Karush–Kuhn–Tucker type,

we introduce the generalized E-constraint qualification.

Definition 4.5. It is said that the generalized E-constraint qualification (E-GCQ) is

satisfied at x ∈ D for the problem (4.1) if

(4.11) 0 /∈ co
∑

j∈JE(x)

∂Egj(x).

Theorem 4.6 (The necessary optimality conditions of E-Karush–Kuhn–Tucker type). Let

x ∈ D be an E-minimizer of the considered optimization problem (4.1) and all hypotheses

of Theorem 4.3 be fulfilled. Further, assume that the generalized E-constraint qualification

(E-GCQ) holds at x. Then there exists µ ∈ Rm such that

0 ∈ ∂Ef(x) +
m∑
j=1

µj∂Egj(x),(4.12)

µjgj(x) = 0, j ∈ J,(4.13)

µ ≥ 0.(4.14)

Proof. Let x ∈ D be an E-minimizer of the considered optimization problem (4.1). Fur-

ther, assume that all hypotheses of Theorem 4.3 are fulfilled. Then, the necessary opti-

mality conditions of E-Fritz John type (4.2)–(4.4) are fulfilled. Therefore, it is sufficient to

show that ϑ ̸= 0 in order to prove that the necessary optimality conditions of E-Karush–

Kuhn–Tucker type hold at x.

We proceed by contradiction. Suppose, contrary to the result, that ϑ = 0. Hence, by

the necessary optimality conditions of E-Fritz John type (4.2), it follows that

0 ∈
m∑
j=1

µj∂Egj(x).

Since ϑ = 0, by the necessary optimality conditions of E-Fritz John type (4.3) and (4.4),

we have that µj > 0 for at least one j ∈ JE(x). This means that the set JE(x) is not

empty. Thus,

(4.15) 0 ∈
∑

j∈JE(x)

µj∂Egj(x).
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Hence, (4.15) gives

0 ∈
∑

j∈JE(x)

µj∑
t∈J(x) µt

∂Egj(E(x)).

Denote µ0
j =

µj∑
t∈J(x) µt

. Thus, µ0
j ≥ 0, j ∈ JE(x), and, moreover,

∑
j∈JE(x)

µj∑
t∈JE(x) µt

= 1.

Then, we have

0 ∈
∑

j∈JE(x)

µ0
j∂Egj(x).

Hence, by the definition of a convex hull, it follows that

(4.16) 0 ∈ co
∑

j∈JE(x)

∂Egj(x).

By assumption, the generalized E-constraint qualification (E-GCQ) is satisfied at x ∈ D

for the considered optimization problem (4.1). Therefore, (4.16) contradicts (4.11). Then,

ϑ ̸= 0, which completes the proof of this theorem.

We now prove the sufficiency of the necessary optimality conditions of E-Karush–

Kuhn–Tucker type under appropriate E-subconvexity hypotheses.

Theorem 4.7. Let x ∈ D be a feasible solution of (4.1) such that the necessary optimality

conditions of E-Karush–Kuhn–Tucker type (4.12)–(4.14) are fulfilled. Further, assume

that f and gj, j ∈ JE(x), are E-subconvex at x on D. Then x ∈ D is an E-minimizer in

(4.1).

Proof. By assumption, x ∈ D and there exists µ ∈ Rm such that the necessary optimality

conditions of E-Karush–Kuhn–Tucker type (4.12)–(4.14) are fulfilled. Then, there exist

µj , j ∈ J , for which the conditions (4.12)–(4.14) are fulfilled. Also by assumption, f and

gj , j ∈ J , are E-subconvex at x on D. Then, by Definition 3.14, the following inequalities

f(E(x)) − f(E(x)) ≥ ⟨ξ, (E(x) − E(x))⟩,(4.17)

gj(E(x)) − gj(E(x)) ≥ ⟨ξj , (E(x) − E(x))⟩, j ∈ JE(x)(4.18)

hold for all x ∈ D and any ξ ∈ ∂Ef(x) and ξj ∈ ∂Egj(x), JE(x). Multiplying (4.18) by

the corresponding Lagrange multiplier µj , j ∈ JE(x), we get

µjgj(E(x)) − µjgj(E(x)) ≥ ⟨µjξj , (E(x) − E(x))⟩, j ∈ JE(x).

Using x ∈ D together with the necessary optimality condition of E-Karush–Kuhn–Tucker

type (4.13), we obtain

(4.19) ⟨µjξj , (E(x) − E(x))⟩ ≤ 0, j ∈ JE(x).
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Adding both sides of (4.19), taking into account µj = 0, j /∈ JE(x), we get

(4.20)

m∑
j=1

⟨µjξj , (E(x) − E(x))⟩ ≤ 0.

By (4.17) and (4.20), we have

f(E(x)) − f(E(x)) ≥

〈
ξ +

m∑
j=1

µjξj , (E(x) − E(x))

〉
.

By the necessary optimality condition of E-Karush–Kuhn–Tucker type (4.12), we obtain

that the inequality

f(E(x)) ≥ f(E(x))

holds for all x ∈ D. This means, by Definition 3.30, that x is an E-minimizer of (4.1) and

completes the proof of this theorem.

In order to illustrate the optimality conditions established for the considered nondif-

ferentiable optimization problem with E-subconvex functions.

Example 4.8. Consider the following nonconvex nondifferentiable optimization problem

(4.21) minimize f(x) = 3
√
x subject to g(x) = −x ≤ 0.

Note that D = {x ∈ R : x ≥ 0} and x = 0 is a feasible solution of (4.21). Let E : R → R

be a mapping defined by

E(x) =


0 if x ≥ 0,

−1 if −1 ≤ x < 0,

x3 if x < −1.

Note that, by Definition 3.2, the E-subdifferentials at x = 0 of the functions constituting

the considered nonlinear constrained extremum problem are as follows ∂Ef(0) = [1,∞)

and ∂Eg(0) = [−1,∞). Since the E-subdifferentials of f and g are nonempty, by Defini-

tion 3.3, the functions constituting (4.21) are E-subdifferentiable at x = 0. Moreover, it

can be shown that each function constituting (4.21) satisfies Condition (E). Then, if we

set µ = 1, then the Karush–Kuhn–Tucker necessary optimality conditions (4.12)–(4.14)

are fulfilled at x = 0. Further, it follows, by Definition 3.14, that f and g are E-subconvex

functions at x = 0 on R (the more so, on D). Therefore, the sufficient optimality condi-

tions from Theorem 4.7 are also satisfied which means that x = 0 is an E-minimizer of

(4.21).

Remark 4.9. Note that it is not possible to use for (4.21) the optimality conditions with

Clarke’s generalized gradients (see, for example, [8]). This is a consequence of the fact

that Clarke generalized gradient doesn’t exist for the objective function in (4.21) because

it is not locally Lipschitz.
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5. Conclusion

In the paper, we have introduced the concept of an E-subdifferential which is the set of E-

subgradients and is based on the effect of an operator E : Rn → Rn on the the domain of a

function. Further, we have analyzed some of its properties. Then we have shown that the

Clarke generalized gradient is a special case of the introduced E-subdifferential. However,

the E-subdifferential can be nonempty even for some not locally Lipschitz functions for

which Clarke generalized gradient is not defined. Admittedly, the E-subdifferential is

a convex closed set, but, in opposition to the Clarke generalized gradient, it can be a

noncompact set for some nondifferentiable functions and some operators E. However, we

have presented in the paper the condition under which the E-subdifferential is compact.

In order to show the existence of the E-subdifferential, we have introduced the class of E-

subdifferentiable E-convex functions which are called, for short, E-subconvex. This class of

nondifferentiable functions is a generalization and extension of the class of differentiable E-

convex functions to the case when E-functions are not necessarily differentiable. Then we

have presented the relationship between the gradient of a differentiable E-convex function

and an E-subgradient which is an element of the E-subdifferential. It is an interesting

case that there are cases of differentiable functions for which their gradients can not be

elements of their E-subdifferentials. Also it has been proved that the necessary condition

for a point to be a global E-minimizer of E-subdifferentiable function is that 0 is an

element of its E-subdifferential at this point. However, it turned out that this result

is true only in the case of global E-optimal solutions. In the case of local E-optimal

solutions of some E-subdifferentiable functions, it may be not true—this interesting result

has been illustrated in the paper. Further, we use the introduced E-subdifferential in

formulating the necessary optimality conditions of Fritz John type and Karush–Kuhn–

Tucker type which have been proved for the nonsmooth constrained extremum problem

considered in the paper. For proving the necessary optimality conditions Karush–Kuhn–

Tucker type, we have introduced a new constraint qualification which is based on E-

subdifferentials of active constraints. Finally, the sufficiency of the aforesaid necessary

optimality conditions have been established for such nonsmooth optimization problem

under assumption that the involved functions are E-subconvex. This result has been

illustrated by an E-subdifferentiable optimization problem with E-subconvex functions in

which not all functions are locally Lipschitz.

However, some interesting topics for further research remain. It would be of inter-

est to investigate whether it is possible to prove similar results for other classes of E-

subdifferentiable optimization problems. We shall investigate these questions in subse-

quent papers.
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 Lódź, Poland

E-mail address: tadeusz.antczak@wmii.uni.lodz.pl

Najeeb Abdulaleem

Faculty of Mathematics and Computer Science, University of  Lódź, Banacha 22, 90-238
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